
CWP-546

Recursive Gaussian filters

Dave Hale
Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401, USA

ABSTRACT
Gaussian or Gaussian derivative filtering is in several ways optimal for applica-
tions requiring low-pass filters or running averages. For short filters with lengths
of a dozen samples or so, direct convolution with a finite-length approximation
to a Gaussian is the best implementation. However, for longer filters such as
those used in computing running averages, recursive implementations may be
much more efficient. Based on the filter length, we select one of two popular
methods for designing and implementing recursive Gaussian filters.

Key words: digital signal processing

1 INTRODUCTION

Gaussian filtering is useful in at least two different con-
texts in digital signal processing. One context is low-pass
filtering. In this context, we typically wish to attenu-
ate high-frequency noise. For example, when detecting
edges or computing the orientation of features in digital
images, we might compute partial derivatives of image
sample values (van Vliet and Verbeek, 1995). Because
derivatives amplify high-frequency (often noisy) com-
ponents of signals, we might also apply a low-pass filter
before or after computing those derivatives.

An equivalent and more efficient process is to apply
a filter that combines both differentiation and low-pass
filtering. When the low-pass filter is a Gaussian, this
combination yields a filter with a smooth impulse re-
sponse that approximates a derivative of a Gaussian.

Another context in which Gaussian filtering is use-
ful is in computing running averages. We often use run-
ning averages to estimate parameters from signals with
characteristics that vary with space and time. A typical
example looks something like this:

y(t) =
1

2T

∫ t+T

t−T

ds x(s). (1)

Here, we estimate a parameter y that varies with time t
by averaging nearby values of some other function x(t).
Ideally, we choose the window length 2T large enough
to obtain meaningful estimates of the parameter y, but
small enough that we can detect significant variations
in that parameter with time t.

Running averages like that in equation 1 appear

often in seismic data processing. For example, in coda-
wave interferometry (Snieder, 2006) the function x(t) is
the product of two seismograms, one shifted relative to
the other. In seismic velocity estimation, the function
x(t) might be the numerator or denominator sum in
a semblance calculation (Neidell and Taner, 1971). A
trivial example is automatic gain control, in which y(t)
might be an rms running average of seismic amplitude
computed as a function of recording time t.

In each of these applications, we might ask whether
the averaging in equation 1 is sensible. For each estimate
y(t), this equation implies that all values x(s) inside the
window of length 2T have equal weight, but that values
just outside this window have no weight at all.

This weighting makes no sense. In estimating y(t),
why should the values x(t) and x(t + T − ε) get equal
weight, but the value x(t + T + ε) get zero weight? A
more sensible window would give values x(s) for s near t
higher weight than values farther away. In other words,
we should use a weighted average, a window with non-
constant weights. And the uncertainty relation (e.g.;
Bracewell, 1978) tells us that the optimal window is
Gaussian.

A sampled version of equation 1 is

y[n] =
1

2M + 1

n+M∑
m=n−M

x[m]. (2)

Despite the shortcoming described above, this sort of
running average may be popular because we can easily
and efficiently implement it by solving recursively the
following linear constant-coefficient difference equation:

2 D. Hale

y[n] = y[n−1] + (x[n+M]− x[n−M−1])/(2M+1), (3)

with some appropriate initial and end conditions. For
long windows (large M) we must take care to avoid ex-
cessive accumulation of rounding errors as we add and
subract small sample values x[n + M] and x[n−M − 1]
from the previous output value y[n− 1]. For short win-
dows (small M) we might use the non-recursive running
average of equation 2. But it is difficult to achieve a
computational cost lower than that of equation 3.

The two contexts described above — low-pass fil-
tering and running averages — are of course one and the
same. A running average is a low-pass filter. In practice,
these contexts differ only in the length of the filter re-
quired. Gaussian derivative filters typically have short
lengths of less than 10 samples. Gaussian filters used
in running averages tend to be longer, sometimes with
lengths of more than 100 samples.

