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Figure 1. A seismic image (a) after applying structure-oriented smoothing (b) and semblance (c) filters.

ABSTRACT
Smoothing along structures apparent in seismic images can enhance these struc-
tural features while preserving important discontinuities such as faults or chan-
nels. Filters appropriate for such smoothing must seamlessly adapt to variations
in the orientation and coherence of image features. I describe an implementa-
tion of smoothing filters that does this and is both computationally efficient
and simple to implement.
Structure-oriented filters lead naturally to the computation of structure-oriented
semblance, an attribute commonly used to highlight discontinuities in seismic
images. Semblance is defined in this paper as simply the ratio of a squared
smoothed-image to a smoothed squared-image. This definition of semblance
generalizes that commonly used today, because an unlimited variety of smooth-
ing filters can be used to compute the numerator and denominator images in
the semblance ratio. The smoothing filters described in this paper yield an es-
pecially flexible method for computing structure-oriented semblance.
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1 INTRODUCTION

Images like those displayed in Figure 1 are familiar
in the context of exploration seismology, where spatial
sampling is sufficiently uniform to enable the applica-
tion of a variety of generic image-processing techniques.
For example, coherency-enhancing anisotropic diffusion
filters, as described by Weickert (1997, 1999), have been
adapted by Fehmers and Höcker (2003) for structure-
oriented filtering of seismic images to enhance their in-
terpretation. Figure 1b illustrates a similar structure-
oriented smoothing process that smooths along coherent
reflections while preserving faults.

Faults apparent in Figure 1a are highlighted in Fig-

ure 1c using a process that (in the sense of Fehmers
and Höcker, 2003) I call structure-oriented semblance.
As shown here, semblance is a normalized measure of
coherence with values between zero and one, where zero
corresponds to no coherence. I used the semblance im-
age in structure-oriented filtering to inhibit smoothing
across the faults in Figure 1b. However, semblance im-
ages like that in Figure 1c are often used directly in
seismic interpretation to construct geologic models of
faults and stratigrathic features such as channels (e.g.,
Bahorich and Farmer, 1995; Marfurt et al., 1998).

The purpose of this paper is to describe new meth-
ods for computing smoothed and semblance images like
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those in Figure 1. The proposed smoothing filter is both
simple to implement and computationally efficient, and
leads naturally to a semblance filter that is more gener-
ally useful than methods commonly used today to com-
pute semblance.

1.1 Structures and orientations

Coefficients of structure-oriented smoothing and sem-
blance filters depend on the orientations of coherent
structures in images. The required orientations can be
estimated by scanning over a set of sampled orientations
and choosing those for which semblance or some compa-
rable attribute is maximized (e.g., Marfurt et al., 1998;
Marfurt, 2006). Orientation scanning can provide simul-
taneously both semblance and the orientations required
for structure-oriented smoothing.

However, searching for the optimal orientation can
be costly, particularly when we do not know before
scanning whether imaged structures have locally linear,
planar, or other shapes. For example, buried channels
tend to appear as curvilinear features in seismic images,
whereas geologic horizons appear curviplanar (well ap-
proximated by curved surfaces). We should expect both
structure-oriented smoothing and semblance to honor
the varying dimensionalities of structures apparent in
seismic images, and scanning for both orientation and
dimensionality is computationally costly. The cost is es-
pecially high for 3D seismic images.

1.2 Structure tensors

An alternative to scanning over orientations of image
features that could be linear or planar (or ...) is to com-
pute structure tensors (van Vliet and Verbeek, 1995;
Weickert, 1997; Fehmers and Höcker, 2003). Structure
tensors are simply smoothed outer products of image
gradients.

In all of the examples shown in this paper, I ap-
proximated image gradients and smoothed the products
of the components of those gradients using Gaussian
derivative and smoothing filters, respectively (Deriche,
1992; van Vliet et al., 1998; Hale, 2006). Specifically, in
computing structure tensors for the 2D image of Fig-
ure 1a, I used Gaussian derivative and smoothing filters
with radii σ = 1 and σ = 8, respectively.

In this way we may construct an entire field of
structure tensors that typically vary from sample to
sample in an image. Let T denote the structure ten-
sor corresponding to one image sample. For a 2D image
like that shown in Figure 1a, each structure tensor T is
a 2× 2 symmetric positive-semidefinite matrix

T =

»
t11 t12
t12 t22.

