Water Chemistry 3

Controls on Water Chemistry

Chemical Equilibrium
Activity
Saturation Index
Carbonate Equilibrium and Alkalinity

Recall: LAW OF MASS ACTION
indicates that a system strives to equilibrium
$A+B \leftrightarrow C+D$

At equilibrium both reactions happen simultaneously

$$
\begin{aligned}
& A+B \rightarrow C+D \\
& A+B \leftarrow C+D
\end{aligned}
$$

A chemical reaction can be written as $a A+b B \leftrightarrow c C+d D$
abcd are molar proportions of compounds ABCD
(i.e. stoichiometric coefficients in a balanced chemical equation)

EQUILIBRIUM CONSTANT

$$
\mathrm{K}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}=\mathrm{constant}
$$

$[A][B][C][D]$ represent equilibrium molal or molar concentration abcd are molar amounts of compounds A B C D

K is the equilibrium constant (tabulated in aqueous chem books) If one compound changes concentration others adjust to maintain K

For equilibrium evaluations the [] of a pure liquid or solid is defined as 1

Depending on the type of reaction, K may be called acidity or dissociation constant for acid/base reactions complexation constant for complexation reactions solubility product for dissolution reaction adsorption constant for surface reactions

$$
\begin{gathered}
\text { Given } \\
\mathbf{a A}+\mathbf{b B} \leftrightarrow \mathbf{c} \mathbf{C}+\mathbf{d D} \\
\text { Reactants Products } \\
\text { and } \\
\mathbf{K}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{gathered}
$$

If a reactant, say A, increases
then to maintain equilibrium:
the reaction must shift to the right activities of reactants decrease activities of products increase keeping K constant

ACTIVITY

In concentrated solutions, ions interact electrostatically with each other (surrounded by a cloud of opposite charge) so the stoichiometric coefficients do not reflect reactive availability

Activity coefficients γ adjust molal/molar concentrations M to effective concentrations called activities, a

$$
a=\gamma(M)
$$

Activity is proportional to concentration, and the proportionality constant is the activity coefficient, γ

Activity Coef. depends on temperature, pressure \& total composition
In dilute solutions, the dissolved components are spread far apart, so interactions among them are very weak then

$$
\gamma_{\mathrm{i}} \approx 1, \text { so } \mathrm{a}_{\mathrm{i}} \approx M_{\mathrm{i}}
$$

In concentrated solutions a \& M may be far from equal

Estimating activity coefficient γ_{l}

Activity depends on ionic strength / of a solution:

$$
I \cong \frac{1}{2} \sum \mathrm{~m}_{i} \mathrm{z}_{i}^{2}
$$

where $\mathrm{m}=$ molar concentration
$I \cong\left(2.5 \times 10^{-5}\right) \times \mathrm{TDS}(\mathrm{mg} / \mathrm{L})$ by Langelier

Debye-Hückel method (accurate up to I ~0.01M)
$\log \gamma_{i}=-\mathrm{Az}_{i}{ }^{2} \sqrt{I}$
where $\mathrm{A}=\mathrm{a}$ constant depending on solvent, $\mathrm{P} \& \mathrm{~T}$
$\mathrm{z}_{i}=$ the charge on the particular ion
Güntelberg method (accurate up to I ~ 0.1 M)

$$
\log \gamma_{i}=-\frac{0.5\left(\mathrm{z}_{i}\right)^{2} I^{1 / 2}}{1+I^{1 / 2}}
$$

A bit of elaboration on the source of the Güntelberg method
Debye-Hückel method (accurate up to $I \sim 0.01 \mathrm{M}$)
$\log \gamma_{i}=-\mathrm{Az}_{i}{ }^{2} \sqrt{I} \quad \mathrm{~A}=$ constant depending on $\mathrm{P} \& \mathrm{~T}, \mathrm{z}_{i}=$ charge

For higher ionic strengths Debye-Hückel developed:
$\log \gamma_{i}=\frac{-\mathrm{Az}_{i}{ }^{2} \sqrt{I}}{1+B a_{o} \sqrt{I}}$
$B=$ constant depending on $\mathrm{P} \& \mathrm{~T}, \mathrm{a}_{o}=$ hydrated radius of ion
Typically $B \mathrm{a}_{o} \approx 1.0$
At $15^{\circ} \mathrm{C}, A=0.5$ @ $0^{\circ} \mathrm{C} \mathrm{A}=0.49$ and @ $60^{\circ} \mathrm{C} \mathrm{A}=0.54$