In this paper, we compare two recursive implemen-
tations of Gaussian and Gaussian derivative filters. As in
equation 3, these filters solve difference equations. Nu-
merical tests indicate that one implementation is best
for short filters (derivatives), while the other is best for
long filters (running averages). For long filters, espe-
cially, recursive implementations are much more efficient
than direct convolution with truncated or tapered sam-
pled Gaussians.

2 THE GAUSSIAN AND DERIVATIVES

The Gaussian function is defined by

g(t; σ) ≡ 1√
2πσ

e−t2/2σ2
, (4)

where the parameter σ denotes the Gaussian half-width.
Figure 1 displays this Gaussian function and its 1st and
2nd derivatives for σ = 1.

The Fourier transform of the Gaussian function is
also a Gaussian:

G(ω; σ) ≡
∫ ∞

−∞
dt e−iωtg(t; σ) = e−ω2σ2/2. (5)

Figure 2 displays this Fourier transform and those of the
1st and 2nd Gaussian derivatives for σ = 1. Equations 4
and 5 imply that convolution of a signal with a Gaussian
is equivalent to low-pass filtering of that signal. Indeed,
we choose the scale factor in equation 4 so that the fre-
quency response of this low-pass filter at zero frequency
is G(ω = 0; σ) = 1, as illustrated in Figure 2.

Convolution of a signal with a Gaussian derivative
is equivalent to differentiating that signal before or af-
ter low-pass filtering. This combination of differentia-
tion with Gaussian low-pass filtering is an efficient way
to perform both operations simultaneously. It computes
the derivative of lower-frequency signal while attenuat-
ing higher-frequency noise.

g(t; σ = 1)

g′(t; σ = 1)

g′′(t; σ = 1)

Figure 1. The Gaussian function g(t; σ = 1) and its deriva-

tives.

G(ω; σ = 1)

iωG(ω; σ = 1)

−ω2G(ω; σ = 1)

Figure 2. The Fourier transforms of the Gaussian function

g(t; σ = 1) and its 1st and 2nd derivatives. The Fourier trans-

form of the Gaussian 1st derivative g′(t; σ) is purely imagi-
nary, as indicated here by the dashed curve.

Recursive Gaussian filters 3

2.1 Sampling and aliasing

For digital filtering, we must sample the Gaussian func-
tion g(t; σ) and its derivatives. Because the Fourier
transform G(ω; σ) is nowhere zero, the Gaussian func-
tion cannot be sampled without aliasing. However, alias-
ing can in most applications be negligible.

For definiteness, assume a unit sampling interval
∆t = 1. Then, for half-width σ = 1 and the Nyquist
frequency ω = π, the Fourier transform is G(π; σ = 1) ≈
0.0072. (See Figure 2.) This small magnitude implies
that the Gaussian function g(t; σ ≥ 1) can be sampled
with unit sampling interval without significant aliasing.

The impact of aliasing is application dependent,
but we typically do not sample Gaussians for which
σ < 1. For applications requiring almost no aliasing,
we might choose σ ≥ 2, because G(π; σ ≥ 2) < 10−8.

As illustrated in Figure 2, the Fourier transforms
of the derivatives g′(t; σ) and especially g′′(t; σ) do not
approach zero so quickly. In some applications, Gaussian
derivatives may require a larger half-width σ > 1 to
avoid significant aliasing.

2.2 FIR approximations

Just as we may reasonably assume that the Fourier
transform G(ω; σ) has finite bandwidth, so may we as-
sume that the Gaussian function itself has finite sup-
port. Figure 1 suggests that the Gaussian function and
its derivatives are approximately zero for |t| > 4σ. For
example, g(t; σ) < 0.0004 for |t| > 4σ.

Again, assume a unit sampling interval, and let h[n]
denote a sampled Gaussian function that has been trun-
cated or tapered to zero for |n| > M ≈ 4σ. Gaussian
filtering can then be performed via direct convolution:

y[n] =

n+M∑
m=n−M

h[n−m]x[m].