–
. (1)

As shown by Fehmers and Höcker (2003), the eigen-
decomposition of each structure tensor T provides the

measures of orientation and dimensionality that we re-
quire in structure-oriented filtering. For 2D images, this
eigen-decomposition is

T = λuuuT + λvvvT , (2)

where λu and λv are the eigenvalues and u and v the
corresponding eigenvectors of T.

By convention we label the eigenvalues and eigen-
vectors of T so that λu ≥ λv ≥ 0. This convention
implies that eigenvectors u indicate directions in which
image gradients are highest and will therefore be or-
thogonal to linear features. The eigenvectors v, which
correspond to the smaller eigenvalues λv, will be parallel
to such features.

The eigenvalues λu and λv of each structure tensor
T provide measures of isotropy and linearity. Specifi-
cally, we may compute for each image sample the non-
negative ratios

isotropy: λ0 = λv/λu

linearity: λ1 = (λu − λv)/λu. (3)

defined here such that λ0 + λ1 = 1.
Figure 2 illustrates eigenvectors v for a small subset

of the structure tensors computed for every sample in
two different 2D images. The lengths of these vectors
have been scaled by linearity λ1. The eigenvectors v are
well aligned with image structures and appear longest
where those structures are most coherent and linear.
Elsewhere, as in the lower right corner of Figure 2b,
image features are more isotropic.

2 STRUCTURE-ORIENTED SMOOTHING

Eigenvectors derived from a structure-tensor field en-
able us to design filters that smooth along linear or pla-
nar features, but that do not smooth across them. We
may choose from among a wide variety of filters.

2.1 Slope-based smoothing

For example, to smooth along the features in Figure 2a,
we could use Fomel’s plane-wave destruction filters
(Fomel, 2002). (For smoothing we would simply sub-
tract from the input image the output of a plane-wave
destruction filter.) Coefficients of these filters depend on
reflection slopes, which are simply ratios p = v1/v2 of
components of the eigenvectors v. Figure 2a suggests
that these slopes are typically less than 1, because co-
herent features in Figure 2a tend to be more horizontal
than vertical.

However, slopes p = v1/v2 can be infinite, as
implied by the eigenvectors illustrated in Figure 2b,
which contains both horizontal and vertical features.
The words “horizontal” and “vertical” here refer only
to this display of what is in fact a truly horizontal slice
from a 3D seismic image. Still, a filter parameterized
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Figure 2. Eigenvectors v for 2D slices of two different 3D
seismic images of faulted geologic layers (a) and buried chan-

nels (b).

by reflection slope cannot be used to smooth along the
features apparent in Figure 2b.

2.2 Smoothing with anisotropic diffusion

A more generally useful alternative proposed by Weick-
ert (1997, 1999) and Fehmers and Höcker (2003) (and
others) is to parameterize a structure-oriented smooth-
ing filter by a tensor field. For an input image f(x) and
a corresponding structure-tensor field T(x), these au-
thors propose the solution of an anisotropic diffusion
equation

∂g(x; τ)

∂τ
= ∇ ·D(x) ∇ g(x; τ) (4)

with initial condition g(x; τ = 0) = f(x). For any time
τ > 0, the solution g(x; τ) is a smoothed version of the
input image f(x).

This anisotropic diffusion equation is parameterized

by a diffusion-tensor field D(x) that shares the eigenvec-
tors of the structure-tensor field T(x). To smooth along
the eigenvectors v(x) illustrated in Figure 2, we might
set λu(x) = 0 and λv(x) = 1 for all tensors in the field
D(x). More generally, we might let the eigenvalues of
D(x) depend on the measures of isotropy and linearity
computed from T(x) according to equations 3.

Unfortunately, as noted by Fehmers and Höcker
(2003), straightforward explicit and stable numerical so-
lutions to the anisotropic diffusion equation 4 may re-
quire a prohibitively large number of time steps. So they
instead use an unspecified solution method that they
liken to a “rudimentary multigrid implementation”.

