USING TRANSIENT RESPONSE OF SYSTEMS TO PUMPING

Benefits/Disadvantages

-can estimate storativity values
-when estimating aquifer properties, we get results @ early time -easier to detect extraneous effects
-analysis is more complex

Assumptions

1. homogeneous, isotropic, infinite areal extent
2. pumping well fully penetrates and receives water from the entire thickness of the aquifer
3. Transmissivity is constant in space and time
4. well has infinitesimal diameter
5. water removed from storage is discharged instantaneously with decline in head

$$
s=h_{o}-h=\frac{Q}{4 \pi T} W(u) \quad u=\frac{r^{2} S}{4 T t} \quad \text { or } \quad \frac{r^{2}}{t}=\frac{4 T}{S} u
$$

$\mathrm{s}=$ drawdown [L]
$\mathrm{h}_{\mathrm{o}}=$ initial head @ r [L]
$h=$ head at r at time $t[L]$
$t=$ time since pumping began [T]
$r=$ distance from pumping well [L]
$\mathrm{Q}=$ discharge rate $\left[\mathrm{L}^{3} / \mathrm{T}\right]$
$\mathrm{T}=$ transmissivity $\left[\mathrm{L}^{2} / \mathrm{T}\right]$
S = Storativity []

$$
\begin{array}{|l|l|}
\hline W(u)=\int_{u}^{\infty} \frac{e^{-u}}{u} d u=\left[-0.5772-\ln u+u-\frac{u^{2}}{2 \cdot 2!}+\frac{u^{3}}{3 \cdot 3!}-\frac{u^{4}}{4 \cdot 4!}+\ldots . . .\right] \\
\hline
\end{array}
$$

u	$W(\mu)$	и	$W(n)$	u	$W(4)$	廿	$W(1)$
1×10^{-10}	22.45	7×10^{-8}	15.90	4×10^{-3}	9.55	1×10^{-2}	4.04
2	21.76	8	15.76	5	9.33	2	3.35
3	21.35	9	15.65	6	9.14	3	2.96
4	21.06	1×10^{-7}	15.54	7	899	4	2.68
5	20.84	2	14.85	8	886	5	2.47
6	20.66	3	14.44	9	8.74	6	2.30
7	20.50	4	14.15	1×10^{-4}	8.63	7	2.15
8	20.37	5	13.93	2	7.94	8	2.03
9	20.25	6	13.75	3	7.53	9	1.92
1×10^{-9}	20.15	7	13.60	4	7.25	$1 \times 10^{\prime \prime \prime}$	1.823
2	19.45	8	13.46	5	7.02	2	1.223
3	19.05	9	13.34	6	6.84	3	0.906
4	18.76	1×10^{-6}	13.24	7	6.69	4	0.702
5	18.54	2	12.55	8	6.55	5	0.560
6	18.35	3	12.14	9	6.44	6	0.454
7	18.20	4	11.85	圭 $\times 10^{-3}$	6.33	7	0.374
8	18.07	5	11.63	2	5.64	8	0.311
9	17.95	6	11.45	3	5.23	9	0.260
1×10^{-8}	17.84	7	11.29	4	4.95	1×10^{9}	0.219
2	17.15	8	11.16	5	4.73	2	0.049
3	16.74	9	11.04	6	4.54	3	0.013
4	16.46	1×10^{-5}	1094	7	4.39	4	0.004
5	16.23	2	10.24	8	4.26	5	0.001
6	16.05	3	9.84	9	4.14		

Predict Drawdown Using Theis Equation

Class picks: T S \quad T \quad t
Take 3 minutes to calculate: s
$S=h_{o}-h=\frac{Q}{4 \pi T} W(u) \quad u=\frac{r^{2} S}{4 T t}$
$W(u)=\int_{u}^{\infty} \frac{e^{-u}}{u} d u=\left[-0.5772-\ln u+u-\frac{u^{2}}{2 \cdot 2!}+\frac{u^{3}}{3 \cdot 3!}-\frac{u^{4}}{4 \cdot 4!}+\ldots \ldots\right]$
What value did you get for s?

Theis Formula cannot be solved directly for T and S
from observations of drawdown (why?)

$$
\begin{aligned}
& s=h_{o}-h=\frac{Q}{4 \pi T} W(u) \quad u=\frac{r^{2} S}{4 T t} \\
& W(u)=\int_{u}^{\infty} \frac{e^{-u}}{u} d u=\left[-0.5772-\ln u+u-\frac{u^{2}}{2 \cdot 2!}+\frac{u^{3}}{3 \cdot 3!}-\frac{u^{4}}{4 \cdot 4!}+\ldots \ldots .\right]
\end{aligned}
$$