This convolution is reminiscent of equation 2.
Exploiting symmetry in the filter h[m], this finite-

impulse-response (FIR) approximation to Gaussian fil-
tering requires roughly 1 + 4σ multiplications and 8σ
additions per output sample. The computational cost
of applying an FIR Gaussian or Gaussian derivative fil-
ter grows linearly with the Gaussian half-width σ.

2.3 IIR approximations

In constrast, the cost of an infinite-impulse-response
(IIR) approximation to Gaussian filtering is indepen-
dent of the half-width σ. IIR Gaussian and Gaussian
derivative filters solve recursively a sequence of differ-
ence equations like this one:

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2]

− a1y[n− 1]− a2y[n− 2], (6)

where the filter coefficients b0, b1, b2, a1, and a2 are some
function of the Gaussian half-width σ. This difference
equation is reminiscent of equation 3.

The recursive solution of a single difference equa-
tion cannot well approximate Gaussian filtering. With
only five parameters, we cannot shape the impulse re-
sponse of this system to fit well the Gaussian function.
Moreover, the impulse response of the system of equa-
tion 6 is one-sided, not symmetric like the Gaussian
function in Figure 1. IIR symmetric filtering requires
a sequence of solutions to both causal and anti-causal
systems.

The z-transform of the IIR filter implied by equa-
tion 6 is

H+(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
.

Assuming that all poles of H+(z) lies inside the unit
circle in the complex z-plane, this 2nd-order system is
both causal and stable. A corresponding stable and anti-
causal 2nd-order system is

H−(z) =
b0 + b1z + b2z

2

1 + a1z + a2z2
,

for which all poles lie outside the unit circle.
Neither of these 2nd-order recursive systems is suf-

ficient for Gaussian filtering. But by combining causal
and anti-causal systems like these, we can construct
higher-order recursive systems with symmetric impulse
responses that closely approximate the Gaussian func-
tion.

3 TWO METHODS

Deriche (1992) and van Vliet et al. (1998) describe dif-
ferent methods for designing recursive Gaussian and
Gaussian derivative filters. Both methods are widely
used in applications for computer vision.

In their designs, both methods exploit the scaling
properties of Gaussian functions and their Fourier trans-
forms. Specifically, from equations 4 and 5, we have

g(t; σ) =
σ0

σ
g(tσ0/σ; σ0)

and

G(ω; σ) = G(ωσ/σ0; σ0).

This scaling property implies that poles and zeros com-
puted for a Gaussian filter with half-width σ0 can be
used to quickly construct Gaussian filters for any half-
width σ.

To understand this construction, consider one fac-
tor for one pole of a Gaussian filter designed for half-
width σ0:

H(z; σ0) =
1

1− eiω0z−1
× H̃(z; σ0),

4 D. Hale

where H̃(z; σ0) represents all of the other factors cor-
responding to the other poles and zeros of this system.
The factor highlighted here has a single complex pole at

z = eiω0 = ei(ν0+iµ0) = e−µ0eiν0 .

For this factor to represent a causal stable system, this
pole must lie inside the unit circle in the complex z-
plane, so we require µ0 > 0. In other words, stability of
the causal factor requires that the pole lies in the upper
half of the complex ω-plane.

Substituting z = eiω, the frequency response of this
system is

H(ω; σ0) =
1

1− ei(ω0−ω)
× H̃(ω; σ0).

Now use the scaling property to design a new system
with half-width σ:

H(ω; σ) ≈ H(ωσ; σ0) =
1

1− ei(ω0−ωσ)
× H̃(ωσ; σ0).

The scaling property here holds only approximately, be-
cause the frequency response H(ω; σ) only approximates
the frequency response G(ω; σ) of an exact Gaussian fil-
ter.

The pole of the new system is at ω = ω0/σ in the
complex ω-plane or at

z = eiω0/σ = e−µ0/σeiν0/σ

in the complex z-plane. A similar scaling applies to all
poles of the new system.

