

A Water Budget can be calculated for any defined domain

some may be easier than others

INFLOW = OUTFLOW + CHANGE IN STORAGE

Here an INCREASE in storage is taken as a POSITIVE CHANGE

BALANCE CAN APPLY TO THE EARTH'S ENTIRE SPHERE,
OR TO ANY SUB-DOMAIN of the HYDROLOGIC SYSTEM
e.g.
Atmosphere
Ocean
Continent
Stream Segment
Lake
Even anthropogenic objects: Processing Tank or a Pool
Or Political Entities: Counties, States, Nations
COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE

to	check	for h	omogenei	ty:	
compute ratio	of valu	ues a	t stations a	at same times	
compare - a brea	ik in c	onsta	nt ratio in	dicates a char	nae
if c	only 1	vear i	it is an err	or	.90
othorwise	adiu	stoa	data to	match later de	ata
	, auju	St Cai	Iy uata to		
either multiply or a	vide e		alues at t	ne station by t	ne new ratio
depending	on wi	nethe	r the station	onary station i	s in the
denominato	r or th	e nun	nerator of	the ratio (see	example)
HOMOGE	ENEIT	Y COF	RECTION	EXAMPLE:	
YR	Α	В	A:B	B:A	
1	11	22			
2	10	21			
- 3	12	23			
5	6	20			
4	0	23			
5	4	20			
6	5	21			

*	to c compute ratio o compare - a break if or otherwise, either multiply or d the new ratio dep the denominato	heck of value of in co of in co of in co adjue adjue ivide of of f	for ho ues at onstai year it st earl early ing on the nu	stations a stations a nt ratio ind is an erro y data to values at whether to merator o	y: at same times dicates a change or match later data the stationary statio the stationary statio f the ratio (see exan	on by n is in nple)
	HOMOGE	NEIT	Y COR	RECTION	EXAMPLE:	
	YR	Α	В	A:B	B:A	
	1	11	22	.50	2.00	
	2	10	21	.48	2.08	
	3	12	23	.52	1.92	
	4	6	23	.26	3.85	
	5	4	20	.20	5.00	
	6	5	21	.24	4.17	

PRI	SM	is ar	othe	er so	ource	e of I	prec	ipita	tion	esti	mate	es:	
nttp)://W	ww.	prisr	n.or	egor	istat	e.ea	u/					
"Int "Tii "No	terne <i>Cor</i> meS orma <i>Mor</i> als"	et Ma nifer i eries Ils" re rrisor	ip Se is 39 " ret eturn n is 3 recip	erver .521 urns is av 9.66 bitatic	" link N. Ti a tal erag 6N. on in	t und he <i>la</i> ble b es 19 The inch	ler qı ongitu y mc 971-2 longi es:	uickli ude is onth 2000 itude	inks s -10) 9 is -1	95.30 105.2	94W 206W	I	
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Conifer	0.83	0.92	2.35	2.98	3.23	2.07	2.67	2.8	1.53	1.41	1.44	1.01	23.23
Morrison	0.79	0.7	2.13	2.4	2.63	1.88	1.73	2.11	1.32	1.02	1.14	0.96	18.81
A	ltern	ative	ely gr time	ids c e pei	of spa riods	atial can	data be d	repr Iown	eser load	nting ed	spec	cified	

	COMPONENTS OF A BASIN WATER BUDGET
	INFLOW = OUTFLOW + CHANGE IN STORAGE
TCB PAN	IN'S PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER = 50000 AF 500 ml
	OUT'S ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
	STORAGE + INCREASE IN SW STORAGE + INCREASE IN GW STORAGE

To Estimate EVAPORATION AND EVAPOTRANSPIRATION

FROM METEOROLOGICAL DATA

First some basic concepts:

ABSOLUTE HUMIDITY - Grams of Water Per Cubic Meter of Air

SATURATION HUMIDITY - Max Moisture Content @ a Given Temp

RELATIVE HUMIDITY - Absolute Humid / Sat Humid at a Given Temp

EVAPORATION STOPS AT RELATIVE HUMID = 100%

CONDENSATION OCCURS AT RELATIVE HUMID = 100%

DEW POINT - TEMP AT WHICH CONDENSATION OCCURS WHEN A PACKET OF AIR IS COOLED

To Measure EVAPORATION

Shallow Pan Monitor Volume Pan Coefficient < 1 Some data on EVAP & PAN COEFFICIENTS are available in Water Atlases

TO ESTIMATE EVAPORATION IF NO DATA AVAILABLE:

Nomograph from US National Weather Service (Fetter Applied Hydrogeology) need: Mean Temp Mean Dew Point Temp Solar Radiation Wind Movement

percentage of the second se		any or an Quants	per coole in	ever/
Temperatur	e ° C	Humidity		
-25		0.705		
-20		1.074 -		
-15		1.605		
-10		2.358		
- 5		3,407		
0		4.874		
1 5		6.797		
10		9.399		
15		12.83		
20		17.30		
25		33.05		
		23.05		
30 SOURCE: Handbor land, Ohio: CRC Pu	k of Chemistry	23.05 30.38 and Physics (Cleve- ty, 1976).		
30 SOURCE: Hardbor land, Ohio: CRC Pu TABLE 2.2. Cli	ok of Chemistry blishing Compan ass-A land pa	23.05 30.38 and Physics (Cleve- y, 1976).	midwestern	United States
30 SOURCE: Handboo land, Ohio: CRC Pul TABLE 2.2. Cli January	ok of Chemistry blishing Compar ass-A land pa 0.62	23.05 30.38 and Physics (Cleve- ty, 1976).	midwestern	United States
30 SOURCE: Handboo Iand, Ohio: CRC Pu TABLE 2.2. Cl. January February	ok of Chemistry Dishing Compar ass-A land pa 0.62 0.72	30.38 and Physics (Cleve- y, 1976). July August	midwestern 0.76 0.75	United States
30 SOURCE: Handboo land, Ohio: CRC Pu TABLE 2.2. Cli January February March	k of Chemistry blishing Compar ass-A land pa 0.62 0.72 0.77	30.38 and Physics (Cleve- y, 1976). July August September	midwestern 0.76 0.75 0.73	United States
30 SOURCE: Handbox land, Ohio: ORC Pu TABLE 2.2. Cli January February March April	k of Chemistry blishing Compar ass-A land pa 0.62 0.72 0.77 0.77	July July July August September October	0.76 0.75 0.73 0.69	United States
30 SOURCE: Handboo land, Ohio: CRC Pu TABLE 2.2. Cli January February March April May	ass-A land pa 0.62 0.72 0.77 0.78	July July August September November	0.76 0.75 0.73 0.69 0.63	United States
30 SOURCE: Handboo Iand, Ohio: CRC Pul TABLE 2.2. Cl. January February March April May June	ok of Chemistry blishing Compar ass-A land pa 0.62 0.72 0.77 0.77 0.77 0.77 0.77	30.38 and Physics (Cleve- y, 1976). July August September October November December	midwestern 0.76 0.75 0.73 0.69 0.63 0.58	United States

Volume of Evapotranspiration in Turkey Creek Basin in a year? Hopefully when you researched the ET rate in TCB you would find the Jefferson County – Mountain Ground Water Resource Study Report http://inside.mines.edu/~epoeter/ GW/02Budget1/wri03-4034.pdf This is a big file & only FYI not required because: Use 18 inches/yr for the average to facilitate moving along in class

Area of Turkey Creek Basin? = 47.2 mi²

Take a few minutes to estimate the volume output to evapotranspiration

