Research and Development Issues for Organic Photovoltaics

Sean Shaheen
Dept. of Physics and Astronomy, University of Denver

Contractor to the National Center for Photovoltaics at NREL

NSF Workshop on Catalyzing Innovation in PV Manufacturing
May 6, 2010
The growth of the OPV field

• The research output in OPV continues to grow:
 ISI search of “organic photovoltaic” returns 2,747 hits

• U.S. government agencies investing in OPV

 DOE Energy Frontier Research Centers (EFRC’s)
 - 7 of 46 EFRC’s are devoted to some aspect of OPV (~$116 M / 5 yr.)

 NSF SOLAR program is underway

 Upcoming **NIST** workshop covering all aspects of solar energy technologies
Compelling results from industry and national labs

- New efficiency records being set on a regular basis
 - multiple groups reporting >7%.

- Impressive lifetimes being reported
 - thousands to 10's of thousands of hours

- Initial efforts at large scale production are underway

- Materials (inks) and devices available commercially

- Many new material systems (active layer and electrodes) being investigated
OPV products: prototype and on the market!
OPV products: prototype and on the market!

Solarivy.com
OPV products: prototype and on the market!
Some common materials for solution-processable OPV:

Fig. 20 The chemical structure of all the most used materials in partially or fully solution-processed tandem organic solar cells.

Some common materials for small-molecule OPV:

H₂Pc: M=2H
CuPc: M=Cu
ZnPc: M=Zn

PTCBI
m-MTDATA

Me-PTC

F₄TCNQ
BCP
C₆₀

Fig. 14 The chemical structure of the most utilized materials in evaporated small molecule based tandem organic solar cells.

Improved standardization in measurement

• *The state of the field in accuracy in reported efficiencies is much better than it was a few years ago*

 - Issues of spectral mismatch and device active area have been largely resolved

Next steps for field:
 - standardize device geometry for certified measurement?
 - scale-up high efficiencies to mini-modules and modules
Improved characterization of structural and electronic properties

- The tools available for resolving the nanoscale donor-acceptor structure have gotten much more powerful

3-D TEM tomography

(See for example publications by J. Loos and R.A.J. Janssen groups)
Improved characterization of structural and electronic properties

- The tools available for resolving the nanoscale donor-acceptor structure have gotten much more powerful
 Scanning Conductive Tip Photocurrent Mapping

(Measurements courtesy Alex Dixon, University of Denver graduate student)

(See for example publications and Asylum Research application note by group of David Ginger)

There is no consensus in the OPV community as to what is the “optimal” morphology!
Improved characterization of structural and electronic properties

- *Electronic characterization techniques have become more refined and powerful*
 - transient photovoltage, photocurrent
 - transient conductivity and microwave conductivity
 - impedance spectroscopy being used to characterize a wide range of phenomenon
 i) Schottky barriers iv) carrier mobility
 ii) built-in field v) defect levels
 iii) intrinsic carrier density vi) density-of-states

Impedance spectroscopy as a direct measure of the Density-of-State (DOS) of a material*

\[C_\mu = d q^2 g(E_F) \]

Improved characterization of structural and electronic properties

Time Resolved Microwave Conductivity (TRMC) measurements

Comparing carrier lifetimes in different donor-acceptor blends

Device efficiency ~4%

TRMC measurements courtesy William Rance and Dr. Nikos Kopidakis
Exciton quenching by C$_{60}$

Ultrafast photoinduced electron transfer between a conjugated polymer and a fullerene was discovered in 1992*.

Forward electron transfer rate: 45 fs†
Backward electron transfer rate: \sim1 µs

Kinetic pathways for OPV devices

- Many kinetic pathways are available to an exciton.
- For a working solar cell, we need charge transfer at D-A interface to yield free carriers.

\[
\begin{align*}
D &\xrightarrow{hv} D^* \\
D^* &\xrightarrow{diffusion} D^* + A \\
D + \Delta H &\xrightarrow{\text{transport}} \text{D}^+ + A^- \\
D + h\nu &\xrightarrow{\text{at interface}} (D\ A)^* \\
D^* + A &\xrightarrow{\text{charge separation}} D^\delta + A^{\delta-}
\end{align*}
\]
Development of an open-source modeling platform for OPV devices

One dimensional steady-state drift-diffusion equations:

Poisson Equation:

\[\frac{\partial^2}{\partial x^2} \psi(x) = \frac{e}{\varepsilon} (n(x) - p(x) - C(x)) \]