Note that increasing σ causes the poles of the sys-
tem H(z; σ) to move closer to the unit circle, yielding a
longer impulse response, consistent with a wider Gaus-
sian.

3.1 Deriche

Deriche (1992) constructs recursive Gaussian filters as
a sum of causal and anti-causal systems:

H(z) = H+(z) + H−(z).

For Deriche’s 4th-order filters, the causal system is

H+(z) =
b+
0 + b+

1 z−1 + b+
2 z−2 + b+

3 z−3

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4
,

and the anti-causal system is

H−(z) =
b−1 z + b−2 z2 + b−3 z3 + b−4 z4

1 + a1z + a2z2 + a3z3 + a4z4
.

To implement the composite system H(z), we apply
both causal and anti-causal filters to an input sequence
x[n], and accumulate the results in an output sequence
y[n]. We apply the causal and anti-causal filters in par-
allel.

The coefficients a1, a2, a3, and a4 depend only on
the locations of the filter poles, and these coefficients
are the same for both the causal system H+(z) and the
anti-causal system H−(z).

The coefficients b+
1 , b+

2 , b+
3 , and b+

4 in the causal
system H+(z) depend on the locations of the filter zeros.

The coefficients b−1 , b−2 , b−3 , and b−4 in H−(z) are
easily computed from the other coefficients, because the
composite filter H(z) must be symmetric. That is, we
require H(z) = H+(z) + H−(z) = H(z−1). Therefore,

b−1 = b+
1 − b+

0 a1

b−2 = b+
2 − b+

0 a2

b−3 = b+
3 − b+

0 a3

b−4 = − b+
0 a4.

With these relations, the eight coefficients of the
causal system H+(z) determine completely the sym-
metric impulse response h[n] of the composite system
H(z). Those eight coefficients, in turn, depend on the
poles and zeros of the causal system H+(z).

Deriche computes these poles and zeros to minimize
a sum

E =

N∑
n=0

[h[n]− g(n; σ0)]
2

of squared differences between the impulse response h[n]
and the sampled Gaussian function with half-width σ0.
Deriche chooses σ0 = 100 and N = 10σ0 = 1000.

A solution to this non-linear least-squares mini-
mization problem is costly, but need be computed only
once. After computing poles and zeros to approximate
a Gaussian with half-width σ0, Deriche uses the scaling
properties to obtain poles and zeros for other σ.

Deriche solves a similar minimization problem to
obtain poles and zeros for systems with impulse re-
sponses that approximate Gaussian 1st and 2nd deriva-
tives.

3.2 van Vliet, Young, and Verbeek

van Vliet, Young and Verbeek (1998) construct recursive
Gaussian filters as a product of causal and anti-causal
systems:

H(z) = H+(z)×H−(z).

For van Vliet et al.’s 4th-order filters, the causal system
is

H+(z) =
b0

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4
,

and the anti-causal system is

H−(z) =
b0

1 + a1z + a2z2 + a3z3 + a4z4
.

To implement the composite system H(z), we first apply
the causal filter to an input sequence x[n] to obtain an
intermediate output sequence y+[n]. We then apply the
anti-causal filter to that sequence y+[n] to obtain a final
output sequence y[n]. In this implementation, we apply
the causal and anti-causal filters in series.

Once again, the coefficients a1, a2, a3, and a4 de-
pend only on the locations of the filter poles, and these

Recursive Gaussian filters 5

coefficients are the same for both the causal system
H+(z) and the anti-causal system H−(z). The sym-
metry of this system is easily verified; that is, H(z) =
H+(z)×H−(z) = H(z−1).

van Vliet et al. compute the filter poles in two ways.
They minimize either the rms error

L2 =

{
1

2π

∫ π

−π

dω [H(ω; σ0)−G(ω; σ0)]
2

}1/2

or the maximum error

L∞ = max
|ω|<π

|H(ω; σ0)−G(ω; σ0)|

in the frequency responses H(ω; σ) of the filters. For
either error, they compute poles for σ0 = 2, and then
scale those poles to obtain Gaussian filters for other σ.

