Up to now we have been talking about steady state situations

If we change a boundary condition and wait, the system changes gradually from the initial steady condition to a new steady state condition

The rate at which that change occurs is controlled by the storage properties of the porous medium and its condition with respect to confinement

Unconfined / Confined aquifer

Unconfined:

Head in the aquifer is below the "top" of the aquifer Head decline results in drainage from pores Releasing substantial volume of water when head declines

Confined:

Head in the aquifer is above the "top" of the aquifer
Head decline does not drain pores
Rather it reduces the pressure in the pores
Releasing a relatively small volume when head declines

This an unconfined aquifer.

Heads are within the aquifer.

This is a confined aquifer.
Heads

are

 above the top of the aquifer.

Where does the water come from?

STORATIVITY - S : unitless Also called Storage Coefficient VOLUME OF WATER AQUIFER RELEASES

PER UNIT SURFACE AREA
PER UNIT CHANGE IN HEAD
NORMAL TO THE SURFACE

SPECIFIC STORAGE - s or S_{s} : L^{-1}
VOLUME OF WATER AQUIFER RELEASES
PER UNIT VOLUME
PER UNIT CHANGE IN HEAD NORMAL TO THE SURFACE

For aquifer thickness $=\mathbf{b}$

$$
S=S_{s} b \quad S_{s}=S / b
$$

Define:
 ϕ - POROSITY
 $\alpha-$ VERTICAL COMPRESSIBILITY OF AQUIFER SKELETON β - COMPRESSIBILITY OF WATER b - THICKNESS

Compressibility - relative volume change in response to a pressure change Units: (1/pressure units) Pascals ${ }^{-1}$ or $\mathrm{ft}^{2} / \mathrm{lb}$

IF WE
IGNORE LATERAL COMPRESSIBILITY IGNORE COMPRESSIBILITY OF SOLID

And EXPLORE PARTS OF STORAGE TERM:

IF AQUIFER IS RIGID - water given up from a unit volume for a unit drop in head would be entirely due to expansion of water

$$
\phi \mathrm{b} \beta \gamma \quad \text { units cancel: }\left[\begin{array}{llll}
\mathbf{L}^{3} \mathrm{~L}^{-3} & \mathbf{L} & \mathbf{L}^{2} \mathbf{M}^{-1} & \mathbf{M} \mathrm{~L}^{-3}
\end{array}\right]
$$

IF WATER IS RIGID - water given up from a unit volume for a unit drop in head would be entirely due to compression of aquifer skeleton

$$
\mathrm{b} \alpha \gamma \quad \text { units cancel: }\left[\begin{array}{lll}
\mathrm{L} & \mathbf{L}^{2} \mathbf{M}^{-1} & \mathrm{M} \mathrm{~L}^{-3}
\end{array}\right]
$$

STORAGE COEFFICIENT (STORATIVITY) = sum of those contributions:

$$
\mathrm{s}=\gamma \mathrm{b}(\phi \beta+\alpha) \quad \text { [unitless] }
$$

SPECIFIC STORAGE is STORAGE COEFFICIENT per unit thickness

$$
S_{s}=S / b \quad\left[L^{-1}\right]
$$

VOLUME of water released for a head change Δh over an area A : $\mathrm{S} \Delta \mathrm{h} \mathrm{A} \quad\left[\mathrm{LL}^{2}\right]: \quad\left[\mathrm{L}^{3}\right]$

RECALL STORAGE IN AN UNCONFINED AQUIFER WE CAN'T RECOVER ALL THE WATER FROM THE PORES, SO ONLY A PORTION IS AVAILABLE

SPECIFIC YIELD - \% OF TOTAL VOLUME THAT CAN BE DRAINED BY GRAVITY

SPECIFIC RETENTION - \% OF TOTAL VOLUME HELD AGAINST GRAVITY

BY DEFINITION THEY SUM TO TOTAL POROSITY

$$
\phi=S Y+S R
$$

Water level decline in an Unconfined Aquifer water drains from pores which fill with air Volume Yielded $=\Delta \mathbf{h}_{\text {avg }}$ * SY * Area
(plan area of surface extending "into" the drawing) Some water is released when pressure decreases due to drainage of the overlying pores, so total

Volume $=\Delta \mathbf{h}_{\mathrm{avg}}$ * $\left(\mathrm{SY}+\mathrm{h}_{\mathrm{avg}} \mathrm{Ss}\right)$ * Area

Often SY is measured in the field and includes ($\mathrm{h}_{\mathrm{avg}} \mathrm{Ss}$)

Generally either the $\mathrm{S}_{\mathrm{s}} \mathrm{h}$ term is small and ignored, Or is "lumped" into SY
Volume Yielded $=\Delta h$ * (SY) * Area
But this can lead to significant error in, for example a clay where $\mathrm{S}_{\mathrm{s}} \mathrm{h}$ may be on the order of, or exceed, the reported value of SY
$\Delta h \uparrow \overbrace{\text { n }}^{\text {(}}$

SOME REPRESENTATIVE VALUES OF COMPRESSIBILITY

	Pa^{-1}	$\mathrm{ft}^{2} / \mathrm{lb}$	Typical Porosities
CLAY	$10^{-6}-10^{-8}$	$5 \times 10^{-5}-5 \times 10^{-7}$	$0.33-0.60$
SAND	$10^{-7}-10^{-9}$	$5 \times 10^{-6}-5 \times 10^{-8}$	$0.25-0.50$
GRAVEL	$10^{-8}-10^{-10}$	$5 \times 10^{-7}-5 \times 10^{-9}$	$0.25-0.50$
JOINTED ROCK	$10^{-8}-10^{-10}$	$5 \times 10^{-7}-5 \times 10^{-9}$	$<0.01-0.17$
SOUND ROCK	$10^{-8}-10^{-11}$	$5 \times 10^{-8}-5 \times 10^{-10}$	$<0.01-0.12$
WATER	4.4×10^{-10}	$2.1 .4 \times 10^{-8}$	1.00
	STORAGE COEFFICIENT:		
S = $\gamma \mathbf{b}(\phi \beta+\alpha)$			

What will the steady state head distribution look like after decreasing the head from 100 to 90 on the right side?

5000 ft
Aquifer 10 ft thick
Ss $=0.0001 \mathrm{ft}^{-1}$
$S=0.001$
$K=100 \mathrm{ft} / \mathrm{day}$