Thus we simplify to: Güntelberg method

$$
\log \gamma_{i}=-\frac{0.5\left(\mathbf{z}_{i}\right)^{2} I^{1 / 2}}{1+I^{1 / 2}}
$$

Determine the lonic strength and Ca and HCO_{3} activity for Denver water

Constituent	Conc. (mg/L)	Conc. (mol/L)
TDS	179	-
Ca^{+2}	42	1.05×10^{-3}
$\mathrm{HCO}_{3}{ }^{-}$	115	1.89×10^{-3}
$\mathrm{pH}=7.9, \mathrm{Temp}=20^{\circ} \mathrm{C}$		

Determine the ionic strength in solution based on TDS Determine activity coefficients for HCO_{3}^{-}using Güntelberg method Determine activity coefficients for Ca^{+2} using Güntelberg method

CHEMICAL EQUILIBRIUM

- Thermodynamics vs. Kinetics

Thermodynamics tells us where the system should go at equilibrium, and kinetics tells us how fast.

- Definition of Equilibrium

1) A system at equilibrium has none of its properties changing with time, no matter how long it is observed
2) A system at equilibrium will return to that state after being disturbed
3) Thermodynamically speaking, a system is at equilibrium when $\Delta_{r} G$ (the change in Gibbs Free Energy) $=0$

Gibbs Free Energy is a thermodynamic quantity which can be used to determine if a reaction is spontaneous or not.
Gibbs free energy is $\mathbf{G}=\mathrm{H}$ (enthalpy) - T (temp) * S (entropy)

CHEMICAL EQUILIBRIUM

A and B react to produce C and $D(a, b, c, d$ are number of moles)

$$
a A+b B=c C+d D
$$

Reactants Products

The Gibbs free energy change of reaction is calculated:

$$
\Delta_{\mathrm{r}} \mathrm{G}=\sum_{\text {products }} \Delta_{\mathrm{f}} \mathrm{G}-\sum_{\text {reactants }} \Delta_{\mathrm{f}} \mathrm{G}
$$

Multiply Gibbs free energies of formation ($\Delta \mathrm{f} \mathbf{G}$) by stoichiometric coefficients and subtract sum of reactants from sum of products

$$
\Delta_{\mathrm{r}} \mathbf{G}=\mathbf{c} \Delta_{f} \mathbf{G}_{\mathrm{C}}+\mathrm{d} \Delta_{f} \mathbf{G}_{\mathrm{D}}-\mathrm{a} \Delta_{f} \mathbf{G}_{\mathrm{A}}-\mathrm{b} \Delta_{f} \mathbf{G}_{\mathrm{B}}
$$

If $\Delta_{\mathrm{r}} \mathrm{G}=0$, the reaction is at equilibrium
if $\Delta_{\mathrm{r}} \mathrm{G}<0$, the reaction will proceed to the right
if $\Delta_{\mathrm{r}} \mathrm{G}>0$, the reaction will proceed to the left
Gibb's free energies of formation are determined by experiment