For Gaussian filters, van Vliet et al. show that the
rms and maximum errors do not differ significantly for
poles computed by minimizing either error.

For Gaussian derivative filters, van Vliet et al.
propose the application of centered finite-difference fil-
ters before or after Gaussian filtering. The 1st-finite-
difference system is

D1(z) =
1

2
(z − z−1),

and the 2nd-finite-difference system is

D2(z) = z − 2 + z−1.

These finite-difference filters only approximate differen-
tiation, and the approximation is best for low frequen-
cies where

D1(ω) = i sin ω ≈ iω

and

D2(ω) = −2(1− cos ω) ≈ −ω2.

For higher frequencies, the error in these approxima-
tions may be significant.

3.3 Serial or parallel implementation

An advantage highlighted by van Vliet et al. is that their
system has only poles, no zeros, and therefore requires
fewer multiplications and additions than does Deriche’s
parallel system. A serial cascade of causal and anti-
causal all-pole IIR filters is less costly than a compa-
rable parallel (or serial) system of IIR filters with both
poles and zeros.

Unfortunately, a disadvantage of any system that
cascades causal and anti-causal filters lies in filtering
sequences that have finite-length. To see this, assume an
input sequence x[n] with length N samples. Specifically,
the input sequence x[n] is non-zero for only 0 ≤ n < N .
Typically, we want a filtered output sequence y[n] with
the same length.

To compute the filtered output sequence y[n], we

first apply the causal recursive filter of our cascade
system to the finite-length sequence x[n] to obtain an
intermediate sequence y+[n] that has infinite length.
The intermediate sequence y+[n] may be non-zero for
0 ≤ n < ∞. If we simply truncate that sequence y+[n]
to zero for n ≥ N , we discard samples that should be
input to the second anti-causal recursive filter of our
cascade system. The output sequence y[n] is then incor-
rect, with significant errors for sample indices n ≈ N .
Figure 3 illustrates these errors with a simple example.

We might instead compute an extended intermedi-
ate sequence y+[n] for sample indices 0 ≤ n < N + L,
where L is the effective length of the first causal IIR fil-
ter. Beyond some length L, the impulse response of that
filter may be approximately zero, and so may be negli-
gible. For Gaussian filters with large half-widths σ, this
effective length may be significant and costly in both
memory and computation.

An alternative to estimating and using an effective
length is to simply convert van Vliet et al.’s cascade sys-
tem into an equivalent parallel system, using the method
of partial fractions (e.g., Oppenheim and Schafer, 1999).
In other words, we may use the cascade all-pole design of
van Vliet et al. (1998) with the parallel poles-and-zeros
implementation of Deriche (1992). Figure 4 illustrates
this alternative parallel implementation.

A 4th-order parallel implementation of either De-
riche’s or van Vliet et al.’s recursive Gaussian filter re-
quires 16 multiplications and 14 additions per output
sample. This cost is independent of the Gaussian half-
width σ.

Compare this cost with that for a non-recursive FIR
filter obtained by sampling a Gaussian function g(t; σ)
that has been truncated to zero for |t| > 4σ: 1+4σ mul-
tiplications and 8σ additions. Assuming that the com-
putational cost of a multiplication and addition are the
same, a parallel recursive implementation is more effi-
cient for σ > 2.5.

4 NUMERICAL TESTS

To test the design methods of Deriche and van Vliet et
al., we used both methods to compute filter poles and
zeros for 4th-order Gaussian and Gaussian derivative
filters. We implemented both filters as parallel systems.
While a parallel implementation of van Vliet et al.’s
filter is no more efficient than Deriche’s, it eliminates
the truncation errors described above.

Figures 5 and 6 show both impulse responses and
amplitude spectra for Gaussian (0th-derivative) filters,
for three different half-widths σ. For small σ ≈ 1, De-
riche’s filter is more accurate than van Vliet et al.’s
filter, and the difference is most significant for higher
frequencies.

