K VALUES VARY WITHIN SPACE AND WITH DIRECTION

HETEROGENEITY - describes spatial variation
ANISOTROPY - describes directional variation HOMOGENEOUS - uniform throughout (K independent of position)

ISOTROPIC - properties do not vary with direction

DISCONTINUOUS HETEROGENEITY

e.g. across a fault

TRENDING HETEROGENEITY

 variation in sedimentation patterns

RANDOM HETEROGENEITY

small scale variation with a structure that isn't easily tied to geologic process, although we know it is its basis we can describe with geostatistics (spatial statistics)

AVERAGING OPTIONS

Weighted Arithmetic

Geometric
$\left.\sqrt[N]{K_{1} K_{2} \ldots K_{N}} \operatorname{or} 10^{\left(\frac{1}{\mathrm{~N}}\left(\log K_{1}+\log K_{2}+\ldots+\log K_{N}\right)\right)} \operatorname{or} 10^{\left(\frac{1}{\mathrm{~N}} \log \left(K_{1} K_{2} \ldots K_{N}\right)\right.}\right)$

Above assumes each K represents an equal volume, each could be weighted by the volume represented
Weighted Harmonic

$$
\frac{\sum d_{i}}{\sum \frac{d_{i}}{K_{i}}}
$$

ANISOTROPY

CONSIDER K IN THE PRINCIPLE DIRECTIONS X, Y, Z

$$
\text { ISOTROPIC - } \mathrm{K}_{\mathrm{x}}=\mathrm{K}_{\mathrm{Y}}=\mathrm{K}_{\mathrm{Z}}
$$

TRANSVERSELY ISOTROPIC $-\mathrm{K}_{\mathrm{X}}=\mathrm{K}_{\mathrm{Y}}$ not $=\mathrm{K}_{\mathrm{z}}$
CONSIDER THE RELATIONS OF K IN A VERTICAL CROSS SECTION

THERE IS A RELATION BETWEEN LAYERED HETEROGENEITY \& ANISOTROPY an equivalent K can be calculated to simplify complex systems thus making it possible to apply Darcy's Law

By Darcy's Law:

$$
V=\frac{K_{1} \Delta h_{1}}{d_{1}}=\frac{K_{2} \Delta h_{2}}{d_{2}}=\ldots \frac{K_{n} \Delta h_{\mathrm{n}}}{d_{n}}=\frac{K_{\mathrm{eq}} \Delta h}{d_{T}}
$$

Rearrange:
Expand head difference term:
$\mathbf{K}_{\mathrm{eq}}=\frac{\mathbf{V d}_{\mathrm{T}}}{\Delta \mathrm{h}}=\frac{\mathbf{V d}_{\mathrm{T}}}{\Delta \mathbf{h}_{1}+\Delta \mathbf{h}_{2}+\ldots+\Delta \mathbf{h}_{\mathrm{n}}}=\frac{\text { head differences: }}{\frac{\mathbf{V d}_{\mathrm{T}}}{\mathbf{V d}_{1}}+\frac{\mathbf{V d}_{2}}{\mathbf{K}_{2}}+\ldots+\frac{\mathbf{V d}_{\mathrm{n}}}{\mathbf{K}_{\mathrm{n}}}}$ $K_{e q}=\frac{\mathbf{d}_{\mathrm{T}}}{\sum \frac{\mathbf{d}_{i}}{\mathbf{K}_{i}}} \quad \begin{aligned} & \text { Equivalent } \mathrm{K} \text { for flow } \\ & \text { perpendicular to layers }\end{aligned}$

By Darcy's Law:

$$
\begin{aligned}
& Q_{1}=K_{1} \frac{\Delta h}{L} d_{1}(1) \quad Q_{2}=K_{2} \\
& Q_{3}=K_{3} \frac{\Delta h}{L} d_{3}(1) Q_{4}=K_{4}
\end{aligned}
$$

Total flow is their sum:
$Q_{T}=K_{1} d_{1} \frac{\Delta h}{L}+K_{2} d_{2} \frac{\Delta h}{L}+K_{3} d_{3} \frac{\Delta h}{L}+K_{4} d_{4} \frac{\Delta h}{L}$

$$
V=\frac{Q}{A}=\frac{Q}{d_{T}(1)} \quad 1 \text { for unit width into the paper }
$$

Substitute Eqtn for \mathbf{Q} from previous slide Simplify with a summation
 gradient to get K :

Cancel the gradients:

$K_{e q}=\frac{V}{i}=\frac{V}{\Delta h}=\frac{\sum_{i=1}^{n} K_{i} d_{i}}{d_{T}}$

Calculate Flow and Heads between boundaries

Calculate Flow and Heads between boundaries

Above assumes each K represents an equal volume, each could be weighted by the volume represented e.g. each K (or for the middle option $\log (K)$) would be multiplied by $d_{i} / d_{\text {min }}$ \& then $N=$ sum of $d_{i} / d_{\text {min }}$

Weighted Harmonic

$$
\frac{\sum d_{i}}{\sum \frac{d_{i}}{\mathbf{K}_{i}}}
$$

$$
V_{\text {Darcy }}=-K\left(\frac{h_{2}-h_{1}}{l}\right)
$$

K is equivalent K over the distance I

I is the flow path distance between h2 and h1 gradient is in the direction of flow
when using velocity to calculate volumetric discharge, area is perpendicular to the gradient

Calculate a resultant velocity at the center
now the gradient is different at top and bottom and from side to side $K x=1 \times 10^{-5} \mathrm{~m} / \mathrm{s} \mathrm{Ky}=1 \times 10^{-6} \mathrm{~m} / \mathrm{s}$

Consider a Gradient Askew to Layering:

The overall velocity is actually composed of individual velocity vectors in each layer

To calculate $\Delta h_{z i}$:
$V=\frac{K_{1} \Delta h_{1}}{d_{1}}=\frac{K_{2} \Delta h_{2}}{d_{2}}=\ldots \frac{K_{n} \Delta h_{n}}{d_{n}}=\frac{K_{e q} \Delta h}{d_{T}}=\frac{\frac{d_{T}}{\sum \frac{d_{i}}{K_{i}}} \Delta h}{d_{T}}=\frac{\Delta h}{\sum \frac{d_{i}}{K_{i}}}$
so $\frac{K_{i} \Delta h_{i}}{d_{i}}=\frac{\Delta h}{\sum \frac{d_{i}}{K_{i}}}$
$\Delta h_{i}=\frac{\Delta h d_{i}}{K_{i} \sum \frac{d_{i}}{K_{i}}}$

Consider a Gradient Askew to Layering:

The overall velocity is actually composed of individual velocity vectors in each layer $\mathrm{K}_{4}=\mathrm{K}_{1}<\mathrm{K}_{3} \ll \mathrm{~K}_{2}$

Refraction at Layer Interfaces

$$
\frac{\mathbf{K}_{1}}{\mathbf{K}_{2}}=\frac{\tan \theta_{1}}{\tan \theta_{2}}
$$

