

Research Challenges for CIGS and CdTe

Presented by I. Repins

Thanks to NREL's polycrystalline thin film group and characterization group .

This work was supported by the U.S. Department of Energy under Contract No. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory.

Outline

- Landscape for PV Research
- Needs for CIGS
- Needs for CdTe
- Wider-scope needs

Timeless truths that have changed in the last 10 years

- PV is really expensive
 - First Solar CdTe \$0.84 / Watt (self-reported cost Q4, 2009)
 - Trina Solar x-Si \$1.24 / Watt (self-reported cost Q4, 2009)
 - Modules are only 30-50% of project cost.

From "Solar Program Overview", Minh Le, DOE, 2010.

Timeless truths that have changed in the last 10 years

- PV is really expensive
 - First Solar CdTe \$0.84 / Watt (self-reported cost Q4, 2009)
 - Trina Solar x-Si \$1.24 / Watt (self-reported cost Q4, 2009)
 - Modules are only 30-50% of project cost.
 - In some cases, PV is at grid parity now. (Eaglesham, 2009 SPIE)

From "Solar Program Overview", Minh Le, DOE, 2010.

Timeless truths that have changed in the last 10 years

- PV is really expensive
 - First Solar CdTe \$0.84 / Watt (self-reported cost Q4, 2009)
 - Trina Solar x-Si \$1.24 / Watt (self-reported cost Q4, 2009)
 - Modules are only 30-50% of project
 - In some cases, PV is at grid parit

2009 SPIE)

- Thin Film polycrystalline PV is mos'
 - Growth in industrial workforc
 - \$2 billion VC funding for PV in 2008 (NY Times, 1/26/10)

U.S. Employees

2000 2010

Timeless truths that have changed in the last 10 years

- PV is really expensive
 - First Solar CdTe \$0.84 / Watt (Q4, 2009)
 - Trina Solar x-Si \$1.24 / Watt (Q4, 2009)
 - Modules are only 30-50% of project cost.
 - In some cases, PV is at grid parity now. (Eaglesham, 2009 SPIE)
- Thin Film polycrystalline PV is mostly a research project.
 - Growth in industrial workforce
 - \$2 billion VC funding for PV in 2008 (NY Times, 1/26/10)

We know how to make good semiconductors. Good PV manufacturing

will look like a chip fab.

Timeless truths that have changed in the last 10 years

- PV is really expensive
 - First Solar CdTe \$0.84 / Watt (Q4, 2009)
 - Trina Solar x-Si \$1.24 / Watt (Q4, 2009)
 - Modules are only 30-50% of project cost.
 - In some cases, PV is at grid parity now. (Eaglesham, 2009 SPIE)
- Thin Film polycrystalline PV is mostly a research project.
 - Growth in industrial workforce
 - \$2 billion VC funding for PV in 2008 (NY Times, 1/26/10)
- We know how to make good semiconductors. Good PV manufacturing will look like a chip fab.
- Thin film polycrystalline manufacturers must eliminate Cd to be viable.

Timeless truths that have changed in the last 10 years

- PV is really expensive
 - First Solar CdTe \$0.84 / Watt (cost Q4, 2009)
 - Trina Solar x-Si \$1.24 / Watt* (cost Q4, 2009)
 - Modules are only 30-50% of project cost.
 - In some cases, PV is at grid parity now. (Eaglesham, 2009 SPIE)
- Thin Film polycrystalline PV is mostly a research project.
 - Growth in industrial workforce
 - \$2 billion VC funding for PV in 2008 (NY Times, 1/26/10)
- We know how to make good semiconductors. Good PV manufacturing will look like a chip fab.
- Thin film polycrystalline manufacturers must eliminate Cd to be viable.
- Thin film = low performance

Device	Area	Efficiency	Accredited	Origin	Date
type	(cm ²)	(%)	measurement?		
CIGS/glass	0.5	20.1	Y	ZSW	4/10
Glass/CdTe	1.05	16.7	Y	NREL	9/1
CIGSS/glass	855	15.7	N	Solar Frontier	3/10
CIGSS/glass	3459	13.5	Y	Showa Shell	8/02
CIGS/steel	3900	13.2	Y	Global Solar	2/10
Glass/CdTe	6623	12.6	Y	First Solar	8/08
CIGS/glass	6716	13.9	N	Honda	12/07

Implication for research needs:

- Definition for "low-cost" has changed
- Module efficiency is key, since it can reduce both module and non-module costs
- Research community should avoid duplicating effort with the massive industrial workforce.
- The best research problems are applicable to the widest variety of deposition techniques and device designs used in the industry.

Outline

Landscape for PV Research

- Needs for CIGS
- Needs for CdTe
- Wider-scope needs

CIGS: Moisture-resistance

30,000X

ZnO bilayer 480 hours DH

Wennerberg et al, 2nd WCPVSEC, 1998.

Pern et al, 2nd WCPVSEC, 1998.