However, for large σ ≈ 64, Deriche’s filter is much
less accurate than van Vliet et al.’s filter; the accuracy
of Deriche’s filter degrades quickly with increasing σ.

6 D. Hale

x[n]

y+[n]

y[n]

Figure 3. Series implementation of a recursive Gaussian fil-

ter applied to a sequence x[n]. After applying the first causal
filter, samples with indices n > 100 of the intermediate out-

put sequence y+[n] have been lost, and are therefore not seen

by the second anti-causal filter applied to y+[n] to obtain the
sequence y[n]. Compare with Figure 4.

x[n]

y+[n]

y[n]

Figure 4. Parallel implementation of a recursive Gaussian
filter applied to a sequence x[n]. Applying the first causal
filter yields an intermediate output sequence y+[n]. Apply-

ing the second anti-causal filter yields another intermediate
output sequence y−[n] not shown. Accumulating these two

intermediate sequences yields the output sequence y[n]. Com-

pare with Figure 3.

We have used successfully van Vliet et al.’s filter for
σ > 1000. For such large half-widths σ, Deriche’s filter
is useless.

For intermediate σ ≈ 8, the errors in both methods
appear to be insignificant in the scale of Figures 5 and 6.
For σ ≈ 32 (not shown), the rms errors for the two filters
are equal and less than 3.4× 10−4.

The wide range of half-widths σ that we used to
test Gaussian filters reflects differences between their
applications. For low-pass filters, we would typically use
smaller σ < 32, for which Deriche’s filter is more accu-
rate. For running averages, larger σ are more typical,
and for σ > 32, van Vliet et al.’s filter is more accurate.

In applications of Gaussian derivative filters,
smaller σ are typical. Figures 7 and 8 show both im-
pulse responses and amplitude spectra for Gaussian 1st-
derivative filters, for three different half-widths σ.

Recall that van Vliet et al. do not design filters
explicitly for derivatives. Instead, they design Gaussian
filters for use with centered finite-difference operators.
The errors in van Vliet et al.’s 1st-derivative filters are
due largely to errors in the 1st finite-difference operator.
These errors decrease with increasing σ.

Likewise, the errors in van Vliet et al.’s 2nd-
derivative filters are due largely to errors in the 2nd
finite-difference operator. Figures 9 and 10 show both
impulse responses and amplitude spectra for Gaussian
2nd-derivative filters, for three different half-widths σ.
Again, the errors in van Vliet et al.’s derivative filters
decrease with increasing σ.

In both Figures 8 and 10, for both 1st- and 2nd-
derivative filters and σ = 1, we observe significant er-
rors in Deriche’s filters for frequencies near the Nyquist
frequency. These errors are due to aliasing of the fre-
quency responses iωG(ω; σ = 1) and −ω2G(ω; σ = 1).
As illustrated in Figure 2, these Fourier spectra are only
approximately bandlimited to |ω| < π, and the alias-
ing caused by unit sampling of the Gaussian derivatives
g′(t; σ = 1) and g′′(t; σ = 1) yields the errors at high
frequencies seen in Figures 8 and 10.

5 CONCLUSION

Gaussian and Gaussian derivative filtering can be well
approximated by recursive filters. We tested two design
methods. Deriche’s (1992) design is more accurate for
small Gaussian half-widths σ < 32, and his parallel sys-
tem accurately computes output samples near the ends
of finite-length input signals. Gaussian derivative filters
typically have small widths, and Deriche’s design is best
for those.

van Vliet et al.’s (1998) design is more accurate for
large Gaussian half-widths σ ≥ 32. To compute accu-
rately the ends of finite-length signals, we convert their
serial all-pole system to a parallel poles-and-zeros sys-
tem like that of Deriche.

Recursive Gaussian filters 7

When computing derivatives, typical Gaussian half-
widths might be as small as σ < 3. Then, we may sim-
ply convolve with a sampled finite-length approxima-
tion to a Gaussian derivative. Indeed, although both
Deriche and van Vliet et al. focus specifically on Gaus-
sian derivatives, we find their Gaussian (0th-derivative)
filters for larger σ to be most useful.