[^0]| K and Gibb's Free Energy are Related: | | |
| :---: | :---: | :---: |
| $C 7 c[]^{d}$ | Values of R | $\begin{aligned} & \text { Units } \\ & \left(\mathrm{V} \cdot \mathrm{P} \cdot \mathrm{~T}^{-1} \cdot \mathrm{n}^{-1}\right) \end{aligned}$ |
| $K=\left[\begin{array}{l} \\ {[D]}\end{array}\right.$ | 8.314472 | $\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| $A]^{a}[B]^{b}$ | 0.0820574587 | $\mathrm{L} \cdot \mathrm{atm} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| $A][B]$ | 83.14472 | $\mathrm{cm}^{3} \cdot$ bar $\cdot \mathrm{mor}{ }^{-1} \cdot \mathrm{~K}^{-1}$ |
| | $8.20574587 \times 10^{-5}$ | $\mathrm{m}^{3} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| | 8.314472 | $\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{K}^{-1} \cdot \mathrm{mor}^{-1}$ |
| $\Delta_{\mathrm{r}} G=\sum \Delta_{\mathrm{f}} G-\sum \Delta_{\mathrm{f}} G$ | 8.314472 | $\mathrm{L} \cdot \mathrm{kPa} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| products reactants | 8.314472 | $\mathrm{m}^{3} \cdot \mathrm{~Pa} \cdot \mathrm{~K}^{-1} \cdot \mathrm{mor}^{-1}$ |
| | 62.36367 | $\mathrm{L} \cdot \mathrm{mmHg} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| \mathbf{G}^{0} - Gibbs free energy change of reaction at standard state | 62.36367 | L. Torr. $\mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| | 83.14472 | L.mbar $\cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| | 0.08314472 | L-bar $\cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| | 1.987 | cal. $\mathrm{K}^{-1} \cdot \mathrm{mor}^{-1}$ |
| | 6.132440 | lbf.ft-K $\mathrm{K}^{-1} \cdot \mathrm{~g}-\mathrm{mol}^{-1}$ |
| energy per degree Kelvin per mole | 10.73159 | $\mathrm{ft}^{3} \cdot \mathrm{psi} \cdot{ }^{\cdot} \mathrm{R}^{-1} \cdot \mathrm{lb}-\mathrm{mor}^{-1}$ |
| T - Temperature Degrees Kelvin ${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273.15$ 2.303 converts In to log | 0.7302413 | $\mathrm{ft}^{3} \cdot \mathrm{~atm} \cdot{ }^{\circ} \mathrm{R}^{-1} \cdot \mathrm{lb}-\mathrm{mor}^{-1}$ |
| | 998.9701 | $\mathrm{ft}^{3} \cdot \mathrm{mmHg} \cdot \mathrm{K}^{-1} \cdot \mathrm{lb}-\mathrm{mol}^{-1}$ |
| | 8.314472×10^{7} | erg. $\mathrm{K}^{-1} \cdot \mathrm{mor}{ }^{-1}$ |

How much of a substance will dissolve in water? SOLUBILITY PRODUCT

Suppose we have the dissolution reaction for anhydrite:
$\mathrm{CaSO}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}$
in this case K equilibrium constant is a solubility product ($K_{\text {sp }}$)

$$
\mathrm{K}=\mathrm{K}_{\mathrm{sp}}=\frac{\mathrm{a}_{\mathrm{Ca}^{2+}} \mathrm{a}_{\mathrm{SO}_{4}^{2-}}}{\mathrm{a}_{\mathrm{CaSO}_{4}(\mathrm{~s})}}=\mathrm{a}_{\mathrm{Ca}^{2+}} \mathrm{a}_{\mathrm{SO}_{4}^{2-}}
$$

activity of most pure solids can be taken equal to unity (so $a_{C a S O_{4}(\mathrm{~s})}=1$)
Calculate K_{SP} by finding the Gibbs free energy change of reaction:

$$
\Delta_{\mathrm{r}} \mathrm{G}^{\circ}=\Delta_{f} \mathrm{G}^{\circ} \mathrm{Ca}^{2+}+\Delta_{f} \mathrm{G}^{\circ} \mathrm{SO}_{4^{2-}}-\Delta_{f} \mathrm{G}^{\circ}{ }_{\mathrm{CaSO}}^{4} \text { (s) }
$$

and calculating

$$
\log K_{S P}=\frac{-\Delta_{r} G^{\circ}}{2.303 R T}
$$

SOLUBILITY PRODUCT

Calculate the solubility product of anhydrite at $25^{\circ} \mathrm{C}$ $\mathrm{CaSO}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}$

Look up:
http://inside.mines.edu/~epoeter/_GWI19WaterChem3/GibbsFreeEnergyValues.xIs
$\Delta_{f} G^{\circ}{ }_{\mathrm{Ca}^{2+}}=-553.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} G^{\circ}{ }_{\text {SO }_{4^{2}}}=-744.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} G^{\circ}{ }_{\text {CaSO }_{4}(\mathrm{~s})}=-1321.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
R (gas constant) $=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
assume Kelvin for thermodynamic expressions, unless noted otherwise

Will a substance dissolve or precipitate?

