Are there other inputs?

```
COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
    50000 AF
        500 ml
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
45000 AF + 0
    0 + 160 ml
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```

TCB

No potential for surface water inflow here

Are there other inputs?

```
COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
    50000 AF + + 0
    OUT'S
    ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
45000 AF + 0
    0 + 160 ml
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```


Ground Water Inflow

DRAINAGE BASIN - Area Surrounded by a Topographic Divide May Differ from Ground Water Basin

GROUNDWATER BASIN - Surrounded by Phreatic (Water Table) Divide Water Table - Surface below which all cracks and pores in the subsurface are full of water (saturated zone) Phreatic - Zone at and below the Water Table

cross section from previous diagram

No potential for ground water inflow here

Ground Water Inflow to Turkey Creek Basin?

What do the dots and contours represent?
No significant ground water inflow across the boundaries
How do we see that here?

Are there other inputs?

COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =

OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION $45000 \mathrm{AF}+0$
TCB
0 + 160 ml
STORAGE

+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE

Is water imported to Turkey Creek Basin?

Community water systems have

 their supply within the basin(e.g. wells near Tiny Town for Indian Hills)

Likely insignificant amounts of bottled water

WATER BUDGETS continued ...

```
    COMPONENTS OF A BASIN WATER BUDGET
    INFLOW = OUTFLOW + CHANGE IN STORAGE
    IN'S
    PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
    OUT'S
    ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
    45000 AF + 0
    0 + 160 ml
    STORAGE
    + INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```

TCB
PAN
"stream flow out of basin"

Collected "stream discharge water"

"stream flow" water level decline over area
Volume $=$ Area * Decline
Volume $=0.054 \mathrm{~m}^{2} * 0.0060 \mathrm{~m}=\sim 0.00032 \mathrm{~m}^{3}$ direct volume measurement was $0.00034 \mathrm{~m}^{3}$

Water level decline = $2.3 \mathrm{~cm}-1.7 \mathrm{~cm}=0.60 \mathrm{~cm}=0.0060 \mathrm{~m}$

Pre-outflow depth $=2.3 \mathrm{~cm}$

WATER BUDGETS continued ...

```
    COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
```

```
\begin{tabular}{rccccc}
50000 AF & + & 0 & + & 0 & + \\
500 ml & + & 0 & + & 0 & + \\
500
\end{tabular}
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
45000 AF + 0 + 4000AF
    0 + 160 ml + 340ml
```

STORAGE

+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE

WATER BUDGETS continued ...

COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
$\begin{array}{rlllll}50000 \mathrm{AF} & + & 0 & + & 0 & + \\ 500 \mathrm{ml} & + & 0 & + & 0 & + \\ 500 \mathrm{ml}\end{array}$
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
$45000 \mathrm{AF}+0+4000 \mathrm{AF}+80 \mathrm{AF}$
PAN $0+160 \mathrm{ml}+340 \mathrm{ml}+0$
STORAGE

+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE

Is water exported from Turkey Creek Basin?

Likely insignificant amounts of bottled water
No water is exported from our kitchen pan either

WATER BUDGETS continued ...

```
COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
    50000 AF + 0 + 0 + 0
        500 ml + 0 + 0 + 300 ml
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
45000 AF + 0 + 4000 AF + 80 AF + 0
    0 + 160 ml + 340ml + 0 + 0
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```


"pumped" volume

Generally measured as a volumetric rate $=$ e.g. 0.38 ml * $340 \mathrm{sec}=\sim 130 \mathrm{ml} \sim 0.00013 \mathrm{~m}^{3}$ sec
"pumped" water level decline over area
Compare volume and decline:
Volume = Area * Decline
Volume $=0.054 \mathrm{~m}^{2} * 0.0020 \mathrm{~m}=\sim 0.00011 \mathrm{~m}^{3}$
$5.4 \times 10^{-2} \mathrm{~m}^{2}$ * $2.0 \times 10^{-3} \mathrm{~m}=1.1 \times 10^{-4} \mathrm{~m}^{3}$ direct volume measurement was $0.00013 \mathrm{~m}^{3}$