2.3 An anisotropic smoothing filter

When considering the efficiency of structure-oriented
smoothing with anistropic diffusion, Fehmers and
Höcker (2003) suggest that it is unnecessary to model
the diffusion process exactly. Consistent with their sug-
gestion, I propose here the numerical solution of a dif-
ferent partial differential equation

g(x)− α∇ ·D(x) ∇ g(x) = f(x). (5)

Here, f(x) represents the input image and g(x) rep-
resents the output smoothed image. The constant fil-
ter parameter α could be absorbed into the smoothing-
tensor field D(x), but is kept separate to provide a con-
venient control for the extent of smoothing. For α = 0,
we have g(x) = f(x), and no smoothing is performed.

Unlike the solution of the diffusion equation 4, the
solution to the smoothing equation 5 does not depend
on time τ . However, smoothing with equation 5 does re-
quire the numerical solution of a large sparse system of
equations. (Numerical solution of equation 5 is equiva-
lent to a single but possibly large time step in an uncon-
ditionally stable implicit numerical solution of the dif-
fusion equation 4.) Fortunately, simple finite-difference
approximations suffice to obtain a sparse symmetric
positive-semidefinite system of equations that we may
solve efficiently using conjugate-gradient iterations.

I use the bilinear transform (e.g., Oppenheim et al.,
1999) to approximate the partial derivatives in equa-
tion 5. As a simple example, consider the 1D version of
equation 5 with constant coefficients

g(x)− αg′′(x) = f(x). (6)

Using z-transform notation, the bilinear transform of a
derivative is the substitution

g′(x)⇒ 2
1− z−1

1 + z−1
G(z) (7)

or, equivalently,

−g′(x)⇒ 2
1− z
1 + z

G(z). (8)

With this approximation, the z-transform of equation 6



4 D. Hale

becomes`
z−1 + 2 + z

´
G(z)− 4α

`
z−1 − 2 + z

´
G(z)

=
`
z−1 + 2 + z

´
F (z), (9)

which corresponds to the finite-difference approxima-
tion

(1− 4α) g[i− 1] + (2 + 8α) g[i] + (1− 4α) g[i+ 1]

= f [i− 1] + 2f [i] + f [i+ 1]. (10)

Given N input samples f [i], i = 0, 1, . . . , N − 1, and
suitable (e.g., zero-slope) boundary conditions, we can
easily solve this tri-diagonal system of N equations for
N smoothed output samples g[i].

While other finite-difference approximations to the
smoothing equation 6 may seem more straightforward,
I chose the bilinear transform because the smoothing
filter implied by equation 10 has a zero at the Nyquist
frequency for all α > 0. This smoothing filter is in fact
a cascade of two (one causal and one anti-causal) 1st-
order Butterworth filters (e.g., Oppenheim et al., 1999).

The same bilinear transform works as well for each
partial derivative in 2D and 3D versions of equation 5
with variable tensor coefficients D. The derivation is
somewhat more tedious and the resulting system of
equations is not tri-diagonal as in the 1D version. How-
ever, as noted above, the system of equations remains
sparse, symmetric and positive-semidefinite, and may
be solved efficiently with conjugate-gradient iterations.

Let f denote a vector containing all samples
f [i1, i2, . . . , in] of an n-dimensional input image f(x),
and let g denote a corresponding vector of samples
g[i1, i2, . . . , in] of the smoothed output image g(x). Af-
ter bilinear transform of equation 5, the sparse system
of equations to be solved has the form

(BT B + AT DA)g = BT Bf (11)

In this equation D now represents a sparse matrix with
non-zero elements corresponding to coefficients in the
smoothing-tensor field D(x) described above. Sparse
matrices A and B correspond to finite-difference ap-
proximations obtained with the bilinear transform.

In each conjugate-gradient iteration, we must com-
pute the matrix-vector product s = (BT B + AT DA)r
for some temporary vectors r and s. Here is a small
computer program (written in C, C++ or Java) that
does this for 2D image smoothing, where the vectors r
and s represent values r[i1, i2] and s[i1, i2] stored in 2D
arrays.

