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SUMMARY

Bilateral filtering is widely used to enhance photographic im-
ages, but in most implementations is poorly suited to seismic
images. A bilateral filter consists of two (domain and range)
filter kernels. By replacing the domain kernel with a smooth-
ing filter that conforms to image structures, we obtain a bilat-
eral filter suitable for seismic image processing. Examples and
comparison with conventional edge-preserving smoothing il-
lustrate advantages of structure-oriented bilateral filtering. The
only significant disadvantage is a relatively high (roughly 10 to
40 times higher) computational cost.

INTRODUCTION

Bilateral filters (Tomasi and Manduchi, 1998) are today widely
used to smooth photographic images while preserving signifi-
cant edges. Paris et al. (2008) provide a thorough review of bi-
lateral filters and their applications, which include denoising,
image abstraction, and texture and tone adjustment. Despite
such widespread application to photographic images (and to
medical CT and MRI scans), bilateral filters are seldom used
to enhance seismic images. Why not?

One reason is that edges in seismic images differ significantly
from those in photographic images (and in medical CT or MRI
scans). Consider for example the seismic image displayed in
Figure 1a. The most obvious edges in this image are the fa-
miliar alternating black and white features that correspond to
seismic horizons. However, these sinusoidal features are un-
like the edges apparent in most photographs. Rather, features
in Figure 1a correspond to reflections of seismic waves caused
by changes in seismic impedance. Edges in images of seis-
mic impedance, when such images are available, more closely
resemble edges in photographs.

Also important are edges corresponding to lateral discontinu-
ities in seismic reflections, the chaotic structures at about 1.2 s
and the geologic faults below 1.5 s in the image of Figure 2a.
(Figure 1a is a zoomed subset of Figure 2a). In processing
seismic images, we seek to denoise (enhance the continuity
of) coherent reflections, while preserving these lateral discon-
tinuities.

The anisotropic diffusion filter (Weickert, 1999; Fehmers and
Höcker, 2003) is one example of a filter that does this for seis-
mic images, as well as for photographic images. Indeed, others
have compared the anisotropic diffusion filter with the bilat-
eral filter in processing to enhance photographs (e.g., Barash,
2002). In this paper I compare the implementation and per-
formance of these two types of filters in denoising seismic
images, using a new structure-oriented bilateral filter that ac-
counts for the different types of edges apparent in such images.

a)

b)

c)

Figure 1: An input seismic image (a), the output of structure-
oriented bilateral filtering (b), and the difference (c) between
input and output images. For clarity, the input-output differ-
ence is displayed for a smaller gray-scale range of amplitudes.

STRUCTURE-ORIENTED SMOOTHING

Let p[i] and q[i] denote input and output images, respectively,
where i = (i1, i2, . . . , in) is an n-dimensional sample index with
n integer components. A general smoothing filter can then be
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a) d)
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Figure 2: An input image (a), with output (b) and input-output difference (c) for the structure-oriented bilateral filter. For compari-
son, coherence (d) is computed to implement a more conventional edge-preserving smoothing filter, with output (e) and input-output
difference (f).
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expressed as follows:

q[i] =
�

j
p[j]s(i, j)

�
j
s(i, j)

. (1)

This smoothing filter is not shift-invariant (not convolutional)
because the coefficients s(i,j) vary spatially with both output
and input sample indices i and j, as necessary to conform to
structures apparent in seismic images. Division by the sum of
these coefficients in equation 1 ensures that smoothing of an
input image p[i] = constant (already smooth as can be) yields
an identical output image q[i] = constant.

In practice we need not compute the coefficients s(i, j) explic-
itly. Instead, to smooth along structures apparent in images,
without smoothing across those structures, I solve a discrete
approximation to the following partial differential equation:

q(x)− σ2

2
∇ •D(x) •∇q(x) = p(x), (2)

for tensor-valued filter coefficients D(x). Here, x represents
coordinates in space or space-time that when sampled become
indices i and j in equation 1.

