Question 1. ... (18 points)
Find z-transforms $X(z)$, including the regions of convergence, of the following sequences:

(a) [3 points] $x[n] = \delta[n - 2]$

(b) [3 points] $x[n] = 2\delta[n + 2] - 3\delta[n - 2]$

(c) [3 points] $x[n] = \left(\frac{1}{4}\right)^n u[n]$

(d) [3 points] $x[n] = \left(\frac{1}{4}\right)^{n+1} u[n + 1]$

(e) [3 points] $x[n] = \left(\frac{1}{4}\right)^n u[n + 1]$

(f) [3 points] $x[n] = 4^n u[-n - 1]$
Consider a system with z-transform

$$H(z) = 1 + z^{-2}, \quad |z| > 0.$$

(a) [2 points] How many zeros are in this system? How many poles?

(b) [4 points] Plot the poles and zeros in a sketch of the complex z-plane.

(c) [3 points] Sketch the amplitude spectrum of this system for frequencies $-\pi < \omega < \pi$.

(d) [2 points] Write a difference equation for this system.

(e) [2 points] Is this system stable? Why or why not?

(f) [2 points] Sketch the impulse response of this system.

(g) [3 points] If applied to a sequence $x[n] = x_c(nT)$ with sampling interval $T = 4$ ms, what frequency F (in Hz) is most attenuated by this filter?
Question 3 .. (16 points)
Assume that you are given a sampled sequence \(x[n] = x_c(nT) \), where the sampling interval \(T = 4 \) ms.

(a) [2 points] What is the sampling frequency \(F_s \)?

(b) [2 points] What is the Nyquist frequency \(F_n \)?

(c) [4 points] Sketch the amplitude spectrum \(A(F) \) of a non-zero continuous (not yet sampled) signal \(x_c(t) \) for which the corresponding sampled sequence \(x[n] \) is not aliased. In your sketch, (1) label the frequency axis \(F \) with units of Hz, (2) include both negative and positive frequencies, and (3) indicate both the sampling frequency \(F_s \) and Nyquist frequency \(F_n \).

(d) [2 points] Make a similar sketch for which the sequence \(x[n] \) is aliased.

(e) [2 points] Assume that the sequence \(x[n] \) is not aliased, and sketch the amplitude spectrum \(A(\omega) \) of this sequence for frequencies \(-2\pi < \omega < 2\pi\). In this sketch, the units of frequency \(\omega \) are radians/sample.
(f) [4 points] Assume that the sequence \(x[n] = x_c(nT) \) is not aliased, and write
a computer program fragment with two loops (one nested inside the other) that will compute a new sequence \(y[n] = x_c(t_0 + nT) \), where \(t_0 = 1 \text{ ms} \).

```java
private static float sinc(float x) {
    // assume this method exists
}
...
int nt = sx.getCount();
float dt = (float)sx.getDelta();
float t0 = 0.001f;
float pi = (float)Math.PI;
// TODO: good (but slow) implementation of sinc interpolation
```

Question 4 .. (3 points)

After his most recent haircut, how much did Dr. Hale tip his barber?