Consequently, we use curve matching techniques
Type Curve is W(u) vs u
OR W(u) vs 1/u
Plot s vs $1 / t$ or s vs $r^{2 / t}$ for field data OR s vs t
Type curve \& field data must be plotted on same log-log paper
Field curve is overlaid on Type Curve
Axes must be kept parallel
Best match of curves is found
Pick any convenient point
read corresponding $W(u), u, s$ and r^{2} / t
Solve Theis Equation for T \& S

to match the $W(u)$ curve in this format, plot $\log s v s \log 1 / t$

log 1/time or sometimes for convenience $\log r^{2} / t$

An example test from Ohio	($r=200 \mathrm{ft}$)			
	Time Since Pumping Began, t		Drawdown in Observation Well, $h_{0}-h$	r^{2} / t
	Minutes	Days	Feet	Feet ${ }^{2} /$ Day
Pumping well discharges @ 500 GPM	0	0	0.00	∞
	1.0	6.96×10^{-4}	0.66	5.76×10^{7}
	1.5 2.0	1.02×10^{-3} 1.39×10^{-3}	0.87 0.99	3.84×10^{7} 2.88×10^{7}
	2.5	1.74×10^{-3}	1.11	2.30×10^{7}
	3.0	2.09×10^{-3}	1.21	1.92×10^{7}
from a	4	2.78×10^{-3}	1.36	1.44×10^{7}
100ft thick aquifer	5	3.48×10^{-3}	1.49	1.15×10^{7}
	6	4.17×10^{-3}	1.59	9.6×10^{6}
	8	5.57×10^{-3}	1.75	7.2×10^{6}
	10	6.96×10^{-3}	1.86	5.76×10^{6}
Observation well is	12	8.33×10^{-3}	1.97	4.80×10^{6}
200 ft away	14	9.72×10^{-3}	2.08	4.1×10^{6}
	18	1.25×10^{-2}	2.20	3.2×10^{6}
	24	1.67×10^{-2}	2.36	2.4×10^{6}
	30	2.09×10^{-2}	2.49	1.92×10^{6}
Plot as s vs r${ }^{2} / \mathrm{t}$	40	2.78×10^{-2}	2.65	1.44×10^{6}
on same scale of log paper	50	3.48×10^{-2}	2.78	1.15×10^{6}
on same scale of log paper	60	4.17×10^{-2}	2.88	9.6×10^{5}
as W(u) vs u	80 100	5.57×10^{-2}	3.04 3.16	7.2×10^{5}
	120	8.33×10^{-2}	3.28	4.8×10^{5}
	150	1.02×10^{-1}	3.42	3.84×10^{5}
	180	1.25×10^{-1}	3.51	3.2×10^{5}
	210	1.46×10^{-1}	3.61	2.74×10^{5}
	245	1.67×10^{-1}.	3.67	2.4×10^{5}

Jacob simplified the Theis equation for large t and small r

 using only the first 2 terms of the $W(u)$ function$$
s=h_{o}-h=\frac{Q}{4 \pi T} W(u) \quad u=\frac{r^{2} S}{4 T t}
$$

$\mathrm{S}=$ drawdown [L] $\left.\quad W(u)=\int_{u}^{\infty} \frac{e^{-u}}{u} d u=[-0.5772-\ln u) u-\frac{u^{2}}{2 \cdot 2!}+\frac{u^{3}}{3 \cdot 3!}-\frac{u^{4}}{4 \cdot 4!}+\ldots \ldots\right]$
$h_{o}=$ initial head @ r [L]
$h=$ head at r at time $t[L]$
$t=$ time since pumping began $[T]$
$r=$ distance from pumping well [L]
$\mathrm{Q}=$ discharge rate $\left[\mathrm{L}^{3} / \mathrm{T}\right]$
$\mathrm{T}=$ transmissivity [$\left.\mathrm{L}^{2} / \mathrm{T}\right]$
S = Storativity []

$$
s=\frac{2.3 Q}{4 \pi T} \log \frac{2.25 T t}{r^{2} S} \leadsto \begin{aligned}
& \text { Simplified expression } \\
& \text { (note constant due to } \\
& \text { switch from In to log) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jacob's simplified Theis equation } \\
& s=h_{0}-h=\frac{Q}{4 \pi T} W(u) \quad W(u)=\int_{u}^{-} \frac{e^{-u}}{u} d u=\left[-0.5772-\ln u+u-\frac{u^{2}}{2 \cdot 2!}+\frac{u^{3}}{3 \cdot 3!}-\frac{u^{4}}{4 \cdot 4!}+\ldots \ldots\right] \quad u=\frac{r^{2} S}{4 T t} \\
& \text { Can you get to } \\
& s=\frac{Q}{4 \pi T}(-0.5772-\ln u) \quad \text { note: } \ln u=2.3 \log u \\
& s=\frac{Q}{4 \pi T}(-2.3 \log 1.7822-2.3 \log u) \\
& s=\frac{2.3 Q}{4 \pi T}(-\log 1.7822-\log u) \text { note }: \quad-\log u=\log \frac{1}{u} \\
& s=\frac{2.3 Q}{4 \pi T}\left(-\log 1.7822+\log \frac{1}{u}\right) \text { note: } \log (a-b)=\log \frac{a}{b} \\
& s=\frac{2.3 Q}{4 \pi T}\left(\log \frac{1}{u}-\log 1.7822\right)=\frac{2.3 Q}{4 \pi T} \log \left(\frac{\frac{1}{u}}{1.7822}\right) \\
& \text { note }: \quad u=\frac{r^{2} S}{4 T t} \quad s=\frac{2.3 Q}{4 \pi T} \log \left(\frac{\frac{1}{r^{2} S}}{1.7822}\right)=\frac{2.3 Q}{4 \pi T} \log \left(\frac{4 T t}{1.7822 r^{2} S}\right. \\
& =\frac{2.3 Q}{4 \pi T} \log \frac{2.25 T t}{r^{2} S} \quad s=\frac{2.3 Q}{4 \pi T} \log \left(\frac{2.25 T t}{r^{2} S}\right)
\end{aligned}
$$