// Zero all elements of the array s; then

for (i2=1; i2<n2; ++i2) {

for (i1=1; i1<n1; ++i1) {

e11 = alpha*d11[i2][i1]; // smoothing

e12 = alpha*d12[i2][i1]; // tensor

e22 = alpha*d22[i2][i1]; // coefficients

r00 = r[i2 ][i1 ];

r01 = r[i2 ][i1-1];

r10 = r[i2-1][i1 ];

r11 = r[i2-1][i1-1];

rs = 0.25f*(r00+r01+r10+r11); // for B’B

ra = r00-r11;

rb = r01-r10;

r1 = ra-rb; // two components of

r2 = ra+rb; // the gradient of r

s1 = e11*r1+e12*r2; // multiplied by the

s2 = e12*r1+e22*r2; // smoothing tensor

sa = s1+s2;

sb = s1-s2;

s[i2 ][i1 ] += sa+rs;

s[i2 ][i1-1] -= sb-rs;

s[i2-1][i1 ] += sb+rs;

s[i2-1][i1-1] -= sa-rs;

}}

For 2D images, this program is the simplest and most
efficient way to ensure a symmetric positive-definite im-
plementation of the matrix operator BT B + AT DA on
the left-hand side of equation 11. (Note that this pro-
gram does not require an explicit representation of that
left-hand-side matrix. A similar program for smoothing
3D images is provided in Appendex A.) An even sim-
pler program can be used to apply the right-hand side
matrix operator BT B once to the input image vector f
before beginning conjugate-gradient iterations.

Figure 3 illustrates anisotropic smoothing with con-
stant parameter α = 18 and smoothing tensors D =
vvT . The eigenvalues of these smoothing tensors are
constant: λu = 0 and λv = 1. Therefore, unlike the
smoothing shown in Figure 1b, that shown here in Fig-
ure 3 does not preserve discontinuities across faults.

I used 27 and 33 conjugate-gradient iterations to
compute the smoothed images shown in Figures 3a
and 3b, respectively. When I changed α = 18 to α = 5,
the number of iterations decreased by roughly a factor
of two, to 13 and 16 iterations, respectively. These re-
sults and further experiments suggest that the number
of iterations required is independent of image dimen-
sions and is roughly proportional to

√
α.

The smoothing filters implied by equation 11 do not
correspond to any weighted averaging of image pixels
along linear trajectories like the line segments in Fig-
ures 2.

To illustrate this point, Figure 4 shows the weights
implicitly applied to input samples f [i1, i2] when com-
puting a small subset of output samples g[i1, i2] like
those shown in Figure 3b, but here for α = 70 to make
the weights more visible. These smoothing-filter weights
are largest along curvilinear trajectories that would be
difficult and costly to construct explicitly. That con-
struction is unnecessary, because we may instead simply
solve the anisotropic smoothing equation 11.

3 STRUCTURE-ORIENTED SEMBLANCE

We can use smoothing filter weights like those shown in
Figure 4 to define a locally weighted semblance. The key
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Figure 3. Anisotropic smoothing (for α = 18) along the
eigenvectors v of Figure 2 for two seismic images.

step is to recognize that sums in conventional definitions
of semblance perform a sort of smoothing. We can then
replace those sums with the weighted sums of smoothing
filters.

3.1 Conventional semblance

Semblance was first defined by Taner and Koehler
(1969) and developed further by Neidell and Taner
(1971) in the context of velocity spectra, where they
computed semblance as a function of time for CMP
gathers after normal moveout correction. An equivalent
definition that is consistent with the notation used else-
where in this paper is

s[i1] =

i1+M1P
j1=i1−M1

 
N2−1P
j2=0

f [j1, j2]

!2

N2

i1+M1P
j1=i1−M1

N2−1P
j2=0

(f [j1, j2])2
. (12)

i1

i2

Figure 4. Anisotropic smoothing-filter weights for α = 70.

These weights conform to the eigenvector field v of Figure 2b,
and imply curvilinear smoothing paths. Weights shown here

are scaled by a factor of 100 for display.

For all indices i1, semblance s[i1] is maximized and
equals one when the values f [j1, j2] do not vary with
the index j2. For Taner and Koehler’s velocity spectra,
the index j2 corresponds to a trace number and the in-
dex j1 corresponds to a time sample. The inner sums
over j2 correspond to N2 NMO-corrected traces in a
CMP gather. The outer sums over j1 correspond to a
window of 2M1 +1 time samples centered at the sample
i1 for which semblance s[i1] is to be computed.