 ION ACTIVITY PRODUCT (IAP)Consider again:

$$
\mathrm{CaSO}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}
$$

Equilibrium constant in terms of activities of reactants \& products at equilibrium

$$
\mathrm{K}=\left(\mathrm{a}_{\mathrm{Ca}^{2+}}\right)_{\text {equil }}\left(\mathrm{a}_{\mathrm{SO}_{4}^{2-}}\right)_{\text {equil }}
$$

However, a real solution may or may not be in equilibrium. The ion activity product (IAP) has the same form as the equilibrium constant, but involves the actual(measured) activities:

$$
\text { IAP }=\left(\mathrm{a}_{\mathrm{Ca}^{2+}}\right)_{\text {actual }}\left(\mathrm{a}_{\mathrm{SO}_{4}^{2-}}\right)_{\mathrm{actual}}
$$

If IAP $=K$, the solution is in equilibrium with anhydrite
if IAP $<K$, the reaction will proceed to the right (dissolution)
if IAP $>K$, the reaction will proceed to the left (precipitation)

Will a substance dissolve or precipitate? THE SATURATION INDEX

The saturation index (SI) is defined as:

$$
\mathrm{SI}=\log \left(\frac{\mathrm{IAP}}{\mathrm{~K}_{\mathrm{SP}}}\right) \quad \mathrm{CaSO}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}
$$

$I A P=K_{\mathrm{SP}} \mathrm{SI}=0(-0.2<\mathrm{SI}<0.2)$ water is saturated with the mineral $I A P<K_{\text {SP }} \mathrm{SI}<0$ water is undersaturated with the mineral

Reaction is proceeding from left to right (dissolution)
$I A P>K_{\mathrm{SP}} \mathrm{SI}>0$ water is supersaturated with the mineral
Reaction is proceeding from right to left (precipitation)

Suppose a groundwater analysis indicates
$5 \times 10^{-2} \mathrm{~mol} / \mathrm{L} \mathrm{Ca}^{2+}$ and $7 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \mathrm{SO}_{4}{ }^{2-}$ (ignore activity coefficients) Is this water saturated with respect to anhydrite?

Consider the acid-base reaction

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
& \mathrm{K}=10^{-6.35}
\end{aligned}
$$

Which way should the reaction go if

$$
\mathrm{pH}=7 \quad a_{\mathrm{H}_{2} \mathrm{CO}_{3}}=10^{-4} \quad a_{\mathrm{HCO}_{3}}=10^{-3} ?
$$

CARBONATE EQUILIBRIUM

Most important acid-base system in water, controls the pH of most waters

Water exposed to the atmosphere dissolves carbon dioxide $\mathbf{C O}_{\mathbf{2}}(\mathrm{g})$ creating carbonic acid $\mathrm{H}_{2} \mathrm{CO}_{3}$

$$
\begin{array}{ll}
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}(\mathrm{aq}) & \text { Gas dissolution } \\
\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} & \text { Carbonic acid formation }
\end{array}
$$

Carbonic acid dissociates in two steps

1) Carbonic acid donates one proton $\left(\mathrm{H}^{+}\right)$to create bicarbonate HCO_{3}^{-}
$\mathrm{H}_{2} \mathrm{CO}_{3} \Leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
2) Bicarbonate donates a proton $\left(\mathrm{H}^{+}\right)$to form carbonate $\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{HCO}_{3}{ }^{-} \Leftrightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$

Reaction	Equilibrium constant (25$\left.{ }^{\circ} \mathrm{C}\right)$
$\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{pK}_{\mathrm{H}}=1.46$
$\mathrm{H}_{2} \mathrm{CO}_{3} \Leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{pK}_{1}=6.35$
$\mathrm{HCO}_{3}{ }^{-} \Leftrightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{pK}_{2}=10.33$

In most natural waters, bicarbonate is the dominant carbonate species

CARBONATE SYSTEM

In aqueous solutions, positive \& negative charges must balance
At $\mathrm{pH}=7,\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
At $\mathrm{pH}>7,\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

For a pure $\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}$ system,
possible species are $\quad \mathrm{H}^{+} \mathrm{OH}^{-} \mathrm{H}_{2} \mathrm{CO}_{3} \mathrm{HCO}_{3}{ }^{-} \mathrm{CO}_{3}{ }^{2-}$ the charge-balance equation is:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]
$$

Each mole of $\mathrm{CO}_{3}{ }^{2-}$ provides two equivalents of negative charge in solution, so carbonate concentration must be multiplied by 2

