
1

Atomic Meshes:
from Seismic Imaging to Reservoir Simulation

DAVE HALE
Landmark Graphics, 7409 S. Alton Ct., Englewood, CO, USA dhale@lgc.com

Abstract

Combining image processing and optimization techniques, we automatically align a lattice
of points (atoms) with horizons and faults in a 3-D seismic image. Connecting these points
yields an unstructured space-filling polyhedral (atomic) mesh. This single data structure
can integrate multiple tasks, such as seismic interpretation, reservoir characterization, and
flow simulation, thereby reducing work cycle times and errors.

Horizons and faults in seismic images often correspond to discontinuities in subsurface prop-
erties, such as permeability. Depending on the type of mesh elements desired, we align the
lattice of atoms either on or alongside image features. 3-D Delaunay triangulation of atoms
aligned on image features yields a tetrahedral mesh, with triangular faces of tetrahedra co-
incident with subsurface discontinuities. Alternatively, 3-D Delaunay triangulation of atoms
aligned alongside image features yields a dual Voronoi polyhedral mesh in which polygonal
faces coincide with subsurface discontinuities.

Introduction

Today’s work cycle from seismic imaging to reservoir simulation requires a variety of data
structures — simple arrays, triangulated surfaces, non-manifold frameworks, corner-point
grids, etc. — to represent the earth’s subsurface. Conversions among these different repre-
sentations are both time consuming and error prone.

We may reduce both work cycle times and errors by performing tasks such as seismic inter-
pretation, reservoir characterization, and flow simulation using a single space-filling mesh.
For example, consider the horizontal slice of a 3-D seismic image of geologic faults shown
in Figure 1a. Figure 1b shows a space-filling mesh of triangular elements that is aligned
with those faults (bold white lines). Flow vectors (black line segments) indicate both the
direction and velocity of fluid flowing from an injector in the upper left to a producer in
the lower right part of the image. We performed both the fault interpretation and the flow
simulation on the same space-filling mesh.

Today, one typically interprets faults by drawing curves on a seismic image, interpolating
those curves to form surfaces, stitching those surfaces together to form a topologically consis-
tent framework, all before creating a mesh within that framework. In contrast, we interpret
faults after aligning a space-filling mesh with relevant features in a seismic image. In other
words, we interpret seismic images using a data structure that works for flow simulation.

The flow simulation illustrated in Figure 1b is simple. Permeability is constant and isotropic,
except at the faults, which we assumed to be impermeable, Flow is single-phase and steady-

8th European Conference on the Mathematics of Oil Recovery — Freiberg, Germany, 3–6 September 2002

2

(a) (b)

Figure 1: From seismic imaging (a) to flow simulation (b). The seismic image of
geologic faults in (a) is a 256 × 256-sample (6.4 × 6.4-km) horizontal slice taken from
a 3-D seismic image that was processed to enhance such discontinuities. The space-
filling mesh in (b) was automatically aligned with features in the seismic image, and
then used to identify the faults and simulate the flow of fluid around them.

state (computed using a discontinuous Galerkin method [1]). These limitations merely sim-
plify the illustration, and are not required by the meshing process.

We call the mesh of triangles in Figure 1b an atomic mesh, because we compute the locations
of mesh nodes (atoms) using simple models of inter-atomic forces. Attractive and repulsive
forces among atoms cause them to arrange themselves in a geometrically regular lattice, as
in a crystal.

Crystal lattices provide a useful analogy for geologic modeling. In this analogy, layers of
atoms in crystals correspond to geologic layers, and dislocations in crystals correspond to
geologic faults. We manipulate geologic models by moving atoms. As we move one atom,
atoms nearby move along with it, thereby preserving the regularity of the lattice. (Physical
models such as this are commonly used in meshing [2] [3].) Here, we move atoms to align a
mesh with features in an image.

In this context, an image is simply a uniformly sampled 2-D or 3-D array of numbers. Atomic
meshing is most relevant for images that contain edges or ridges with which mesh elements
should be aligned, so that discontinuities in imaged properties are well represented by the
mesh. For example, given a CT scan of a core sample, we might align a mesh with pore space
boundaries. In another example, we might align a mesh with discontinuities in permeability,
in an image representing a reservoir model [3]. In all cases, we assume that images are
imperfect, and that interactive manipulation of meshes must be feasible.

