Question 1 ... (10 points)
Consider each of the following sampled sequences. Determine whether or not the sequence is periodic. If so, specify the period N.

(a) $\sin(\pi n)$

(b) $\sin(\pi n/4)$

(c) $\sin(3\pi n)$

(d) $\sin(3\pi n/4)$

(e) $\sin(3n/4)$

Question 2 ... (10 points)
Consider the following systems $y[n] = T \{x[n]\}$. For each system, specify whether or not it is linear (L), time-invariant (TI), and/or stable (S).

(a) $y[n] = 2x[n]$

(b) $y[n] = 2x[n] - 2$

(c) $y[n] = x[2n]$

(d) $y[n] = x[2 - n]$

(e) $y[n] = x[n - 2]$
Question 3 .. (20 points)

You are given two arrays x and y, both of length nt. The array x contains an input sequence of values and the output array y initially contains some arbitrary (not zero) random values that you will replace.

(a) Using any programming language, write a computer program fragment that implements an approximation to a derivative system $y(t) = x'(t)$.

(b) Specify the name of the programming language that you used and the type of finite-difference approximation that your system implements.

(c) For output samples near bounds of the array y, what values does your system assume for input samples outside bounds of the array x?

(d) Is your system linear? time-invariant? causal? stable? If stable, specify a bound B_y on the output in terms of a corresponding bound B_x on the input. If not stable, why not?

(e) Sketch the unit-impulse response of your system, the output $y[n] = h[n]$ for input $x[n] = \delta[n]$.

(f) Sketch the output $y[n]$ of your system for input $x[n] = u[n - 3]$, where $u[n]$ denotes the unit step sequence.

(g) Sketch the output $y[n]$ of your system for input $x[n] = \delta[n - 1] + u[n - 4]$.
Question 4 .. (5 points)

Let $x[n]$ and $y[n]$ denote system input and output, respectively, and consider two linear time-invariant systems with impulse responses $h_1[n] = u(n) - u(n - 4)$ and $h_2(n) = h_1(-n)$.

(a) Sketch the impulse responses of these two systems.

(b) Sketch the impulse response of a composite system $y[n] = h_2[n] * h_1[n] * x[n]$.

Question 5 .. (5 points)

Consider the linear time-invariant system with impulse response $h[n] = (2/3)^n u(n)$.

(a) Write a linear constant-coefficient difference equation that relates the system output $y[n]$ to the input $x[n]$.

(b) Show that this system is stable, by specifying the bound B_y on the output in terms of the bound B_x on the input.