$$
s=\frac{2.3 Q}{4 \pi T} \log \frac{2.25 T t}{r^{2} S}
$$

Since Q r T \& S are constant, s vs log tis a straight line:

a graph of $\mathrm{s}($ drawdown $)$ vs $\log (\mathrm{t})($ time $)$

can be described by a straightline

$$
\begin{aligned}
& \mathrm{y}=\mathrm{s} \quad \mathrm{x}=\log (\mathrm{t}) \quad \mathrm{y}=\mathrm{mx}+\mathrm{b} \\
& \mathrm{~m}=\text { slope }=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \quad \mathrm{~b}=\text { intercept }=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \log \frac{2.25 \mathrm{~T}}{\mathrm{r}^{2} \mathrm{~S}} \\
& s=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \log (\mathrm{t})+\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \log \frac{2.25 \mathrm{~T}}{\mathrm{r}^{2} \mathrm{~S}}
\end{aligned}
$$

For Jacob's simplification of the Theis equation we find an easy way to estimate T:

$$
s=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \log (\mathrm{t})+\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \log \frac{2.25 \mathrm{~T}}{\mathrm{r}^{2} S}
$$

if we consider the slopein termsof

$$
\Delta \mathrm{s} \text { (changein drawdownover one log cycleof t) }
$$

$$
\begin{aligned}
& \frac{\Delta s}{\log (\mathrm{t})}=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \quad \text { given } \log (\mathrm{t}) \text { for one log cycleof } \mathrm{t} \text { is } 1 \\
& \Delta s=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \quad \text { and rearranging to solve for } \mathrm{T}: \\
& T=\frac{2.3 \mathrm{Q}}{4 \pi \Delta \mathrm{~s}}
\end{aligned}
$$

at the time intercept t_{0} the straight line approximation of $\mathrm{s}=0$
$0=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \log \left(\mathrm{t}_{\mathrm{o}}\right)+\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \log \frac{2.25 \mathrm{~T}}{\mathrm{r}^{2} S} \quad$ pulling out $\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}}$:
$0=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}}\left(\log \left(\mathrm{t}_{\mathrm{o}}\right)+\log \frac{2.25 \mathrm{~T}}{\mathrm{r}^{2} S}\right)$
with zero on the left hand side the constant is irrelevant
$0=\left(\log \left(\mathrm{t}_{\mathrm{o}}\right)+\log \frac{2.25 \mathrm{~T}}{\mathrm{r}^{2} S}\right) \quad$ subtract $\log \frac{2.25 \mathrm{~T}}{\mathrm{r}^{2} S}$ from both sides
$-\log \frac{2.25 \mathrm{~T}}{\mathrm{r}^{2} S}=\log \left(\mathrm{t}_{\mathrm{o}}\right) \quad$ exponentiate both sides
$\frac{r^{2} S}{2.25 T}=t_{o} \quad$ rearrange to solve for S
$S=\frac{2.25 \mathrm{Tt}_{\mathrm{o}}}{\mathrm{r}^{2}}$

In short:

Jacob's straight line method for $u<0.03$

$$
T=\frac{2.3 Q}{4 \pi \Delta h} \quad S=\frac{2.25 T t_{0}}{r^{2}}
$$

where:
$\boldsymbol{\Delta} \boldsymbol{h}=\boldsymbol{\Delta} \boldsymbol{s}=$ drawdown over 1 log cycle of time
$\mathrm{t}_{\mathrm{o}}=$ time intercept for zero drawdown

For the Ohio example $\mathrm{Q}=500 \mathrm{GPM}, \mathrm{b}=100 \mathrm{ft}, \mathrm{r}=200 \mathrm{ft}$ Plot s vs t

$$
T=\frac{2.3 Q}{4 \pi \Delta h} S=\frac{2.25 T t_{0}}{r^{2}}
$$