In this paper, we demonstrate atomic meshing using seismic images, in which the relevant
features correspond to geologic faults and horizons. We describe the meshing process in detail
sufficient for its implementation by others. We show that the same process can generate
meshes of either Delaunay triangles and tetrahedra or Voronoi polygons and polyhedra for
2-D and 3-D images, respectively.

3

To align a mesh with an image, we perform the following sequence of steps:

1. Process the image to detect and normalize features of interest.

2. Fill space spanned by the image with a pseudo-random lattice of atoms.

3. Move the atoms to minimize a potential energy function of the lattice.

4. Connect the atoms to create either a Delaunay or Voronoi mesh.

Image processing

We begin by processing an image to detect and normalize features with which to align a
mesh. Typically, those features are either edges or ridges, and techniques for such processing
are well known. In the example of Figure 1a, the faults appear as (white) ridges, so we
describe our image processing for this type of feature.

We first compute Gaussian derivatives [4] of the image to obtain, for each image sample,
the two components of its gradient. In the example of Figure 1a, we chose a Gaussian
filter of width σ = 3 samples. We then compute outer products of those derivatives, and
smooth those products with a Gaussian filter (here with width σ = 12 samples) to obtain
a 2 × 2 symmetric and positive-definite matrix. For each image sample, the eigenvector
corresponding to the largest eigenvalue of that matrix is normal to linear features (the faults)
in the image [5]. We use the direction of this eigenvector, again for each image sample, to
compute a directional derivative. Zero crossings of that derivative, for samples where image
sample values exceed a computed threshold, correspond to ridges that we mark with sample
value 1. This process yields a normalized binary image, with sample values equal to 0 or 1.

Sample values equal to 1 in the binary image correspond to the ridges in the image of
Figure 1a. To facilitate lattice optimization, as described below, we negate and smooth
this normalized image with another Gaussian filter (with, in this example, width σ = 1.5
samples). The image in the background of Figure 1b is the final result of our processing.
Most sample values in this processed image are zero; the dark features correspond to samples
with negative values. Thus, the effect of our processing has been to detect significant ridges
of various heights and and convert them into valleys with constant depth and width. As
discussed below, we typically choose the valley width to be 1/4 the desired minimum distance
between atoms.

Lattice initialization

Initially, we distribute atoms pseudo-randomly in the space spanned by the image, consistent
with a specified density defined in that space. That density may be constant, but to enhance
lattice optimization, it should vary with the density of features in the image.

Let the vector x denote image sample coordinates. For a 2-D image, x has two components
x and y. For a 3-D image, x has three components x, y, and z. Then, let b(x) denote the
normalized image, a function of sample coordinates x. For reasons described below, we want
the nominal distance d(x) between a pair of atoms near x to satisfy two conditions:

d(x) =
c√

|∇2b(x)|
and |∇d(x)| � 1, (1)

where c is a constant.

8th European Conference on the Mathematics of Oil Recovery — Freiberg, Germany, 3–6 September 2002

4

The first condition implies that the minimum value of d(x) is inversely proportional to the

maximum value of
√
|∇2b(x)|. That maximum value, in turn, is inversely proportional to

the width σ of the final Gaussian smoothing filter that we apply during image processing.
Typically, we choose the constant c so that the minimum distance dmin ≈ 4σ.

The second condition ensures a smoothly graded lattice and mesh. In practice, we first
compute d(x) using the first condition and then smooth it to satisfy the second condition.
When smoothing d(x), we take care to preserve the minimum distance dmin, which occurs
near features detected during image processing.

Recall that, in the final smoothing for Figure 1b, we used σ = 1.5 samples, which implies
a minimum distance of dmin ≈ 6 samples. For clarity in this figure, we increased the sizes
of mesh elements by specifying a larger, constant nominal distance d(x) = 9 samples. We
illustrate the use of non-constant d(x) in examples below.

Given the nominal distance function d(x), we create a pseudo-random initial distribution of
atoms. We favor a pseudo-random distribution, because it is isotropic. Any orientation of
the lattice should be induced by image features, not by the initial distribution of atoms.

