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Summary

A first step in seismic interpretation is seismic image seg-
mentation. For most seismic images, with incompletely
or poorly imaged faults and horizons, global methods for
segmentation are more robust than local event tracking
or region growing methods commonly used today.

The disadvantage of global image segmentation methods
has been their relatively high computational cost. We re-
duce this cost by applying these methods to a space-filling
mesh aligned automatically with features in seismic im-
ages. The mesh makes global segmentation of 3-D seismic
images feasible.

Introduction

An important step in seismic interpretation is segmenta-
tion of a seismic image into structural and stratigraphic
geologic units. Today, we often perform this segmentation
using a simple process. We first automatically track seis-
mic events to locate horizons and faults that correspond
to the boundaries of geologic units. We then glue those
boundaries together to obtain a geologic model. This pro-
cess is equivalent to segmentation of a seismic image.

Figure 1 illustrates an alternative process for seismic im-
age segmentation. In this process, we first align a space-
filling polyhedral mesh with features in a 3-D seismic im-
age (Hale, 2002; Hale and Emanuel, 2002). In this exam-
ple, a typical mesh element contains approximately 160
image samples. We then automatically segment the mesh
and, hence, the image into clusters (not shown) of con-
tiguous polyhedral elements. In this example, each cluster
contains approximately 60 polyhedra, about 10,000 image
samples. We interactively painted those clusters to obtain
the six geologic units shown in Figure 1b.

This new alternative process for seismic image segmenta-
tion is interesting, because the simple process used today
is, in practice, not so simple. Seismic data often lack the
fidelity necessary for event trackers to yield error-free unit
boundaries that can be simply glued together. Typically,
we must edit, extrapolate, and truncate those boundaries
as we combine them to form a topologically (and therefore
geologically) consistent model.

Most automatic seismic event tracking methods work by
solving a sequence of local optimization problems. Be-
ginning with one or more seed samples, a seismic event
tracker looks for adjacent samples that are most simi-
lar. The tracker then adds those samples to the set of
seeds, and repeats. While some implementations may be
more robust than others, event tracking algorithms share
a common flaw. They are near-sighted. They make only
locally optimal choices, like a novice chess player that can
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FIG. 1: Three orthogonal slices from a 256 X 256 x 256-sample
(6.4 x 6.4 x 0.8-km) 3-D seismic image (a) before and (b) after
seismic interpretation. Interactive painting of the six highly-
faulted geologic layers shown here was facilitated by automatic
segmentation of a space-filling polyhedral mesh. Slices of that
mesh are also shown here. Two yellow surfaces bound the layer
painted yellow. (See the color electronic version.)

see only one or two moves ahead.

In contrast, the segmentation method used to obtain Fig-
ure 1b works like a chess player that can see the whole
board. It solves a global optimization problem, and is a
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variant of the normalized cuts method (Shi and Malik,
1997) for image segmentation, well known in the field of
computer vision.

Although well known for their robustness, we are not
aware of global methods such as this being used for seis-
mic image segmentation. They are probably too expen-
sive, requiring too much computation time. Published
examples of their application in computer vision typically
show 2-D images with fewer than 100,000 samples. 3-D
seismic images may have 1,000,000,000 samples.

In our variants of such global methods for image seg-
mentation, we reduce their cost significantly, by apply-
ing them to mesh elements aligned with image features,
instead of individual image samples.

Meshed images

For clarity below, we illustrate global methods for seismic
image segmentation with a single 2-D image. The image
in Figure 2a is a 2-D horizontal slice from the 3-D image
of Figure 1a, after processing to enhance faults. Figure 2b
illustrates the alignment of a space-filling polygonal mesh
with those faults.

We performed this alignment using the atomic meshing
process described by Hale (2002) and Hale and Emanuel
(2002). In those publications, we highlight the use of such
meshes in flow simulation. Here, we demonstrate their use
in seismic image segmentation.

Note that the mesh samples the image more finely (with
smaller polygons) where image features are dense, and
more coarsely where they are sparse. Whereas the im-
age contains 65,536 samples, the mesh contains only 1348
polygonal elements. In our adaptations of global methods
for image segmentation, we process each of those mesh el-
ements as if it were a single image sample.

For example, both of the segmentation methods we con-
sider here begin by computing a weight for each pair of
adjacent image samples. To reduce costs, in our imple-
mentations, we compute a weight for each pair of adjacent
mesh elements. The weights are simply numbers between
zero and one. Where adjacent mesh elements lie on op-
posite sides of an image feature (here, corresponding to a
fault), the weights are small. Elsewhere, where no faults
are imaged, the weights are large. Intuitively, we expect
segment boundaries to be created where weights are small.

Normalized cuts

In the normalized cuts method, we use the weights com-
puted from the mesh and the image to construct a large
sparse eigenproblem. The matrix for that eigenproblem
is similar to the matrix one obtains for the simplest so-
lutions to the pressure equation in flow simulation, if we
assume that faults represent barriers to fluid flow. Indeed,
the numerical methods we use to solve the eigenproblem
are very similar to those used in flow simulation.