CARBONATE SYSTEM

If we increase partial pressure of $\mathrm{CO}_{2} \quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}\right]+2\left[\mathrm{CO}_{3}{ }^{2 \cdot}\right]+[\mathrm{OH}]$ pH decreases (due to increased H^{+}activity in solution) What is partial pressure?
Air is a mixture of gases
Each gas exerts a pressure depending on its proportion This is the partial pressure of that gas
Air pressure is the sum of all these partial pressures
If we add sodium to the system, the charge-balance equation is:

$$
\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]
$$

Then, if we add a strong acid. What would change?
The concentration of $\mathrm{H}^{+}, \mathrm{OH}^{-}$, and all the carbonate species would change, but the concentration of Na^{+}would not change.
Thus, Na^{+}is a conservative ion, and $\mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{H}^{+}$and OH^{-} are non-conservative and this concept is the basis for the defintion of alkalinity

```
ALKALINITY
For all dissolved species, the charge balance equation can be extended:
\(2\left[\mathrm{Ca}^{+2}\right]+2\left[\mathrm{Mg}^{+2}\right]+\left[\mathrm{K}^{+}\right]+\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]+\)
\(=\left[\mathrm{Cl}^{-}\right]+2\left[\mathrm{SO}_{4}{ }^{-2}\right]+\left[\mathrm{NO}_{3}{ }^{-}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]+\cdots\).
```

Put conservative ions on left \& non-conservative ions on right
In equivalents: Σ conservative cations $-\Sigma$ concervative anions

$$
\left.\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]
$$

If the left-hand side of the equation is conservative then the right-hand side of the equation must also be conservative

Although none of the individual species on the right is conservative, their mathematical combination as shown is conse rvative

Therefore, the quantity on the right-hand side of tionouation is a special combination, and we call this quantity the total alkalinity

Titration for Carbonate System Compents

Add strong acid
e.g. $0.0200 \mathrm{NH}_{2} \mathrm{SO}_{4}$

For a sample starting at $\mathrm{pH} \sim 9.9$

Acid Added
pH decreasing
Determine the volume of acid solution required to reach the 8.3 and 4.5 endpoints

Titration curve for a $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, with a Bjerrum plot
A is the beginning of the titration
B is the carbonate endpoint (note large change in pH for little addition of acid)
C is the region of strong carbonate buffering
D is the bicarbonate endpoint (note large change in pH for little addition of acid)

ALKALINITY

Alkalinity is normally reported by the laboratory in units of mg / L as CaCO_{3} (calcium carbonate) Alkalinity $(\mathrm{eq} / \mathrm{L})=$ Alkalinity $\left(\mathrm{mg} / \mathrm{L}\right.$ as $\left.\mathrm{CaCO}_{3}\right) \times 2 \mathrm{eq} / \mathrm{mole}$ This does not mean that CaCO_{3} is necessarily present in the solution. What it means is that the solution has numerically the same alkalinity as a solution in which the same weight of CaCO_{3} per liter has been dissolved.
Calculation of alkalinity from a titration to a pH of 4.5:

$$
\mathrm{Alk}_{\mathrm{T}}=\frac{\mathrm{mL}_{\text {acid }} \times \mathrm{N}_{\text {acid }} \times \text { eq. } \cdot \mathrm{wt} \cdot \mathrm{CaCO}_{3}}{\mathrm{~mL}_{\text {sample }}}
$$

The equivalent weight of CaCO_{3} :

$$
\text { molar mass of } \mathrm{CaCO}_{3} \frac{100 \mathrm{~g}}{\mathrm{~mole}} \times \frac{1 \mathrm{~mole}}{2 \mathrm{eq}}=50 \frac{\mathrm{~g}}{\mathrm{eq}}
$$

recall that an equivalent is essentially a mole of charge

* CaCO_{3} does not carry a charge, but we calculate equivalent weight of a salt as its molecular weight divided by the valence of the metal ion in the compound

ALKALINITY

A 100 mL sample with a pH of 8 is titrated to the methyl-orange-end-point (which goes from yellow at pH 4.4 to red at pH 3.1) with 2 mL of $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$

What is the total alkalinity in $\mathrm{mg} \mathrm{L}^{-1}$ as CaCO_{3} and what is the concentration of HCO_{3}^{-}in $\mathrm{mg} \mathrm{L}^{-1}$?

[^0]: For Some Gibb's Free Energy Values http://inside.mines.edu/~epoeterI_GW119WaterChem3/GibbsFreeEnergyValues.xls