We create this initial distribution of atoms by first placing one atom at each corner of the
image and one atom in a pseudo-random location far away from those corners. We then
compute the Delaunay triangulation (e.g., [6]) of these atom locations. This creates a small
number of triangles (in 2-D, or tetrahedra, in 3-D). The circumcenters of these triangles
(tetrahedra) are prospective locations for new atoms. For each triangle (tetrahedron), we
compute the ratio r/d of the radius r of its circumcircle (circumsphere) to the nominal
distance function d = d(x) evaluated at its circumcenter.

We then add these triangles (tetrahedra) to a priority queue. We remove the triangle (tetra-
hedron) with largest r/d from the queue, add an atom at its circumcenter, and update the
Delaunay triangulation. This update creates new triangles (tetrahedra). It also destroys
some old ones, which we ignore as we process the queue. As we create each triangle (tetra-
hedron), we compute its ratio r/d. If r/d is larger than a constant value (0.760 in 2-D, 0.803
in 3-D), we add it to the queue. We continue in this way until the queue is empty.

This initialization scheme is an adaptation of methods developed for Delaunay mesh refine-
ment [7][8]. The resulting initial lattice of atoms is isotropic and consistent with the nominal
distance function d(x). Our next step is to align the atoms with features in the image b(x),
while maintaining their nominal distances d(x).

Lattice optimization

Our goal in lattice optimization is a balance between the regularity of the lattice and its
alignment with image features. We achieve this balance by minimizing a total potential
energy P of the lattice, which we define (as in [9]) by the weighted sum

P = P (x1,x2, . . . ,xn) ≡ (1 − β)A + βB, (2)

where A is the atomic potential energy defined by

A = A(x1,x2, . . . ,xn) ≡ 1

2

n∑
i=1

n∑
j=1

φ

[|xi − xj|
d(xj)

]
, (3)

and B is the image potential energy defined by

B = B(x1,x2, . . . ,xn) ≡
n∑

i=1

b(xi). (4)

5

In all of these definitions, x1,x2, . . . ,xn are the coordinates of n atoms in the lattice.

The weight β in equation (2) determines the relative contributions of A and B to the total
potential energy P . When β = 0, atoms tend toward a regular (face-centered cubic) lattice
that is not aligned with the image. When β = 1, atoms are sensitive to only image sample
values; they will congregate in the minima and vacate the maxima in the image, yielding a
highly irregular lattice. Provided that the conditions in equations (1) are satisfied, choosing
β ≈ 1

2
yields a lattice that is both regular and aligned with image features.

We define the atomic potential energy A in equation (3) in terms of a potential function
φ(u), where u ≡ |xi − xj|/d(xj) is the normalized distance between two atoms. Suitable
potential functions φ(u) have been developed by others working in different contexts [2][10].
To ensure that the optimized lattice remains consistent with the nominal distance function,
we choose φ(u) to be large for u � 1 and to have a minimum at u = 1. To reduce the cost
of computing A, we limit the range of interactions among atoms by choosing φ(u) to be zero
for u > 3

2
. The function φ(u) defined by Shimada [2],

φ(u) ≡
{

153
256

− 9
8
u + 19

24
u3 − 5

16
u4, 0 ≤ u < 3

2
,

0, 3
2
≤ u,

has these properties. Recalling the condition |∇d(x)| � 1, the factor 1/2 in our definition
of atomic potential energy A compensates for the appearance of φ[|xi −xj|/d(xj)] ≈ φ[|xj −
xi|/d(xi)] twice in that definition.

The image potential energy B in equation (4) is relatively easy to evaluate. For each atom
location xi, we simply look up (or interpolate) the image sample value at that location. The
sum of these values is B.

Given our definition of lattice potential energy, we use a generic optimization algorithm to
search efficiently for atom locations x1,x2, . . . ,xn that minimize that energy. Specifically, we
use a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) minimizer. (See [11].
Note, particularly, the simple two-loop recursion on page 17.) Like other minimizers, the
L-BFGS method iteratively evaluates a function and its partial derivatives, in its search for
a minimum.

The L-BFGS minimizer requires more computer memory but fewer function evaluations than
the well-known method of conjugate gradients. However, the additional memory required is
insignificant when compared with the memory required to represent an image. Furthermore,
the cost of each function evaluation (computing the lattice total potential energy P) is sig-
nificantly more costly than the other computations performed by the minimizer. Therefore,
the L-BFGS minimizer is well-suited to lattice optimization.

