

U	W(u)	u	W(u)	и	W(u)	u	W(u)
1×10^{-10}	22.45	7×10^{-8}	15.90	4×10^{-5}	9.55	1×10^{-2}	4.04
2	21.76	8	15.76	5	9.33	2	3.35
3	21.35	9	15.65	6	9.14	3	2.96
4	21.06	1×10^{-7}	15.54	7	8.99	4	2.68
5	20.84	2	14.85	8	8.86	5	2.47
6	20.66	3	14.44	9	8.74	6	2.30
7	20.50	4	14.15	1×10^{-4}	8.63	7	2.15
8	20.37	5	13.93	2	7.94	8	2.03
9	20.25	6	13.75	3	7.53	9	1.92
1×10^{-9}	20.15	7	13.60	4	7.25	1×10^{-1}	1.823
2	19.45	8	13.46	5	7.02	2	1.223
3	19.05	9	13.34	6	6.84	3	0.906
4	18.76	1×10^{-6}	13.24	7	6.69	4	0.702
5	18.54	2	12.55	8	6.55	5	0.560
6	18.35	3	12.14	9	6.44	6	0.454
7	18.20	4	11.85	$1 imes 10^{-3}$	6.33	7	0.374
8	18.07	5	11.63	2	5.64	8	0.31
9	17.95	6	11.45	3	5.23	9	0.260
1×10^{-8}	17.84	7	11.29	4	4.95	$1 imes 10^{0}$	0.219
2	17.15	8	11.16	5	4.73	2	0.049
3	16.74	9	11.04	6	4.54	3	0.013
4	16.46	$1 imes 10^{-5}$	10.94	7	4.39	4	0.004
5	16.23	2	10.24	8	4.26	5	0.000
6	16.05	3	9.84	9	4.14		

Predict Drawdown Using Theis Equation
Class picks: T S r t Q
Take 3 minutes to calculate: s

$$s=h_{o}-h=\frac{Q}{4\pi T}W(u) \qquad u=\frac{r^{2}S}{4Tt}$$

$$W(u)=\int_{u}^{\infty}\frac{e^{-u}}{u}du=[-0.5772-\ln u+u-\frac{u^{2}}{2\cdot 2!}+\frac{u^{3}}{3\cdot 3!}-\frac{u^{4}}{4\cdot 4!}+\dots]$$
What value did you get for s?

Theis Formula cannot be solved directly for T and S from observations of drawdown (why?) $s=h_o-h=\frac{Q}{4\pi T}W(u) \qquad u=\frac{r^2S}{4Tt}$ $W(u)=\int_{u}^{\infty}\frac{e^{-u}}{u}du=[-0.5772-\ln u+u-\frac{u^2}{2\cdot 2!}+\frac{u^3}{3\cdot 3!}-\frac{u^4}{4\cdot 4!}+....]$ Consequently, we use curve matching techniques Type Curve is W(u) vs u OR W(u) vs 1/u Plot s vs 1/t or s vs r²/t for field data OR s vs t Type curve & field data must be plotted on same log-log paper Field curve is overlaid on Type Curve Axes must be kept parallel Best match of curves is found Pick any convenient point read corresponding W(u), u, s and r²/t Solve Theis Equation for T & S

	(r = 200 ft)					
	Time Since Pumping Began, t		Drawdown in Observation Well, $h_0 - h$	r^2/t		
An example test from Ohio	Minutes	Days	Feet	Feet ² /Day		
Pumping well discharges @ 500 GPM	$0 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5$	$\begin{array}{c} 0 \\ 6.96 \times 10^{-4} \\ 1.02 \times 10^{-3} \\ 1.39 \times 10^{-3} \\ 1.74 \times 10^{-3} \end{array}$	$\begin{array}{c} 0.00 \\ 0.66 \\ 0.87 \\ 0.99 \\ 1.11 \end{array}$	∞ 5.76×10^{7} 3.84×10^{7} 2.88×10^{7} 2.30×10^{7}		
from a 100ft thick aquifer	3.0 4 5	2.09×10^{-3} 2.78×10^{-3} 3.48×10^{-3}	1.21 1.36 1.49	1.92×10^{7} 1.44×10^{7} 1.15×10^{7}		
	6 8 10	$\begin{array}{c} 4.17 \times 10^{-3} \\ 5.57 \times 10^{-3} \\ 6.96 \times 10^{-3} \\ 2.22 \times 10^{-3} \end{array}$	1.59 1.75 1.86	$\begin{array}{ccc} 9.6 & \times 10^6 \\ 7.2 & \times 10^6 \\ 5.76 & \times 10^6 \\ 4.80 & \times 10^6 \end{array}$		
200 ft away	12 14 18 24	$\begin{array}{c} 8.33 \times 10^{-1} \\ 9.72 \times 10^{-3} \\ 1.25 \times 10^{-2} \\ 1.67 \times 10^{-2} \end{array}$	$ \begin{array}{r} 1.97 \\ 2.08 \\ 2.20 \\ 2.36 \\ \end{array} $	4.30×10^{6} 4.1×10^{6} 3.2×10^{6} 2.4×10^{6}		
Plot as s vs r²/t on same scale of log paper	30 40 50 60	$\begin{array}{c} 2.09 \times 10^{-2} \\ 2.78 \times 10^{-2} \\ 3.48 \times 10^{-2} \\ 4.17 \times 10^{-2} \end{array}$	2.49 2.65 2.78 2.88	$egin{array}{c} 1.92 imes 10^6 \ 1.44 imes 10^6 \ 1.15 imes 10^6 \ 9.6 \ imes 10^5 \end{array}$		
as W(u) vs u	80 100 120 150 180	$\begin{array}{c} 5.57\times 10^{-2}\\ 6.96\times 10^{-2}\\ 8.33\times 10^{-2}\\ 1.02\times 10^{-1}\\ 1.25\times 10^{-1} \end{array}$	3.04 3.16 3.28 3.42 3.51	$\begin{array}{c} 7.2 \times 10^{5} \\ 5.76 \times 10^{5} \\ 4.8 \times 10^{5} \\ 3.84 \times 10^{5} \\ 3.2 \times 10^{5} \end{array}$		
	$\frac{210}{240}$	1.46×10^{-1} 1.67×10^{-1}	$3.61 \\ 3.67$	$2.74 \times 10^{\circ}$ 2.4 × 10 ⁵		

at the time intercept
$$t_0$$
 the straight line approximation of $s = 0$
 $0 = \frac{2.3Q}{4\pi T} \log(t_0) + \frac{2.3Q}{4\pi T} \log \frac{2.25T}{r^2 S}$ pulling out $\frac{2.3Q}{4\pi T}$:
 $0 = \frac{2.3Q}{4\pi T} \left(\log(t_0) + \log \frac{2.25T}{r^2 S} \right)$
with zero on the left hand side the constant is irrelevant
 $0 = \left(\log(t_0) + \log \frac{2.25T}{r^2 S} \right)$ subtract $\log \frac{2.25T}{r^2 S}$ from both sides
 $-\log \frac{2.25T}{r^2 S} = \log(t_0)$ exponentiate both sides
 $\frac{r^2 S}{2.25T} = t_0$ rearrange to solve for S
 $S = \frac{2.25Tt_0}{r^2}$