Marfurt et al. (1998) used a similar definition of
semblance as the ratio of sums like these to compute
local measures of coherence. Instead of scanning over
different NMO velocities to maximize semblance, they
instead scanned over different planar reflection slopes
in local windows of seismic traces. A simplified version
(omitting Hilbert tranforms) of their semblance measure
for 2D images would be

s[i1, i2] =

i1+M1P
j1=i1−M1

 
i2+M2P

j2=i2−M2

f [j1, j2]

!2

(2M2 + 1)
i1+M1P

j1=i1−M1

i2+M2P
j2=i2−M2

(f [j1, j2])2 .

.

(13)
In this definition, f [j1, j2] corresponds to a window of
(2M1 + 1) × (2M2 + 1) image samples after shifting in
time to flatten planar reflections for a specified slope.
Semblance is maximized if that specified slope matches
the slope of a planar reflection in the image.

Semblance computed by equation 13 is stored at
indices i1 and i2 that correspond to the centers of the
summation windows. Therefore, the sums in the nu-
merator and denominator of this equation work much
like symmetric local smoothing filters. However, these
smoothing filters have constant weights, implying that
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Figure 5. Three weighting sequences h[i] (a) and their
Fourier amplitude spectra

˛̨
H(k)

˛̨
(b). Weights shown are

boxcar (black), Gaussian (red), and smoothed exponential

(blue).

all samples inside the windows are equally significant,
but that samples just outside these windows are worth-
less. Intuitively, this sort of weighting makes no sense. In
practice, it leads to visible artifacts where strong image
features enter and leave such windows.

3.2 Weighting sequences

Better windows would give more weight to samples near
the centers of windows and less weight to those near
window edges.

Figure 5 illustrates three different weighting se-
quences h[i] with their Fourier amplitude spectra˛̨
H(k)

˛̨
. For zero frequency, k = 0, all three weighting

sequences have the same Fourier amplitude
˛̨
H(0)

˛̨
and

curvature
˛̨
H ′′(0)

˛̨
. Therefore, in their responses to low

frequencies, these weighting sequences are comparable,
even though their shapes differ significantly.

The boxcar sequence h[i] corresponds to the

conventional definition of semblance computed for
constant-weighted samples in a window with finite dura-
tion. The boxcar weighting sequence illustrated in Fig-
ure 5a has half-width M = 10 samples.

The Gaussian sequence h[i] is proportional to
exp

`
− i2/2σ2

´
. This sequence is smoothest and is

nowhere zero, but in practice may be truncated where
weights are insignificant. The Gaussian sequence in Fig-
ure 5a has half-width σ =

p
M(M + 1)/3, and the

choice M = 10 makes it comparable to the boxcar se-
quence shown there.

The smoothed exponential sequence h[i] is likewise
nowhere zero, and is the impulse response of the filter
implied by solution of equation 10 for smoothing pa-
rameter α = M(M + 1)/6. Again, the choice M = 10
makes this weight sequence comparable to the boxcar
sequence in Figure 5a.

3.3 Weighted semblance

We may use weighting sequences like those shown in
Figure 5a to generalize the conventional definition of
semblance to what I call weighted semblance.

Let us first consider a single weighted-semblance
value s computed for a 1D sequence f [j]:

s =

“P
j

h[j]f [j]
”2

P
j

h[j]
`
f [j]

´2 . (14)

Here, unspecified limits for sums are assumed to include
all indices j for which both f [j] and h[j] are defined.

As for conventional semblance, we want weighted
semblance s to be a normalized measure of coherence
such that 0 ≤ s ≤ 1. We may obtain such a measure for
any set of weights h[j] that have two properties:X

j

h[j] = 1 and h[j] ≥ 0 for all j. (15)

In other words, the weights h[j] must be normalized and
non-negative. All three weighting sequences displayed in
Figure 5 have these two properties.

The proof that 0 ≤ s ≤ 1 is simple. Because all
weights h[j] are non-negative, the denominator in equa-
tion 14 must be non-negative as well. Since the numera-
tor is non-negative for any weights, the semblance ratio
is bounded below by 0 ≤ s.

To see that semblance is bounded above by s ≤ 1,
let us rewrite equation 14 as

s =

»P
j

“p
h[j]

”“p
h[j]f [j]

”–2
»P

j

“p
h[j]

”2
–»P

j

“p
h[j])f [j]

”2
– . (16)

The square roots are real valued because all weights h[i]
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are non-negative. The leftmost term in the denomina-
tor is unity because it equals the sum of those weights.
Then, by the Cauchy-Schwarz inequality, we have s ≤ 1.

