Question 1 ... (8 points)
Consider the sequence $x[n] = \sin(2\pi fn)$.

(a) [4 points] If $x[n]$ is periodic with period $N = 20$ samples, what is the frequency f (in cycles per sample)?

(b) [2 points] Specify a second frequency f that yields the same sequence $x[n]$.

(c) [2 points] Specify a frequency f for which the sequence $x[n]$ is not periodic.

Question 2 ... (5 points)
Let $h[n] = 2\delta[n+1] - \delta[n] - \delta[n-1]$, where $\delta[n]$ denotes the unit-impulse sequence. Let $x[n] = u[n] - u[n-3]$, where $u[n]$ denotes the unit-step sequence. Sketch the sequences (a) $h[n]$, (b) $x[n]$, and (c) $y[n] = h[n] \ast x[n]$, where \ast denotes convolution. (Label axes.)

Question 3 ... (5 points)
Given only the impulse response $h[n]$ of an LTI system, how can you

(a) [3 points] compute the output $y[n]$ for any input $x[n]$?

(b) [2 points] determine whether the system is stable?
Question 4 .. (6 points)
Given that the discrete-time Fourier transform (DTFT) of \(x[n] \) is \(X(\omega) \), prove that
(a) [3 points] the DTFT of \(x[n+3] \) is \(X(\omega)e^{j\omega 3} \).
(b) [3 points] the DTFT of \(x[-n] \) is \(X(-\omega) \).

Question 5 .. (8 points)
(a) [4 points] Describe in words (not a computer program) a non-linear system
\(y[n] = T\{x[n]\} \) that removes isolated noise spikes from any sequence \(x[n] \).
(b) [4 points] For inputs \(x_1[n] = \delta[n] \), \(x_2[n] = u[n-1] \), and \(x[n] = x_1[n] + x_2[n] \),
sketch the corresponding outputs \(y_1[n] \), \(y_2[n] \), and \(y[n] \) for your system, and thereby prove that your system is non-linear.
Consider a stable system described by the constant-coefficient difference equation
\[y[n] - \frac{1}{4} y[n-1] = 2 x[n-2]. \]

(a) [3 points] Is this system linear? Time-invariant? Causal?

(b) [3 points] Sketch the impulse response \(h[n] \) for this system. (Label axes.)

(c) [3 points] What is the frequency response \(H(\omega) \) of this system?

(d) [3 points] How would you modify the scale factor 2 for \(x[n-2] \) in this system so that the DC response \(H(0) = 1 \).

(e) [3 points] Assume a bounded input sequence \(x[n] \) such that \(|x[n]| < 1 \) for all \(n \). For such an input sequence, and for the original unmodified system above, what is the bound on \(|y[n]| \) for the output sequence \(y[n] \)?

(f) [3 points] Write computer code to implement the original unmodified system. That is, write code to compute \(y[n] \) for \(n = 0, 1, 2, ..., N - 1 \), given input \(x[n] \) for \(n = 0, 1, 2, ..., N - 1 \).