As described by Shi and Malik (1997), we use the first few

FIG. 2: A 256 x 256-sample (6.4 x 6.4-km) horizontal slice (a)
from a 3-D seismic image processed to enhance faults and a
space-filling polygonal mesh (b) aligned with features in that
image.

eigenvectors of this matrix, corresponding to its smallest
eigenvalues, to cut the mesh into two or more parts. Each
cut has a cost, defined by the normalized cut criterion. We
then recursively cut each of those parts until either the
cost of a cut is greater than a specified upper bound or
until the number of mesh elements in a part is less than a
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specified lower bound. When each cut splits the mesh into
two parts, this recursion yields a (typically, unbalanced)
binary tree of parts.

Figure 3a is the result of cutting the mesh once into two
parts. Figure 3b is the result of cutting those two parts,
recursively, to obtain twenty parts. Note that cutting the
mesh is equivalent to segmentation of the image.

Note also that segment boundaries are reasonable even
where faults are not well imaged. This robustness is the
most compelling feature of a global segmentation method.
In contrast, a local tracking or region growing method
would tend to leak through these holes in the image.

Stochastic clusters

In contrast to the normalized cuts method, which re-
cursively splits larger parts of the image into smaller
parts, the stochastic clusters method iteratively combines
smaller parts of the image into larger parts. As described
by Gdalyahu et al. (2001), this method begins with one
part for each image sample, with weights computed for
each pair of adjacent samples. In our implementation, we
begin with one part for each mesh element, with weights
computed for each pair of adjacent elements.

Conceptually, the stochastic clusters method works as fol-
lows. We distribute the mesh to hundreds or even thou-
sands of seismic interpreters. We ask all interpreters to
randomly choose and combine one pair of adjacent mesh
elements, with probability proportional to the weight we
computed for that pair. Then, for each pair that could
have been chosen, we take a poll. If more than half the
interpreters have chosen a particular pair, we combine
those mesh elements. We then repeat this process, until
all mesh elements have been combined.

If we begin with N mesh elements, then we can repeat
this process N — 1 times. At early times, it is highly un-
likely that half of our interpreters will have chosen the
same pair of adjacent elements to combine. There are
simply too many good choices, pairs with weights close to
one. However, at late times, the odds of a majority vote
increase significantly, because we count all votes cast by
each interpreter at earlier times. And at certain times in
between, clusters of elements will form, like crystals, as
in an annealing process, as if we were decreasing temper-
ature with time.

Figure 4 illustrates the stochastic clustering process at
early and late times. At early times, when temperatures
are high, clusters are small. Later, as temperature de-
creases, the clusters become larger. In this example, we
have chosen a later time that yields a segmentation similar
to the one we obtained using the normalized cuts method.
Compare Figures 3b and 4b.

Of course, the interpreter in our conceptual description of
stochastic clustering is actually a very simple computer
algorithm. It makes choices using only a pseudo-random
number generator and the weights for pairs of adjacent
mesh elements. Its simplicity is the reason that we require

FIG. 3: Seismic image segmentation using a normalized cuts
method. We first make one cut, to obtain (a) two parts. We
then recursively cut those parts to obtain (b) 20 parts.

a majority vote before we combine mesh elements.

Although each of our stochastic interpreters is not very
clever, each works with the entire mesh. The pairs of
mesh elements that an interpreter chooses at one time and
the next may be far apart. Unlike a human interpreter
that tends to work within one or two units visible in one
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FIG. 4: Seismic image segmentation using a stochastic clusters
method. At an early time (high temperature), we have (a) 145
clusters. At a later time (lower temperature), those clusters
have merged to form (b) 20 clusters. Compare with Figure 3.

2-D image slice at a time, our simple interpreter skips
around the 3-D meshed image, randomly putting parts
together. This global behavior and the collective wisdom
of many interpreters yields a segmentation that is robust
with respect to poorly imaged features.

Conclusion

The normalized cuts and stochastic clusters methods for
image segmentation are global. Unlike local event track-
ing or region growing methods, these methods work with
the entire image or, in our implementations, the entire
meshed image. Both methods yield a hierarchy of parts
that we use to interactively split or combine geologic units
during seismic interpretation.

The two methods construct that hierarchy of parts in op-
posite ways. The normalized cuts method begins with
one large part and recursively splits the mesh into smaller
parts. The stochastic clusters method begins with many
small parts (mesh elements) and combines them into
larger parts.

In our experiments, including tests not shown here, the
normalized cuts and stochastic clusters methods yield
similar results. Currently, we favor the normalized cuts
method, because our implementation of that method
on single processor systems is roughly four to eight
times faster and requires less computer memory than the
stochastic clusters method. However, the latter method
can more easily exploit multi-processor systems.

Neither segmentation method completely automates seis-
mic interpretation. For example, neither method auto-
matically correlates across discontiguous fault blocks. To-
day, we complete seismic interpretations by interactively
combining and painting segments that we obtain using
the normalized cuts method.

Nevertheless, we speculate that further automation is pos-
sible. A common but seldom achieved goal in computer
vision is to match the accuracy of the human visual sys-
tem. In processing 2-D images, a human is almost always
more accurate. However, for 3-D images, humans may
lose. We tend to focus on one 2-D slice at a time. We
forget the big picture. We do not see the whole board.
Automated global methods for 3-D seismic interpretation
need not suffer these shortcomings.
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