Note that we need not find the global minimum of total potential energy P . After satisfying
the conditions in equations (1), a local minimum, with atoms close to their initial locations,
yields a lattice that is well aligned with image features.

Delaunay or Voronoi meshes

Our description of lattice optimization above implicitly assumes that atoms are to be aligned
on image features. During image processing, we create normalized valleys (potential minima)
corresponding to those features. Those valleys attract atoms; minimizing the total potential
energy causes atoms to move into them. Delaunay triangulation of the optimized lattice
then creates triangles (in 2-D, tetrahedra in 3-D) with edges (faces) that tend to be aligned
with image features, as illustrated in Figure 1.

8th European Conference on the Mathematics of Oil Recovery — Freiberg, Germany, 3–6 September 2002

6

Alternatively, we may align atoms alongside image features, by simply changing the sign of
the normalized image b(x). This change causes valleys to become ridges that repel atoms.
Inter-atomic forces keep atoms from moving too far away, and thereby maintain lattice
regularity. We illustrate this alternative in Figure 2. Here, we display Voronoi polygons, with
edges well aligned with image features. These polygons correspond to Delaunay triangles
not shown. In the context of reservoir simulation, Voronoi meshes like these are also known
as PEBI grids [12].

(a) (b)

Figure 2: Voronoi polygonal meshes aligned with (a) the faults imaged in Figure 1a and
(b) a combination of both horizons and faults in vertical (256 × 256-sample, 6.4 × 0.8-
km) slices extracted from two 3-D seismic images.

Figure 3 shows an example of a 3-D Voronoi polyhedral mesh. After meshing, we interpreted
the 3-D seismic image by interactively painting polyhedra, so that atoms within the same
interpreted unit have the same color. (The interpretation is best viewed in the full-color
electronic version of this abstract.) We then selected one unit painted gold and computed
the surface surrounding all atoms with that color. Parts of that surface are shown in Fig-
ure 3b. Large displacements have caused this unit to become discontiguous across several
fault blocks.

Either type of mesh — Delaunay or Voronoi — is capable of representing discontinuities in
imaged properties. In practice, however, we find Voronoi meshes, such as those in Figures 2
and 3, preferable, for several reasons.

First, Voronoi polygons vary smoothly with small perturbations of atom locations, whereas
Delaunay triangles do not. In a Delaunay triangulation, a slight change in atom location may
cause existing triangles to be destroyed and new triangles to be created. Second, properties
that we associate with Voronoi polygons (e.g., permeability) are implicitly associated with
atoms, and those properties remain well-defined as we move atoms. In contrast, properties
associated with Delaunay triangles may become undefined as triangles are destroyed and
created. Third, in a 3-D atomic mesh, there are about six times as many Delaunay tetrahedra
as there are Voronoi polyhedra. Finally, 3-D Voronoi polyhedra tend to be well shaped, even
as some 3-D Delaunay tetrahedra (called slivers [6] [13]) tend to be poorly shaped, with
large surface area but small volume.

7

(a) (b)

Figure 3: A Voronoi polyhedral mesh of a 3-D seismic image. Three orthogonal
slices (a) of the 256 × 256 × 256-sample, (6.4 × 6.4 × 0.8-km) image illustrate significant
faulting. We automatically aligned the 3-D mesh (b) with both faults and horizons in
that image, and then interpreted geologic layers by interactively painting polyhedra.
(See the full-color electronic version.)

Some of the problems associated with Delaunay tetrahedral meshes may be solved by using
an alternative 3-D triangulation. Other triangulations are feasible, but their use leads to
other problems, particularly in the context of interactive editing.

In all of the examples shown in this paper, we aligned meshes with image features automat-
ically, without manual editing. However, in regions that are poorly imaged, we may need to
interactively add, remove, or move atoms. As we do so, we reoptimize the lattice and update
mesh elements for only those atoms near the atom being edited. We restrict reoptimization
to a small region by giving each atom a temperature t between 0 and 1. An atom’s tem-
perature scales the forces applied to it during lattice reoptimization. Atoms nearest to the
atom being manipulated have temperature t = 1; they move freely. Temperature decreases
to t = 0 for atoms further (say, 5 d(x)) away; atoms not in the neighborhood of the atom
being edited are frozen and cannot move.

