

In a isothermal system of uniform electrochemical composition:

Flow Proceeds from High to Low Hydraulic Head i.e. from locations of high to low mechanical energy

Total mechanical energy depends on Fluid Pressure, Gravity, and Motion

$$E_{total} = P + \rho g z + \frac{1}{2} \rho v^2$$

Divide by density to get energy per unit mass

$$E_{unit\ mass} = \frac{P}{\rho} + gz + \frac{v^2}{2}$$

Aquifer

permits appreciable amounts of groundwater to pass under normal field conditions (passes economic quantities of water)

Aquitard

Low hydraulic conductivity does not pass significant amounts of water but may store water

K ---- HYDRAULIC CONDUCTIVITY when the fluid is water

The range of values spans many orders of magnitude:

Gravel ~1x10²cm/sec Unfractured Crystalline Rock ~ 1x10⁻¹¹cm/sec

k --- PERMEABILITY

the capacity of a porous medium to transmit fluid

MEASUREMENT OF K

FIELD TESTS - AQUIFER TESTS

LABORATORY - PERMEAMETERS problems not representative large rock mass disturbed samples orientation of sample

often knowing K to an order of magnitude is satisfactory and may be all that is obtainable within temporal and financial constraints

k
intrinsic permeability

$$k = \frac{K\mu}{\rho g} : \frac{\frac{L}{T} \frac{M}{LT}}{\frac{M}{L^{3}} \frac{L}{T^{2}}} : L^{2}$$

$$\mu = dynamic \ viscosity : \frac{M}{LT}$$

$$\rho = density : \frac{M}{L^{3}}$$

$$g = acceleration \ of \ gravity : \frac{L}{T^{2}}$$