Equation 16 is written carefully to show that
weighted semblance is equivalent to a normalized corre-
lation coefficient for two sequences

p
h[j] and

p
h[j]f [j].

This coefficient is unity if the sequence f [j] is constant.
When this sequence is not constant, more weight is given
to the values f [j] for which the weights h[j] are largest.

To compute weighted semblance in sliding and
seamlessly overlapping windows of the sequence f [j],
we simply write

s[i] =

“P
j

h[i− j]f [j]
”2

P
j

h[i− j]
`
f [j]

´2 . (17)

Both numerator and denominator in this ratio include
convolution with a smoothing filter like those shown
in Figure 5a. In this sense, semblance is the ratio of
a squared smoothed-sequence to a smoothed squared-
sequence.

However, the smoothing filter need not be shift in-
variant. An even more general form of equation 17 is

s[i] =

“P
j

h[i; j]f [j]
”2

P
j

h[i; j]
`
f [j]

´2 . (18)

In other words, smoothing-filter coefficients h[i; j] may
vary with index i, provided that the properties in equa-
tions 15 are satisfied for all i.

Before extending the notion of weighted semblance
to 2D and 3D images, it will help to simplify notation
further by letting 〈·〉 denote smoothing of whatever is
inside the angle brackets, so that semblance becomes
simply

s =
〈f〉2

〈f2〉 . (19)

3.4 2D structure-oriented semblance

For 2D images, we have the opportunity to include a
second smoothing, as in the conventional definition of
semblance in equation 13. Using the concise notation
described above, we may rewrite this equation as

s2,1 =
〈 〈f〉22 〉1
〈 〈f2〉2 〉1

, (20)

where 〈·〉1 denotes smoothing along the 1st image axis,
and 〈·〉2 denotes smoothing along the 2nd axis. The
outer smoothing 〈·〉1 helps to stabilize semblance values
where the inner smoothing 〈·〉2 accumulates only very
small and perhaps noisy values. Depending on expected
orientations of image features, we might switch the 1st
and 2nd smoothing directions.

For structure-oriented semblance, I simply replace

axis-aligned smoothing with structure-oriented smooth-
ing. When computing semblance for 2D images, we may
define the smoothing filters using eigenvectors u and
v computed from structure tensors. Structure-oriented
semblance is then

sv,u =
〈 〈f〉2v 〉u
〈 〈f2〉v 〉u

. (21)

The inner smoothing 〈·〉v is along image features, and
the outer smoothing 〈·〉u is across those features.

I computed the structure-oriented semblance shown
in Figure 1c using structure-oriented smoothing filters
with M = 4 (α = M(M+1)/6) for inner smoothing 〈·〉v
along image features and M = 16 for outer smoothing
〈·〉u across those features. As expected, semblance is low
near faults and near the bottom where the image f is
less coherent.

The structure-oriented smoothing filters used to
compute semblance in this and other examples shown in
this paper do not strictly satisfy the second requirement
of equation 15 that all weights be non-negative. Recall
the smoothing-filter weights shown in Figure 4, which
are mostly positive, but on close inspection exhibit neg-
ative values. Non-negative weights are easy to obtain for
1D smoothing; e.g., the smoothed exponential sequence
in Figure 5a. However, I have been unable to guaran-
tee non-negative weights in useful finite-difference ap-
proximations of the more general anisotropic smoothing
equation 5.

Nevertheless, these smoothing filters yield a useful
semblance measure. I simply clip the values of sv,u so
that values less than zero are replaced with zero and
values greater than one are replaced with one. In my
experience, computing structure-oriented semblance for
both 2D and 3D images, this clipping occurs rarely. In
the example shown in Figure 1c, no such clipping was
necessary.

Figure 6 shows the same semblance image again for
comparison with a more conventional slope-based sem-
blance image. I computed this slope-based semblance for
a sliding window of nine traces (M = 4). Within each
such window, I used sinc interpolation of each trace to
flatten the nine-trace image before computing the inner
horizontal sums with constant (boxcar) weights. I then
computed the outer vertical sums by applying vertical
Gaussian smoothing for M = 16 (σ =

p
M(M + 1)/3),

before finally computing the semblance ratios. Although
smoothing filters varied, this example of slope-based
semblance is comparable to that of structure-oriented
semblance because I chose consistent half-widths M = 4
and M = 16 in both examples.