Conclusion

Using well-known image processing and optimization techniques, we may automatically align
a lattice of points on or alongside features in 3-D images. After connecting those points to
form Delaunay tetrahedra or Voronoi polyhedra, we obtain space-filling meshes with edges
and faces aligned with image features. Those meshes, in turn, facilitate other tasks, such as
seismic interpretation and flow simulation.

Integration of multiple tasks is the primary goal of this research. In fact, this work began
with the question, “what if, during seismic interpretation, fault framework building, reservoir
modeling, all that stuff, we were forced to use a data structure that would work for flow
simulation?” Our answer in this paper is incomplete, particularly with respect to reservoir
property modeling. But part of the answer is illustrated in Figure 3, where our use of a

8th European Conference on the Mathematics of Oil Recovery — Freiberg, Germany, 3–6 September 2002

8

space-filling polyhedral mesh has enhanced seismic interpretation, by enabling interactive
3-D painting of geologic layers.

Furthermore, though beyond the scope of this paper, computations like those used in flow
simulation enable us to perform much of this painting automatically. (Think of paint flowing
within geologic layers, but not across faults.) The resulting segmentation of the mesh implies
a domain decomposition that may, in turn, enable more efficient flow computations. Such
cross-fertilization follows from our use of a common data structure.

References

[1] J. T. Oden, I. Babuska, and C. E. Baumann, “A Discontinuous hp Finite Element
Method for Diffusion Problems”, Journal of Computational Physics, vol. 146, pp. 491–
519 (1998).

[2] K. Shimada, “Physically-Based Mesh Generation: Automated Triangulation of Surfaces
and Volumes via Bubble Packing”, Ph.D. thesis, Massachusetts Institute of Technology
(1993).

[3] M. H. Garcia, A. G. Journel, and K. Aziz, “Automatic Grid Generation for Modeling
Reservoir Heterogeneities” SPE Reservoir Engineering, pp. 278–284 (1992).

[4] I. T. Young and L. J. van Vliet, “Recursive implementation of the Gaussian filter”,
Signal Processing, vol. 44, no. 2, pp. 139-151 (1995).

[5] L. J. van Vliet and P. W. Verbeek, “Estimators for orientation and anisotropy in digi-
tized images”, ASCI’95, Proc. First Annual Conf. of the Advanced School for Computing
and Imaging, pp. 442–450 (1995).

[6] M. Bern, and D. Eppstein, “Mesh Generation and Optimal Triangulation”, in Comput-
ing in Euclidean Geometry, D.-Z. Du and F.K. Hwang, eds., World Scientific (1995).

[7] J. R. Shewchuk, “Tetrahedral Mesh Generation by Delaunay Refinement”, Proceedings
of the 14th Annual Symposium on Computational Geometry, pp. 86–95 (1998).

[8] J. R. Shewchuk, “Delaunay Refinement Algorithms for Triangular Mesh Generation”,
Computational Geometry: Theory and Applications, vol. 22, no. 1–3, pp. 86–95 (2002).

[9] D. Hale, “Atomic images - a method for meshing digital images”, Proceedings of the
10th International Meshing Roundtable, pp. 185–196 (2001).

[10] D. Tonnesen, “Dynamically Couples Particle Systems for Geometric Modeling, Recon-
struction, and Animation”, Ph.D. thesis, University of Toronto (1998).

[11] R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representations of Quasi-Newton Matrices
and Their Use in Limited Memory Methods”, Technical Report NAM-03, Northwestern
University, Department of Electrical Engineering and Computer Science, (1996).

[12] Z. E. Heinemann, C. W. Brand, M. Munka, and Y. M. Chen, “Modeling Reservoir
Geometry With Irregular Grids” SPE Reservoir Engineering, pp. 225–232 (1991).

[13] J. C. Cavendish, D. A. Field, and W. H. Frey, “An Approach to Automatic Three-
Dimensional Finite Element Mesh Generation”, International Journal for Numerical
Methods in Engineering, vol. 21, pp. 329–347 (1985).