Pre-pumping level $=1.9 \mathrm{~cm}$ Post-pumping level $=1.7 \mathrm{~cm}$

A few years ago we completed a Consumptive Use Study

Cross Section of Study Site

Conceptual Model of Study Site

Effluent to ISDS

(Individual Sewage Disposal System)

\% Returned from the Home

\% Pumped that flows to the ISDS =

$$
\frac{\text { Volume Pumped - Volume Dosed }}{\text { Volume Pumped }}
$$

AVERAGE RETURNED ~ 85%

Owner 1 83.9\% (loss of 33.3 gal/day)
Owner 288.0 \% (loss of 43.6 gal/day)

How Much is Lost to ET?
 Need to Know Actual Evapotranspiration

- Continuous POTENTIAL ET from climate data
- Net Radiation

Soil Heat Flux
Temperature
Relative Humidity
Wind Speed
Soil Moisture

Actual Evapotranspiration

PRELIMINARY CONCLUSION AT THIS SITE

- Residential loss (~15 \%)
- Loss to ET(~1 \%)
- OVERALL 84\% +/-4 \%
of pumped water returns to subsurface

WATER BUDGETS continued ...

```
    COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE
IN'S
PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER =
TCB 50000 AF + 0 + 0 + 0 = 50000 AF
PAN 500 ml + 0 + 0 + 300 ml = 800 ml
OUT'S
ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION
45000 AF + 0 + 4000 AF + 80 AF + 0 + 200AF = 49280 AF
    0 + 160 ml + 340ml + 0 + 0 + 130ml = 640 ml
STORAGE
+ INCREASE IN SW STORAGE + INCREASE IN GW STORAGE
```


We started with a water level of 0.9 cm (considering the false bottom of the tank) and ended with 1.4 cm , so:

Change in Storage $=$ water level change * area

$$
\begin{aligned}
& =(1.4 \mathrm{~cm}-0.9 \mathrm{~cm}) * \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} * 0.054 \mathrm{~m}^{2} \\
& =0.00027 \mathrm{~m}^{3}=270 \mathrm{ml}
\end{aligned}
$$

Note: Increase in storage is taken a positive change

WATER BUDGETS continued ...

There is no ground water in the pan
So Increase in Ground Water Storage $\mathbf{= 0} \mathbf{~ m l}$

Change in Ground Water Storage Volume?

COMPONENTS OF A BASIN WATER BUDGET
INFLOW = OUTFLOW + CHANGE IN STORAGE

IN'S

PRECIPITATION + SW INFLOW + GW INFLOW + IMPORTED WATER $=$							
50000 AF	+	0	+	0	+	0	$=50000 \mathrm{AF}$
500 ml	+	0	+	0	+	300 ml	$=800 \mathrm{ml}$

OUT'S

ET + EVAPORATION + SW OUT + GW OUT + EXPORT + CONSUMPTION

$$
45000 \mathrm{AF}+0+4000 \mathrm{AF}+80 \mathrm{AF}+0+200 \mathrm{AF}=49280 \mathrm{AF}
$$

$0+160 \mathrm{ml}+340 \mathrm{ml}+0+0+130 \mathrm{ml}=630 \mathrm{ml}$
STORAGE

+ INCR SW STORAGE + INCR GW STORAGE (OUT+INCR STOR)

Consider a BUDGET for a STREAM SEGMENT

Conceptually isolate the system and consider the boundaries

Join with a fellow student
Pull a "Domain" from the hat
Talk for a few minutes to Determine the budget items for the Domain for One Year
Take a few minutes to:
Quantify Each by Assigning Numerical Values that you feel are Reasonable USE: Precipitation in/year Area $\mathrm{ft}^{2} \mathrm{OR} \mathrm{mi}^{2} \quad$ Flux $\mathrm{ft}^{3} / \mathrm{sec}$ OR AcreFeet/year Choose your own units for any parameter that cannot be defined by these units

Take a few minutes to calculate the budget

Questions?
Observations?