A notable difference between the two semblance im-
ages in Figure 6 is the appearance of faults as piece-
wise vertical features in the slope-based semblance im-
age. This vertical bias is caused by the outer Gaussian
filtering that in the conventional slope-based method
smooths semblance numerators and denominators only
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Figure 6. Structure-oriented semblance sv,w (a) computed

via structure-oriented smoothing and a more conventional
slope-based semblance (b) for the image of Figure 2a.

vertically. This bias would be even more apparent had I
used boxcar smoothing instead of Gaussian smoothing.

A second disadvantage of a slope-based semblance
method is that (like slope-based smoothing) it cannot be
readily applied to images having features with both hor-
izontal and vertical orientations, like those illustrated
in Figure 2b. In contrast, structure-oriented semblance
is easy to implement for arbitrary orientations of the
structure eigenvectors u and v.

Figure 7 shows an example of structure-oriented
semblance sv,u computed for the image of channels using
structure-oriented 〈·〉v (inner) and 〈·〉u (outer) smooth-
ings, both with M = 4. Recall that the image in Fig-
ure 7a is actually a horizontal 2D slice extracted from a
3D image. The semblance image in Figure 7b therefore
contains numerous spurious features that occur where
linear features cross contours of zero amplitude in the
2D slice of Figure 7a. Because the numerator of the sem-
blance ratio in equation 21 contains a local weighted av-
erage of f , semblance is low near all such zero crossings.
To obtain a more meaningful semblance image, we must
process the 3D image.

i1

i2

(a)

i1

i2

(b)

Figure 7. Features in a 2D horizontal slice (a) of a 3D im-

age of channels have varying orientations. Structure-oriented

semblance sv,u (b) highlights amplitude variations along the
linear trends of these features.

3.5 3D structure-oriented semblance

To compute structure-oriented semblance for 3D im-
ages, I use 3D structure-oriented smoothing. These
smoothing filters can again be parameterized by
smoothing tensors derived from structure tensors.
Each structure tensor is a 3 × 3 matrix with eigen-
decomposition

T = λuuuT + λvvvT + λwwwT , (22)

where λu, λv and λw are the eigenvalues and u, v and
w the corresponding eigenvectors of T.

I again label the eigenvalues and eigenvectors of
T so that λu ≥ λv ≥ λw ≥ 0. Eigenvectors u again
indicate directions in which image gradients are highest,
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orthogonal to linear or planar features. The eigenvectors
w, which correspond to the smallest eigenvalues λw, will
be aligned with linear features, such as the channels in
Figure 7a. Both eigenvectors v and w will lie within the
planes of any planar features.

Structure-oriented semblance measured within lo-
cal planes defined by eigenvectors v and w is then sim-
ply

svw,u =
〈 〈f〉2vw 〉u
〈 〈f2〉vw 〉u

. (23)

This equation defines a planar semblance. For the in-
ner curviplanar smoothing, we use smoothing tensors
D = vvT + wwT . For the outer orthogonal curvilin-
ear smoothing, we use D = uuT . Unlike slope-based
semblance, planar semblance remains well defined for
steeply dipping, even vertical, features in 3D seismic
images.

Choosing the eigenvalues of smoothing tensors D in
a different way, we can likewise define a linear semblance

sw,uv =
〈 〈f〉2w 〉uv

〈 〈f2〉w 〉uv

. (24)

As its name implies, this linear semblance measures co-
herence along curvilinear paths within an image.

Planar and linear semblance are two extremes in
a continuum of semblance measures we may define by
choosing the eigenvalues of smoothing tensors D in dif-
ferent ways. We may, for example, choose the eigen-
values of D to be functions of the eigenvalues of the
corresponding structure tensors T, perhaps using the
following measures of isotropy, linearity and planarity:

isotropy: λ0 = λw/λu

linearity: λ1 = (λv − λw)/λu

planarity: λ2 = (λu − λv)/λu, (25)

defined here such that λ0 +λ1 +λ2 = 1. In any case, the
outer smoothing we perform in the semblance calcula-
tion is an orthogonal complement to the inner smooth-
ing.

