

HETEROGENEITY - describes spatial variation

ANISOTROPY - describes directional variation

HOMOGENEOUS - uniform throughout (K independent of position)

ISOTROPIC - properties do not vary with direction

By Darcy's Law:

$$V = \frac{K_{1}\Delta h_{1}}{d_{1}} = \frac{K_{2}\Delta h_{2}}{d_{2}} = \dots \frac{K_{n}\Delta h_{n}}{d_{n}} = \frac{K_{eq}\Delta h}{d_{T}}$$
Rearrange: Expand head difference term:

$$K_{eq} = \frac{Vd_{T}}{\Delta h} = \frac{Vd_{T}}{\Delta h_{1} + \Delta h_{2} + \dots + \Delta h_{n}} = \frac{Vd_{T}}{\frac{Vd_{1}}{K_{1}} + \frac{Vd_{2}}{K_{2}} + \dots + \frac{Vd_{n}}{K_{n}}}$$

$$K_{eq} = \frac{d_{T}}{\sum \frac{d_{i}}{K_{i}}}$$
Equivalent K for flow
perpendicular to layers

$$d_{T} = \frac{\Delta h_{1}}{\Delta h} = \frac{\Delta h_{1} - K_{1}}{\Delta h_{2} - K_{2}}$$

$$V_{Darcy} = -K \left(\frac{h_2 - h_1}{l}\right)$$

K is equivalent K over the distance I
I is the flow path distance between h2 and h1
gradient is in the direction of flow
when using velocity to calculate volumetric
discharge, area is perpendicular to the gradient

To calculate
$$\Delta h_{zi}$$
:

$$V = \frac{K_1 \Delta h_1}{d_1} = \frac{K_2 \Delta h_2}{d_2} = \dots \frac{K_n \Delta h_n}{d_n} = \frac{K_{eq} \Delta h}{d_T} = \frac{\Delta h}{\frac{\sum \frac{d_i}{K_i}}{d_T}} = \frac{\Delta h}{\sum \frac{d_i}{K_i}}$$
so $\frac{K_i \Delta h_i}{d_i} = \frac{\Delta h}{\sum \frac{d_i}{K_i}}$

$$\Delta h_i = \frac{\Delta h d_i}{K_i \sum \frac{d_i}{K_i}}$$

$$d_T = \frac{\Delta h_1}{\frac{\Delta h_1}{\frac{d_1}$$

