Dye Sensitized Solar Cells: R&D Issues

Jason B. Baxter

Department of Chemical and Biological Engineering Drexel University

NSF PV Workshop May 2010

Dye Sensitized Solar Cells

- TiO₂ sensitized with monolayer of dye for light harvesting.
- Semiconductor provides high surface area, good electron transport.
 - Nanocrystalline, mesoporous TiO₂ film on TCO/glass.
- Redox mediator completes circuit.
- Record efficiency 11.1%

O'Regan and Gratzel, *Nature*, 1991. Gratzel, *Nature*, 2001.

Elementary Processes in DSSCs

Electron injection into TiO₂ is rapid, t ~ 0.1-1 ps.
Injection quantum

Injection quantum efficiency ~ 1.

• Photovoltage is due to $\Delta\mu$ • Serveen SC and electrolyte.

• Electron diffusion time

• $\frac{0.06}{0.04}$ • Electron recombination
• $\frac{0.00}{0.04}$ • $\frac{0.04}{0.00}$ • $\frac{0$

$$I_3^- + 2e^- \longrightarrow 3I^-$$

Efficiencies Over Time

Efficiencies Over Time

- Champion research cell (as of Jan. 2010)- Sharp 11.1%
 - J_{sc} 22.0 mA/cm², V_{oc} 0.729 V, FF 65.2%
 - Gratzel has unconfirmed cell >12%
- Champion module: Sony 8.5% (17 cm²)

Advantages of DSSCs

- Low cost
 - Inexpensive to manufacture, roll-to-roll processing possible
 - Low embodied energy (<1 yr payback)
- Non-toxic, earth-abundant materials (except Pt, Ru)
- Good performance in diverse light conditions: high angle of incidence, low intensity, partial shadowing
- Can be lightweight, flexible
- Can be semi-transparent, bifacial, selected colors

DSSC Commercialization

DSC-JC 2010

4th INTERNATIONAL CONFERENCE ON THE INDUSTRIALISATION OF DYE SOLAR CELLS

October 25-28, 2010
The Brown Palace Hotel and Spa
Denver, CO

http://www.dyesol.com/conference09

- G24 Innovations
 - 120 MW plant, on flexible metal foil
 - First commercial product in 2009
- Dyesol (materials and processing tools)
- 3GSolar
- SolarPrint
- Samsung, Sharp, Sony, Toyota
- Many start-ups: TiSol, etc.

Rooftop

3G Solar (Israel)

Aisin Seiki / Toyota (Japan)

Building-Integrated PV

Building integrated Photovoltaic (BIPV)

Roof Type

Outer Wall Type/Fittings

Power Generation Use

http://www.samsungsdi.com

Portable Electronics

G24 Innovations (Wales)

Indoor / Decorative

Aisin Seiki (Japan)

R&D Challenges for DSSCs

- Lab efficiencies <12% and stagnating
 - Low red and near-IR absorption
 - Low extinction coefficient requires high surface area
 - Only I⁻/I₃⁻ redox couple has slow recombination kinetics, but it has unnecessarily large overpotential
- Stability and robustness
 - Liquid electrolyte is undesirable, but solid state hole conductors give lower efficiency
 - 10⁸ turnovers of dye required for 20 year lifetime
 - I^{-}/I_{3}^{-} is corrosive

Margins to Increase Efficiency

Estimated efficiency of DSSCs employing dyes with increased spectral coverage in conjunction with redox shuttles with varying solution potentials. Efficiencies > 15% are, in principle, achievable in many configurations when there is minimal overpotential (ca. 200 mV) for dye regeneration (dotted line).

From Hamann, *Energy & Env. Sci.*, 2008, p. 66.

New Sensitizers

- Requirements for sensitizers:
 - Broad spectral coverage
 - High absorption cross-section (enables thinner devices)
 - Appropriate energetics to match oxide, redox
 - Fast kinetics for injection, regeneration
 - Stable for many ($\sim 10^8$) turnovers

Alternative Sensitizers

Strategies

- Ligands to shift bands,
 broaden spectral coverage
- Other classes of dyes
- Donor-acceptor molecules
- Porphyrin oligomers
- Dye multilayers
- Blends or tandem cells
- Quantum dots

N3 (Ru bpy)

indoline

coumarin

phthalocyanine

New Redox Couples

• Requirements:

- Fast dye regeneration
- Slow recombination with electrons from oxide (only I^-/I_3^- is slow enough for conventional cell)
- Redox potential matched to dye HOMO (I^-/I_3^- has 500 mV overpotential, reducing V_{oc})
- Stable and non-corrosive

• Alternatives:

- Halogens: Br⁻/Br₃⁻
- Pseudohalogens: (SeCN)₂/SeCN⁻
- Cobalt polypyridyl complexes
- Cu(dmp)₂^{2+/+} (dimethylphenanthroline)

New Photoanodes

• Requirements:

- Large surface area for dye loading
- Sufficiently fast electron transport to the substrate compared to recombination (fast transport not necessary for conventional cell, but will be for other redox couples)
- Open pore structure for dye sensitization and transport of redox couple
- Transparent (but scattering can help), with appropriate band positions
- For commercialization- scalable and inexpensive

• Alternatives:

- Other oxides: ZnO, SnO₂, SrTiO₃
- Other architectures
 - Aerogels: larger surface area, larger porosity, less robust
 - Nanowire/nanotube arrays: directed transport, but lower surface area

Advantages of Nanowire Arrays

- Nanowires provide a direct path to the substrate for fast charge transport.
- Faster transport can tolerate faster recombination- other redox couples can increase V_{oc} by ~300 mV.
- Aligned pores for facile pore filling and direct path for hole transport.

Baxter, *Nanotechnology*, 2006, S304. Baxter, *Appl. Phys. Lett.*, 2005, 053114.

• Optimizing one material at a time has not resulted in significant increases in efficiency in the last 10-15 years.

• Multiple materials must be changed simultaneously to achieve large improvements.

Replacing the Liquid Electrolyte

- Solid state hole conductors are more robust, but efficiencies are lower.
- Difficulties in filling tortuous pore network limits thickness and efficiency.

 H,C-Q spiro-OMeTAD
- Possible alternatives:
 - Solid organic hole conductors: spiro-OMeTAD
 - Max η=4% with 2 μm thickness (Snaith, *Angew. Chem. Int. Ed.*, 2005, p. 6413)
 - Room temperature ionic liquids (molten salts)
 - Imidazolium iodide: η=8.2%, retained 93% performance after 1000 hrs light soak @ 60 °C (Bai, *Nature Mat.*, 2008, p. 626)
 - Polymer electrolytes, gels
 - Inorganic p-type: CuSCN, CuI
 - Faster recombination than liquid

Extremely Thin Absorber Solar Cells

- High absorbance with smaller roughness factor than DSSCs.
- Improved robustness- all inorganic.
- Can offer more efficient charge separation and cheaper processing than planar thin film PV.

On-going work in Baxter Lab (NSF CAREER, CBET-0846464)

Lifetime Testing of DSSCs

- Requirements for outdoor use (required for Si, but not DSSCs so far)
 - UV plus 55 °C, 1000 hours
 - 85 °C, 1000 hours
 - Humidity and temperature cycling (sealing issues)

Ionic liquid DSSC Bai, *Nature Mat.*, 2008, p. 626.

Z907 attains 10'000 hours stability in full sunlight (2-2008) Recently extended to 20'000 hours.

Short Circuit Current and Open Circuit Voltage vs. Time

Courtesy: Dr.Ravi K. Harikisun, Dyesol Inc, Australia

Manufacturing

- Low cost, high throughput, robust processing
 - Roll to roll screen printing, inkjet printing etc.

Summary of Directions for Research

- New combinations of materials to increase efficiency and stability
 - Multiple materials must be changed simultaneously
 - Mainly academic (so far, academics have emphasized efficiency over stability and lifetime)
- Low-cost, high-throughput manufacturing methods
 - Academic and industrial
- New ways to integrate DSSCs for new/emerging markets
 - Mainly industrial

Useful References

- T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswyk, and J.T. Hupp. "Advancing beyond current generation dye-sensitized solar cells," *Energy and Environmental Science*. **2008**, 1.
- H.J. Snaith, and M. Gratzel. "Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells," *Applied Physics Letters*. **2006**, 89.
- J.B. Baxter, A.M. Walker, K. van Ommering, and E.S. Aydil. "Synthesis and Characterization of ZnO Nanowires and their Integration into Dye Sensitized Solar Cells," *Nanotechnology*. **2006**, *17*, *S304-S312*.
- M. Gratzel. "Photoelectrochemical cells," *Nature.* 2001, 414, 338-344.
- H. Tributsch. "Dye sensitization solar cells: a critical assessment of the learning curve," *Coordination Chemistry Reviews.* **2004**, 248, 1511-1530.
- Y. Bai, Y.M. Cao, J. Zhang, M. Wang, R.Z. Li, P. Wang, S.M. Zakeeruddin, and M. Gratzel. "High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts," *Nature Materials.* 2008, 7, 626-630.
- Slides from M. Gratzel's invited talk available at http://www.energy.upenn.edu/solar09.html
- Websites of companies mentioned in earlier slides