In summary, the results of our numerical tests
lead us to suggest the following implementations
of Gaussian filtering for different half-widths σ:

σ < 3: Direct convolution with an FIR fil-
ter obtained by sampling a Gaussian
function g(t; σ) truncated to zero for
|t| > 4σ.

3 ≤ σ < 32: Recursive filtering with a parallel IIR
filter designed by the method of De-
riche (1992).

σ ≥ 32: Recursive filtering with a parallel IIR
filter designed by the method of van
Vliet et al. (1998).

Source code for our implementations of both De-
riche’s and van Vliet et al.’s filters is available in the
Mines Java Toolkit.

REFERENCES

Bracewell, R., 1978, The Fourier transform and its applica-

tions (2nd edition): McGraw-Hill.
Deriche, R., 1992, Recursively implementing the Gaussian

and its derivatives: Proceedings of the 2nd International

Conference on Image Processing, Singapore, p. 263–267.
Neidell, N.S. and Taner M.T., 1971, Semblance and other

coherency measures for multichannel data: Geophysics,

v. 36, no. 3, p. 482–497.
Oppenheim, A.V., and Schafer, R.W., 1999, Discrete-time

signal processing (2nd edition): Prentice-Hall.
Snieder, R., 2006, The theory of coda wave interferometry:

Pure and Applied Geophysics, v. 163, p. 455–473.

van Vliet, L., Young, I., and Verbeek, P. 1998, Recursive
Gaussian derivative filters: Proceedings of the Inter-

national Conference on Pattern Recognition, Brisbane,

p. 509–514.
van Vliet, L.J. and Verbeek, P.W., 1995, Estimators for orien-

tation and anisotropy in digitized images: ASCI’95, Pro-
ceedings of the First Annual Conference of the Advanced
School for Computing and Imaging, p. 442–450.

8 D. Hale

σ = 1

σ = 8

σ = 64

Figure 5. Impulse responses of recursive Gaussian filters

designed by the methods of Deriche (light red filled circles)
and van Vliet et al. (dark blue hollow circles) for three differ-

ent values of σ. The solid black curve is the exact Gaussian

function.

σ = 1

σ = 8

σ = 64

Figure 6. Amplitude responses of recursive Gaussian filters

designed by Deriche (light red) and by van Vliet et al. (dark
blue) for three different values of σ. For comparison, the dot-

ted black curve is the exact Gaussian function, which closely

matches the lower curve in all three plots.

Recursive Gaussian filters 9

σ = 1

σ = 2

σ = 4

Figure 7. Impulse responses of recursive Gaussian 1st-

derivative filters designed by the methods of Deriche (light
red filled circles) and van Vliet et al. (dark blue hollow cir-

cles) for three different values of σ. The solid black curve is

the exact Gaussian 1st-derivative.

σ = 1

σ = 2

σ = 4

Figure 8. Amplitude responses of recursive Gaussian 1st-

derivative filters designed by Deriche (light red) and by van
Vliet et al. (dark blue) for three different values of σ. For

comparison, the dotted black curve is the exact Gaussian 1st-

derivative, which closely matches the upper (Deriche) curve
in all three plots.

10 D. Hale

σ = 1

σ = 2

σ = 4

Figure 9. Impulse responses of recursive Gaussian 2nd-

derivative filters designed by the methods of Deriche (light
red filled circles) and van Vliet et al. (dark blue hollow cir-

cles) for three different values of σ. The solid black curve is

the exact Gaussian 2nd-derivative.

σ = 1

σ = 2

σ = 4

Figure 10. Amplitude responses of recursive Gaussian 2nd-

derivative filters designed by Deriche (light red) and by van
Vliet et al. (dark blue) for three different values of σ. For

comparison, the dotted black curve is the exact Gaussian

2nd-derivative, which closely matches the upper (Deriche)
curve in all three plots.

