MEASURING HEAD IN THE FIELD Piezometer
Pressure Meter
Standpipe Piezometers in an Unconfined Aquifer short screened intervals reflect vertical head distribution

To get the flow velocity in the field the section must be oriented in the direction of flow

MEASURING HEAD IN THE FIELD
Standpipe Piezometers in a Confined aquifer Slotted over entire length

To get the flow velocity in the field the section must be oriented in the direction of flow

if you have many piezometers installed over an area, you can map the groundwater potential
in a material of isotropic K, flow lines are perpendicular to equipotential lines and a flow net can be draw (more about this later)
you need at least three points to determine the gradient Calculate a gradient for the following

Standpipe Piezometers in Multiple Aquifers

Beware evaluation of heads in multiple aquifer systems

Distribution of Transmissivity ($\mathrm{ft}^{2} / \mathrm{day}$)

Distribution of Unconfined / Confined

Fiven what you now know about the Denver Basin, what do you expect the flow patterns and head distribution would be?
Sketch on the maps above or draw maps/sections on scratch paper

Consider a Ground Water System in Southern California

Let's work on some conceptualizations of systems to which we can apply Darcy's Law to estimate flow

Estimate the flux through Colton Narrows in the 1940s

Average $\mathrm{K} \sim 5 \times 10^{-6} \mathrm{ft} / \mathrm{sec}$
Sediment thickness
~1400 ft

What is the rate of leakage from the pond?

WATER LEVELS ARE NOT ALWAYS WHAT THEY SEEM

WATER LEVELS ARE NOT ALWAYS WHAT THEY SEEM

Air entrapment during recharge Unconfined Aquifer Phenomena

Pw=waterP Pa=atmosP Pva=void-airP

WATER LEVELS ARE NOT ALWAYS WHAT THEY SEEM
Barometric Pressure Changes
Confined Aquifer Phenomena

Equilibrium
Confined Pw $=\mathrm{Pa}$

WATER LEVELS ARE NOT ALWAYS WHAT THEY SEEM

Barometric Pressure Changes

Correct for this effect in well data
Barometric Efficiency - head change/pressure change

$$
\mathbf{B}=\frac{\gamma \mathbf{d h}}{\mathbf{d P}_{\mathrm{a}}}
$$

Typically on the order of 0.2-0.75

WATER LEVELS ARE NOT ALWAYS WHAT THEY SEEM
Wind

WATER LEVELS ARE NOT ALWAYS WHAT THEY SEEM

External Loading (Trains Blasts Earthquakes Tides)

WATER LEVELS ARE NOT ALWAYS WHAT THEY SEEM

Fresh - Salt Water Interface
Ghyben-Herzberg - Unconfined-hydrostatic

Fresh - Salt Water Interface

Ghyben-Herzberg - Unconfined-hydrostatic

Fresh - Salt Water Interface

Hubbert - allowed for outflow; located interface by constructing a flownet