- Why is this issue important if product works well enough with a glass-glass package?
 - Shipping, installation costs increase with weight
 - Flexible, building-integrated product may further reduce installation costs
 - Cost of additional glass contributes to module cost
- Need moisture hardening of device, and/or
- Low-cost, flexible, moisture-impermeable encapsulant (10⁻⁶ gm / m² / day)

CIGS: Efficiency

Device type	Area (cm²)	Efficiency (%)	Accredited measurement?	Origin	Date
CIGS/glass	0.5	20.1	Y	ZSW	4/10
CIGSS/glass	855	15.7	N	Solar Frontier	3/10
CIGSS/glass	3459	13.5	Y	Showa Shell	8/02
CIGS/steel	3900	13.2	Y	Global Solar	2/10
CIGS/glass	6716	13.9	N	Honda	12/07

- Further improvements affect both module and non-module costs.
- Short-term: closing the gap between module and cell efficiencies. Examples:
 - Metrology
 - Comparative analysis
- 20.1% is not the end of the road. Examples:
 - 2.9 mW/cm² to gain by increasing band gap without decreasing lifetime.
 - 1.8 mW/cm² to gain by replacing CdS with less absorptive layer

CIGS: Fundamental understanding

- Improve fundamental understanding of how the important properties and processing of each layer relate to device performance.
- Needed for transfer of champion results to manufacturing, quick optimization of new processes, high yields, and device improvement.

For example

- What mechanisms control lifetime and carrier density in CIGS?
- How should we routinely measure Na? What is the sensitivity of 20% devices to variations in Na profile?
- Can we define the role of bath-deposited CdS to a point where we can replace it with other processes and materials?

CIGS: Reduced sensitivity to indium price

- Currently, In in absorber adds ~ \$0.03/W to module (In \$700/kg, 50% utilization, 2 µm CIGS, 30% Ga ratio, 12% efficiency)
- Concern is possible increase In price with high-volume (many GW/yr) CIGS manufacturing and growth in LCD industry
- Investigation of earth-abundant materials (such as CZTS)
- Reduction of absorber thickness

Chen et al, APL 94, 2009

Gloeckler et al, JAP 98, 2005

Outline

- Landscape for PV Research
- Needs for CIGS

- Needs for CdTe
- Wider-scope needs

CdTe: Demonstrated efficiency

CdTe has the most potential for improvement based on difference between theoretical limit and demonstrated cells or modules.

CdTe: Minority Carrier Lifetime

Record	Approximate	J_{sc}	Ff	Voc	Efficiency	E _g /q-
cell type	E _g (eV)	(mA/cm ²)	(%)	(V)	(%)	Voc (V)
SX-Si	1.11	42.7	82.8	0.706	25.0	0.404
CIGS	1.15	35.7	81.0	0.692	20.0	0.458
GaAs	1.43	29.6	84.6	1.045	26.1	0.385
CdTe	1.48	26.1	75.5	0.845	16.7	0.635

- Comparing cell technologies
 - J_{sc} losses are minimal and well-quantified.
 - Largest loss is in V_{oc}.
- Voc is a strong function of minority carrier lifetime.
- Longest lifetimes in PX CdTe ~ 3 nS.
 Best CIGS devices: lifetime > 100 nS.
- Either increase lifetime, or utilize *p-i-n* structure that minimizes recombination with several nS lifetime.

Metzger et al, JAP **94 (**5), 2003.

CdTe: Carrier Density

- Free carrier densities are low,
 ~10¹⁴ cm⁻³. (Compare to 10¹⁶ cm⁻³ in CIGS)
- Strong contribution to Voc loss.
- Increased carrier density should also facilitate back contact formation.
- However, it may necessitate reexamination of CdS/CdTe interface and associated recombination.

Sites et al, Thin Solid Films 515, 2007

CdTe: Understand defects and grain boundaries

- For epitaxial-grown CdZnTe, free carrier densities of ~10¹⁶ cm⁻³ and lifetimes of ~ 1 µs have been demonstrated (Carmody et al, *Appl. Phys. Lett.* **96**, 153502, 2010)
- What about the PX film processing or structure limits lifetimes to < 3 nS and free carrier density to ~10¹⁴ cm⁻³?

TEM cross section view of a CdTe solar cell

• Note: Examinations of defects, carrier density, and lifetime may be convenient entry points for new research groups. Full device fabrication capabilities not necessarily required.

CdTe: More robust back contact

- Back contact is functional.
- Processing window is narrow.
- Absorber and back contact properties are coupled.
- May be some fill factor loss associated with back contact.

Outline

- Landscape for PV Research
- Needs for CIGS
- Needs for CdTe

Wider-scope needs

Wider-Scope Needs

In 10-20 year time-frame, some enabling factors for low-cost PV may be related to things other than the module:

- Innovations to attack nonmodule side of costs. Examples of some current efforts:
 - Dow shingle rolls PV installation cost with standard roof installation.
 - Reduced BOS costs through lighter weight, larger panels, vertical integration.

- Grid management (>20% local penetration by PV)
- Tapping into transportation fuel usage (27% of U.S. energy consumption)

Summary: Highest impact research needs for TF PX devices

- 1. Be aware of the current landscape: decreased costs, large industrial workforce, wide variety of processing techniques, higher performance.
- 2. CIGS: moisture resistance, efficiency improvements (module and cell), better understanding of relationship between film and device properties, decreased sensitivity to In cost
- 3. CdTe: improved efficiency, longer lifetimes, higher carrier density, better understanding of defects and grain boundaries, more robust back contact.
- 4. Issues of a wider scope than just module development may be key enablers in 10-20 years.