Solution of this equation approximates Gaussian smoothing
with half-width σ in the directions of eigenvectors of D(x)
for which corresponding eigenvalues equal one. By choosing
those directions to to be tangent to structures apparent in an
input image p, and by choosing eigenvalues for orthogonal di-
rections to be much less than one, smoothing is oriented along
image structures. The filters used in the examples of Figures 1
and 2 have a maximum smoothing half-width of σ = 16 sam-
ples (0.4 km or 0.064 s).

Solving equation 2 is similar to applying coherence-enhancing
anisotropic diffusion (Weickert, 1999; Fehmers and Höcker,
2003). As for that process, I derive the tensor-valued coeffi-
cients D(x) from structure tensors computed for the input im-
age.

Edge-preserving smoothing

To preserve edges while smoothing, we may scale the tensors
D(x) by any measure of coherence that is almost zero near
discontinuities and almost one where features are most coher-
ent. In effect, scaling by coherence reduces the maximum half-
width σ of the smoothing filter by a factor that varies spatially;
that is, it makes the smoothing filter edge-preserving.

Figure 2e shows the effect of edge-preserving structure-oriented
smoothing with equation 2, using tensors D(x) scaled by co-
herence displayed in Figure 2d. Near discontinuities, such
as faults, coherence is low and little smoothing is performed.
Smoothing near but not across discontinuities appears to en-
hance the definition of faults in the output image q of Fig-
ure 2e.

The input-output difference in Figure 2f indicates that little
smoothing is performed near the middle of the image, at times
near 1.4 s, where features in the input image p are least coher-
ent. Note, however, that the largest differences in Figure 2f ex-
hibit significant spatial correlation, and that these differences
coincide with high amplitudes.

a)

b)

c)

d)

e)

Figure 3: Bilateral filtering of a blocky signal (dashed lines)
contaminated with additive random noise. The smoothing fil-
ter kernel is Gaussian with half-width σ = 20 samples. Half-
widths σp of the Tukey range filter kernel are (a) 1/100, (b)
1/2, (c) 1, (d) 3/2, and (e) 10 times the value σp ≈ 4 given by
equation 5.

BILATERAL FILTERING

The name bilateral filter (Tomasi and Manduchi, 1998) was
chosen to imply that the kernel of this filter is a combination
of two filter kernels, one a function of the input image’s spatial
domain and the other a function of its range. The basic idea is
simple. We modify the general smoothing filter equation 1 to
scale the coefficients s(i, j) by a range function r(p[i]− p[j]) of
the difference between two input sample values:

q[i] =
�

j
p[j]r(p[i]− p[j])s(i, j)

�
j
r(p[i]− p[j])s(i, j)

. (3)

The range function r(p) should be chosen to decrease mono-
tonicially with increasing |p|. In practice (Durand and Dorsey,
2002), a simple and effective choice is Tukey’s biweight func-
tion, defined by

r(p)≡
�
[1− (p/σp)2]2 if |p|< σp,

0 otherwise.
(4)
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The half-width σp of the range function r controls the scaling
of the spatial filter coefficients s in equation 3. In practice, I
find that a good choice is

σp ≈ p75 − p25 (5)

where p25 and p75 denote the 25’th and 75’th percentiles (1st
and 3rd quartiles) of the sample values in the input image p.

Figure 3 illustrates for a synthetic example the effect that the
half-width σp has on bilateral smoothing. For small values
of σp, little smoothing is performed, because then only val-
ues p[j]≈ p[i] are averaged by equation 3 when computing the
output value q[i]. For large values of σp, scaling by the range
function has little effect, and the bilateral filter is merely a spa-
tial smoothing filter, one that does not preserve edges. For a
range of intermediate values 2 < σp < 6, the bilateral filter at-
tenuates noise while more or less preserving edges in the sig-
nal. This synthetic example explains the effectiveness of the
bilateral filter when applied to photographs or medical images
with similar step edges.

