HOW MUCH WATER DO WE NEED?
 Take a moment to consider and estimate volume per person per day

One Person?

Flushing Toilet?

USA Personal Use?

Add Industrial, Municipal, Commercial ?

Add Energy And Food Production?

Images from http://ga.water.usgs.gov/edu/totrendbar.html

A Water Budget can be calculated for any defined domain

some may be easier than others

INFLOW = OUTFLOW + CHANGE IN STORAGE

Here an INCREASE in storage is taken as a POSITIVE CHANGE

```
BALANCE CAN APPLY TO THE EARTH's ENTIRE SPHERE, OR TO ANY SUB-DOMAIN of the HYDROLOGIC SYSTEM
e.g.
Atmosphere
Ocean
Continent
Watershed
Stream Segment
Lake
Even anthropogenic objects: Processing Tank or a Pool Or Political Entities: Counties, States, Nations
COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```

FOR BALANCE TO BE MEANINGFUL, ALL INPUTS, OUTPUTS, AND CHANGES IN STORAGE MUST BE IDENTIFIED

IN ALL PRACTICAL HYDROLOGIC PROBLEMS, A ROUGH CHECK ON BALANCE IS ESSENTIAL TO MAKE SURE YOU HAVE APPROACHED AND EVALUATED THE PROBLEM CORRECTLY

The process is simple and much like accounting for your finances

You track your income, expenditures They differ in their type and character For some you add or subtract one value For others you must calculate a percentage or
multiply a rate by a number of hours or items
then add and subtract the income and expenditure to find the change in storage in your account

OFTEN WATER BUDGETS ARE PREPARED FOR A TOPOGRAPHIC BASIN An area Surrounded by a Topographic Divide

COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
STORAGE

+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE

Usually we measure

"rain" depth over a period of time
Generally a day or year, but
this time, 340 sec
... see next for close up

"rain" depth over area
depth = measured - "rim of false bottom"
depth $=1.9 \mathrm{~cm}$

- 1.0 cm
$=0.90 \mathrm{~cm}$
Volume $=$ Area * Depth
Volume $=0.054 \mathrm{~m}^{2} * 0.90 \mathrm{~cm} * 1 \mathrm{~m}=\sim 0.00049 \mathrm{~m}^{3}$
100 cm
$5.4 \times 10^{-2} \mathrm{~m}^{2 *} 9.0 \times 10^{-3} \mathrm{~m}=4.9 \times 10^{-4} \mathrm{~m}^{3} \quad \sim 500 \mathrm{ml}$

to check for homogeneity:
compute ratio of values at stations at same times
compare - a break in constant ratio indicates a change
if only 1 year it is an error
otherwise, adjust early data to match later data
either multiply or divide early values at the station by the new ratio depending on whether the stationary station is in the denominator or the numerator of the ratio (see example)

HOMOGENEITY CORRECTION EXAMPLE:

YR A B A:B B:A

1	11	22

$2 \quad 10 \quad 21$
$3 \quad 12 \quad 23$
$4 \quad 6 \quad 23$
$5 \quad 4 \quad 20$
$6 \quad 5 \quad 21$
to check for homogeneity:
compute ratio of values at stations at same times
compare - a break in constant ratio indicates a change
if only 1 year it is an error
otherwise, adjust early data to match later data
either multiply or divide early values at the stationary station by the new ratio depending on whether the stationary station is in the denominator or the numerator of the ratio (see example)

HOMOGENEITY CORRECTION EXAMPLE:

YR	A	B	A:B	B:A
1	11	22	.50	2.00
2	10	21	.48	2.08
3	12	23	.52	1.92
4	6	23	.26	3.85
5	4	20	.20	5.00
6	5	21	.24	4.17

to check for homogeneity:
compute ratio of values at stations at same times compare - a break in constant ratio indicates a change
if only 1 year it is an error
otherwise, adjust early data to match later data either multiply or divide early values at the stationary station by the new ratio depending on whether the stationary station is in the denominator or the numerator of the ratio (see example)

HOMOGENEITY CORRECTION EXAMPLE:

YR	A	B	A:B	B:A	Corrected
1	11	22	.50	2.00	$5.06 \sim 5$
2	10	21	.48	2.08	$4.83 \sim 5$
3	12	23	.52	1.92	$5.29 \sim 5$
4	6	23	.26	3.85	6
5	4	20	.20	5.00	4
6	5	21	.24	4.17	5

FOR A:B B x $0.23=$ CORRECT A VALUE FOR 1,2,3 FOR B:A B I 4.3 = CORRECT A VALUE FOR 1,2,3

Todata are missing, the most likely value is:

where: $n=$ number of stations near station x which has the missing value $P_{x}=$ missing value of precipitation @ station of interest " x " for given year
$A_{x}=$ average annual preciptation at station of interest " x "
$\mathbf{P}_{\#}=$ precipitation at \mathbf{n} nearby stations identified by \# for given year
$\mathrm{A}_{\#}=$ average annual precipitation at each of \mathbf{n} stations identified by \#

TAKE 5 MINUTES
homogeneity_missing.xls, sheets = "homogeneity" and "missing" http://inside.mines.edu/~epoeterl_GW/02Budget1/BudgetPrecipEvap.htm

ONCE YOU ARE CONFIDENT IN THE DATA COMPUTE EUD (EFFECTIVE UNIFORM DEPTH)

ARITHMETIC AVERAGE

Unweighted Average of All Point Values
THIESSEN WEIGHTING weighted by fraction of area closest to each point
Connect Each Station with Straight Line
Draw Perpendicular Bisectors to Each Line
3 Bisectors Meet at a Point
Yields Polygon Everywhere Closer to That Point
Express the Polygon Areas as \% of Total Area
Avg Precipitation = Sum of (\mathbf{P} @ Each Station X \%Area)
ISOHYETAL WEIGHTING weighted by contoured area representing each point
Contour Lines (Isohyets) of Equal Precipitation
Draw to Conform to Other Features
Measure Area of Polygon Between Isohyets
Express the Polygon Areas as \% of Total Area
Avg Precipitation = Sum of (avg P of the 2 contours X \%Area)

ESTIMATE VOLUME OF PRECIPITATION IN TURKEY CREEK BASIN

What is the depth of water that falls on Turkey Creek Basin in a year?
Surf the web? NOAA? USGS? Denver Airport? CoCoRAHS?

> What will you trust?
> How will you deal with the uncertainty?
> Reliability of Data - Longevity of Record - Effort Required

How critical is the question? How accurate must the estimate be?

CoCoRaHs

PRISM is another source of precipitation estimates:
http://www.prism.oregonstate.edu/
"Internet Map Server" link under quicklinks
Conifer is 39.521 N . The longitude is -105.304 W
"TimeSeries" returns a table by month
"Normals" returns averages 1971-2000
Morrison is 39.666 N . The longitude is -105.206 W
"Normals" for precipitation in inches:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Conifer	0.83	0.92	2.35	2.98	3.23	2.07	2.67	2.8	1.53	1.41	1.44	1.01	23.23
Morrison	0.79	0.7	2.13	2.4	2.63	1.88	1.73	2.11	1.32	1.02	1.14	0.96	18.81

Alternatively grids of spatial data representing specified time periods can be downloaded

Volume of Precipitation on Turkey Creek Basin in a year? Use $\mathbf{2 0}$ incheslyr for the average to facilitate moving along in class

Area of Turkey Creek Basin? $=47.2 \mathrm{mi}^{2}$
Take a few minutes to estimate the volume input to the Basin via precipitation (work together)