Figure 8 shows examples of both planar and linear
semblance. All smoothing filters in these examples have
half-width M = 2 samples. (Shorter filters are more
suitable for 3D images than for 2D images because of
the extra dimension in which smoothing can be per-
formed.) Planar semblance highlights (with low values)
all features that are not planar, such as the channels,
which are linear. Linear semblance highlights variations
within those channels, features that are neither linear
nor planar, but may be significant.

4 CONCLUSION

Structure-oriented smoothing filters as described in this
paper are quite general, with parameters derived mostly
from structure-tensor fields. In contrast to smoothing

i1

i2

(a)

i1

i2

(b)

Figure 8. 3D structure-oriented planar semblance svw,u (a)

and linear semblance sw,uv (b) computed for a 3D seismic

image of buried channels. Shown here are horizontal 2D slices
(coincident with the 2D slices shown in Figure 7) extracted

from 3D semblance images.

filters parameterized by slopes of image features, this
generality enables smoothing of 2D and 3D images with
arbitrary orientations and dimensionalities.

Structure-oriented smoothing filters are also sim-
ple to implement with small computer programs. The
most significant part of the implementation for 2D fil-
ters (not including a necessary but readily available
conjugate-gradient solver) is a computer program with
only 23 lines. A similar program for 3D structure-
oriented smoothing consists of only 42 lines.

From structure-oriented smoothing we may de-
fine structure-oriented semblance as the ratio of a
squared smoothed-image to a smoothed squared-image.
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Structure-oriented semblance is a special case of
weighted semblance, in which weighted sums are im-
plied by structured-oriented filters that smooth either
along or across image features. The orientation of those
features is arbitrary; e.g., structure-oriented semblance
has no vertical bias. And unlike the weights implied by
conventional semblance computed in sliding boxcar win-
dows, the weights used in structure-oriented semblance
smoothly and seamlessly decay to zero.
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APPENDIX A — 3D SMOOTHING

For 3-D structure-oriented smoothing via solution of
equation 11, the following computer program (writ-
ten in C, C++ or Java) computes the product s =
(BT B + AT DA)r for vectors r and s that represent
values r[i1, i2, i3] and s[i1, i2, i3] stored in 3D arrays.

// Zero all elements of the array s; then

for (i3=1; i3<n3; ++i3) {

for (i2=1; i2<n2; ++i2) {

for (i1=1; i1<n1; ++i1) {

e11 = alpha*d11[i3][i2][i1]; // smoothing

e12 = alpha*d12[i3][i2][i1]; // tensor

e13 = alpha*d13[i3][i2][i1]; // coefficients

e22 = alpha*d22[i3][i2][i1];

e23 = alpha*d23[i3][i2][i1];

e33 = alpha*d33[i3][i2][i1];

r000 = r[i3 ][i2 ][i1 ];

r001 = r[i3 ][i2 ][i1-1];

r010 = r[i3 ][i2-1][i1 ];

r011 = r[i3 ][i2-1][i1-1];

r100 = r[i3-1][i2 ][i1 ];

r101 = r[i3-1][i2 ][i1-1];

r110 = r[i3-1][i2-1][i1 ];

r111 = r[i3-1][i2-1][i1-1];

rs = 0.25f*(r000+r001+r010+r011+

r100+r101+r110+r111); // for B’B

ra = r000-r111;

rb = r001-r110;

rc = r010-r101;

rd = r100-r011;

r1 = ra-rb+rc+rd; // three

r2 = ra+rb-rc+rd; // components of

r3 = ra+rb+rc-rd; // gradient of r

s1 = e11*r1+e12*r2+e13*r3; // multiplied by

s2 = e12*r1+e22*r2+e23*r3; // the smoothing

s3 = e13*r1+e23*r2+e33*r3; // tensor

sa = s1+s2+s3;

sb = s1-s2+s3;

sc = s1+s2-s3;

sd = s1-s2-s3;

s[i3 ][i2 ][i1 ] += sa+rs;

s[i3 ][i2 ][i1-1] -= sd-rs;

s[i3 ][i2-1][i1 ] += sb+rs;

s[i3 ][i2-1][i1-1] -= sc-rs;

s[i3-1][i2 ][i1 ] += sc+rs;

s[i3-1][i2 ][i1-1] -= sb-rs;

s[i3-1][i2-1][i1 ] += sd+rs;

s[i3-1][i2-1][i1-1] -= sa-rs;

}}}
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