Recall, however, that edges most apparent in seismic images
are reflections with sinusoidal waveforms, which are not step
functions. When applied to seismic images, simple imple-
mentations of the bilateral filter preserve faults and other dis-
continuties, but attenuate both coherent signal and incoherent
noise. This fact alone may explain why the bilateral filter is
rarely used in seismic image processing.

Structure-oriented bilateral filtering

Typical implementations of the bilateral filter fail when applied
to seismic images, because, unlike structure-oriented smooth-
ing, they smooth too much across seismic reflections. There-
fore, for structure-oriented bilateral filtering, we may sim-

ply replace the smoothing filter kernel s(i, j) with structure-

oriented smoothing.

Remember that the filter coefficients s(i, j) are not computed
explicitly. Instead, we apply the spatial smoothing filter by
solving the partial differential equation 2. Because the range
filter kernel r is a function of both output and input indices i
and j, an efficient implementation of equation 3 may not be
obvious.

My implementation is similar to that of Durand and Dorsey
(2002). Specifically, I use a piecewise linear approximation
of the range function r(p), for a finite number Np of values
pk = pmin + k∆p, for k = 0,1, . . . ,Np −1, where

Np = 2+
�

pmax − pmin

σp

�
(6)

and
∆p =

pmax − pmin

Np −1
. (7)

For this piecewise-linear approximation of the range function
r, equation 3 becomes

q[i] =
�

k
Λ(p[i]− pk)

�
j
p[j]r(p[j]− pk)s(i, j)

�
k

Λ(p[i]− pk)
�

j
r(p[j]− pk)s(i, j)

, (8)

where Λ(p[i]− pk) is a shifted version of the hat function de-
fined by

Λ(p)≡





1− |p|

∆p
if |p|< ∆p,

0 otherwise.
(9)

Note that the
�

j
terms in the numerator and denominator

of equation 8 resemble those in equation 1. In equation 1
these terms represent structure-oriented smoothing of the im-
ages p[j] and 1 (a constant image). In equation 8 these terms
imply exactly the same smoothing of images p[j]r(p[j]− pk)
and r(p[j]− pk). For all of these images, we perform spatial
smoothing by solving the partial differential equation 2.

Figure 2b displays the result of structure-oriented bilateral fil-
tering of the image in Figure 2a. Faults and other disconti-
nuities are well-preserved in the output image; and the input-
output difference shown in Figure 2c exhibits less spatial cor-
relation than is observed for edge-preserving smoothing.

Structure-oriented bilateral filtering preserves faults and other
sharp discontinuities in Figure 2a, without using any prior esti-

mate of coherence. Instead, the range function of the bilateral
filter inhibits smoothing across a fault where values on each
side of the fault differ significantly. As others have noted (e.g.,
Paris et al., 2008), this simplicity of the bilateral filter is one of
its advantages.

For this example, I used Np = 19, which implies that a total
of 2Np = 38 structure-oriented smoothings were performed,
19 for the numerator and 19 for the denominator of equation 8.
This rather large number Np = 19 is necessary for the image of
Figure 2a because for this image pmin � p25 and p75 � pmax.
For images with more balanced amplitudes, the number Np is
lower, typically less than 10.

CONCLUSION

On the one hand, structure-oriented bilateral filtering requires
many more solutions to equation 2 than the one solution re-
quired for edge-preserving structure-oriented smoothing. Rel-
atively high computational cost is therefore a disadvantage of
my implementation of structure-oriented bilateral smoothing.

On the other hand, edge-preserving smoothing requires an esti-
mate of coherence to inhibit smoothing across faults and other
geologically significant discontinuities. The effectiveness of
edge-preserving smoothing depends on this prerequisite image
of coherence.

Bilateral filtering requires only the input image, and the noise
removed by the filter (the input-output difference), tends to be
more uniformly distributed and to exhibit less spatial correla-
tion than that removed by edge-preserving smoothing.
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