```
COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
    50000 AF
        500 ml
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```


Do we see $70 \mathrm{ft}^{3}$ (cubic feet per second cfs) flowing at the stream gage? sec

WE WILL ESTIMATE SURFACE WATER OUTFLOW DURING OUR NEXT CLASS, BUT CLEARLY IT IS << 70CFS, HOWEVER STREAMFLOW IS NOT THE ONLY, NOR THE LARGEST OUTFLOW

```
COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
    50000 AF
        500 ml
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```

TCB
PAN

To Estimate EVAPORATION AND EVAPOTRANSPIRATION

FROM METEOROLOGICAL DATA

First some basic concepts:
ABSOLUTE HUMIDITY - Grams of Water Per Cubic Meter of Air

SATURATION HUMIDITY - Max Moisture Content @ a Given Temp

RELATIVE HUMIDITY - Absolute Humid / Sat Humid at a Given Temp

EVAPORATION STOPS AT RELATIVE HUMID = 100\%

CONDENSATION OCCURS AT RELATIVE HUMID = 100\%

DEW POINT - TEMP AT WHICH CONDENSATION OCCURS WHEN A PACKET OF AIR IS COOLED

To Measure EVAPORATION
Shallow Pan
Monitor Volume
Pan Coefficient <1 Some data on EVAP \& PAN COEFFICIENTS are available in Water Atlases

TO ESTIMATE EVAPORATION IF NO DATA AVAILABLE:

Nomograph from US National Weather Service (Fetter Applied Hydrogeology)
need:
Mean Temp
Mean Dew Point Temp
Solar Radiation
Wind Movement

TABLES of INTEREST

IABLE 2.1. Saturation humidity of air (grams per cubic meter)

Temperature ${ }^{\circ} \mathrm{C}$	Hurnidity
-25	0.705
-20	1.074
-15	1.605
-10	2.358
-5	3.407
0	4.874
5	6.797
10	9.399
15	12.83
20	17.30
25	23.05
30	30.38

lavd, Ohio: CeV Pblishire Compmy. 1976.

TABLE 2.2. Class-A land pan coefficients for midwestern United States

January	0.62	July	0.76
February	0.72	August	0.75
March	0.77	September	0.73
April	0.77	October	0.69
May	0.78	November	0.63
June	0.77	December	0.58
Annual 0.75			

EVAPOTRANSPIRATION

TRANSPIRATION - Loss of Water From Plants
EVAPORATION - Loss of Water From Soil And Free Water Surfaces
EVAPOTRANSPIRATION ET
Total Water Loss, Free $\mathrm{H}_{2} \mathrm{O}$, Plant Transpiration And Soil Moisture Evaporation
POTENTIAL EVAPOTRANSPIRATION PET
Amt of Water Plants Can Transpire \& Air Can Carry Away If No Water Deficiency depends on: Temperature - Solar Radiation - Vegetation Type \& Maturity Wind Speed - Dew Point - Soil Texture And Permeability see Thornthwaite / Mather and many others

ACTUAL ET AET < Potential --- AET When Soil Doesn't Have All The Water Required
FIELD CAPACITY - Volume of Water Soil Holds after Gravitational Water has Drained
AET < PET When Soil below field capacity
WILTING POINT - Soil Is So Dry, Osmotic Pressure of Roots No Longer Exceeds Surface Tension of $\mathrm{H}_{2} \mathrm{O}$ in Soil (Osmotic Pressure < Surface Tension)

PHREATOPHYTES - Tap The Water Table

SAMPLE SOIL MOISTURE BUDGET

FIGURE 6.4 Soil-moisture budget for Bridgehampton, New York. The diagram is based o measured precipitation and computed potential and actual evapotranspiration. The Thorr thwaite method was used for evapotranspiration computations. Source: C. W. Fetter, Jr Bulletin, Geological Society of America 87 (1976): 401-6.

Suppose the budget was for the

 plastic pan for a 340 sec time period?So it is hot hot hot and windy and in that brief time We find a large water level decline over the area

Volume of Evapotranspiration in Turkey Creek Basin in a year? Hopefully when you researched the ET rate in TCB you would find the Jefferson County - Mountain Ground Water Resource Study Report http://inside.mines.edu/~epoeter/ GW/02Budget1/wri03-4034.pdf This is a big file \& only FYI not required because: Use 18 inches/yr for the average to facilitate moving along in class

Area of Turkey Creek Basin? $=47.2 \mathrm{mi}^{2}$
Take a few minutes to estimate the volume output to evapotranspiration

Are there other inputs?

```
COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
    50000 AF
        500 ml
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
45000 AF + 0
    0 + 160 ml
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```

TCB
PAN