- \(C \) = net positive fixed charge

Continuity Equations:

\[\frac{\partial}{\partial x} J_n(x) = eU(x) \]
\[\frac{\partial}{\partial x} J_p(x) = -eU(x) \]

- \(J_n = enE + D_n \frac{\partial}{\partial x} n \)
- \(D_n = \mu_n k_B T / e \)
- \(J_p = epE - D_p \frac{\partial}{\partial x} p \)
- \(D_p = \mu_p k_B T / e \)
- \(E = -\frac{\partial}{\partial x} \psi \)
- \(U = \) net generation rate

- Simple model to start with
- 1-dimensional treatment
- BHJ + ideal (Ohmic) contacts, no other layers (e.g. PEDOT:PSS)
- Bulk heterojunction transport parameterized by \(\mu_{n,p} \)

Software (Python) implementation performed by Peter Graf, NREL Scientific Computing Center
Development of an open-source modeling platform for OPV devices

Exciton dynamics are captured in the model

\[U = PG - (1 - P)R \]
\[R = \gamma(np - n_i^2) \]
\[P = \frac{k_d}{k_d + k_f} \]
\[k_d = k_d(x,T,E,E_b) \]
\[k_f = \text{parameter} \]

Device parameters such as electric potential and carrier density can be visualized
Development of an open-source modeling platform for OPV devices

- Curve fitting to yield extraction of parameters

The model will be made available (hosted at NREL) as an open-source, extensible platform for the OPV community.

\[G = 1.66 \times 10^{21} \]
\[E_b = 2.82 \times 10^{-1} \]
Reaching the near term efficiency target

Low band gap absorbers to increase J_{SC}

Calculated maximum J_{SC} vs. Eg:

Assume absorber Eg = 1.4 eV (890 nm)

Max J_{SC} = 32.9 mA/cm2

Assume real J_{SC} = 60% x 33 mA/cm2 = 20 mA/cm2
Improve band alignment to increase V_{OC}

Reduce series resistance (R_s) in device to improve FF

Combining above idealized J_{SC}, V_{OC}, and FF to yield an example efficiency:

$20 \text{ mA/cm}^2 \times 0.80\text{V} \times 0.70 / 100 \text{ mW/cm}^2 \Rightarrow 11.2\% \text{ efficiency}$
Pathways to higher efficiency

• The pathway to ~11% efficiency is (relatively) clear

• A pathway to 15% efficiency exists, but it is challenging
 - simultaneous optimization of individual components
 - tandem devices

• Reaching efficiencies > 15% may require incorporation of new mechanisms
 - tandem devices
 - more exotic 3rd generation mechanisms
 • Multiple Exciton Generation (MEG)
 • Hot carriers
 • Singlet fusion
 • Optical up-conversion
 • Intermediate band semiconductors
 • ???

OPV
Materials discovery statistics

We are attempting to explore an enormous parameter space:

A (conservative) example calculation for a single junction device:

- 20,000 possible donors
- 2,000 possible acceptors
- 10 solvents
- 10 co-solvents
- 10 possible layer thicknesses
- 10 possible bottom electrodes (TCO or otherwise)
- 10 possible injection layers (either at top or bottom electrode)
- 10 possible top electrodes (metal or otherwise)

> 10^{13} combinations

There is a good opportunity for OPV to harness newly emerging tera- and peta-scale computing resources.

OPV can learn a lot from more established technologies.
Closing thought: towards biomimicry?

Our synthetic light harvesting systems are still far simpler than naturally occurring ones, both in *structure* and *function*!

Bacterial Photosynthetic Light Harvesting Complex II

resolved by the group of Neil Isaac, Univ. of Glasgow
Acknowledgements

DU graduate students:
Brian Appleby
Alex Dixon
Xin Jiang
Ajaya Sigdel

contact:
sean.shaheen@du.edu

(partial list)

National Center for Photovoltaics
Dana Olson
Joseph Berry
Matthew Reese
Andres Garcia
Matthew Loyd
Zbyslaw Owczarczyk
Scott Hammond
Theresa Barnes
David Ginley

Chemical and Biosciences Center
Alex Nardes
David Coffey
Nikos Kopidakis
Andrew Ferguson
Tom Reilly
Jao van de Lagemaat
Brian Gregg
Garry Rumbles
Arthur Nozik

Scientific Computing Center
Peter Graf
Ross Larsen
Kwiseon Kim
Steve Hammond

Colorado School of Mines
Reuben Collins
Tom Furtag
Craig Taylor
Arnold Tomayo
Mark Lusk
Colin Wilden

Joseph Michl
Ivan Smalyukh
Won Park
David Walba
David Jonas
Mark Ablowitz