Water Chemistry 3

Controls on Water Chemistry

Chemical Equilibrium Activity Saturation Index Carbonate Equilibrium and Alkalinity

Recall: LAW OF MASS ACTION indicates that a system strives to equilibrium $A + B \leftrightarrow C + D$

At equilibrium both reactions happen simultaneously $A + B \rightarrow C + D$ $A + B \leftarrow C + D$

A chemical reaction can be written as aA + bB ↔ cC + dD a b c d are molar proportions of compounds A B C D (i.e. stoichiometric coefficients in a balanced chemical equation)

Determine the lonic strength and Ca and HCO₃ activity for Denver water

Constituent	Conc. (mg/L)	Conc. (mol/L)	
TDS	179	-	
Ca ⁺²	42	1.05 x 10 ⁻³	
HCO ₃ -	115	1.89 x 10 ⁻³	
pH = 7.9, Temp = 20°C			

Determine the ionic strength in solution based on TDS Determine activity coefficients for HCO₃⁻ using Güntelberg method Determine activity coefficients for Ca⁺² using Güntelberg method

CHEMICAL EQUILIBRIUM A and B react to produce C and D (a,b,c,d are number of moles) aA + bB = cC + dDReactants Products The Gibbs free energy change of reaction is calculated: $\Delta_r G = \sum_{\text{products}} \Delta_f G - \sum_{\text{reactants}} \Delta_f G$ Multiply Gibbs free energies of formation (A f G) by stoichiometric coefficients and subtract sum of reactants from sum of products $\Delta_{r}\mathbf{G} = \mathbf{C}\Delta_{f}\mathbf{G}_{C} + \mathbf{d}\Delta_{f}\mathbf{G}_{D} - \mathbf{a}\Delta_{f}\mathbf{G}_{A} - \mathbf{b}\Delta_{f}\mathbf{G}_{B}$ If Δ , **G** = 0, the reaction is at equilibrium if Δ , G < 0, the reaction will proceed to the right if Δ , G > 0, the reaction will proceed to the left Gibb's free energies of formation are determined by experiment For Some Gibb's Free Energy Values http://inside.mines.edu/~epoeter/_GW\19WaterChem3/GibbsFreeEnergyValues.xls

K and Gibb's Free Energy are Related:		
$[c]^{k}[D]^{d}$	Values of R	Units (V·P·T ⁻¹ ·n ⁻¹)
$\mathbf{K} = \frac{[C] [D]}{[A]^a [B]^b}$	8.314472	J·K ^{−1} ·moΓ ¹
	0.0820574587	L-atm-K ⁻¹ -mol ⁻¹
	83.14472	cm ³ ·bar·mol ⁻¹ ·K ⁻¹
$\Delta_{\rm r} {\rm G} = \sum_{\rm products} \Delta_{\rm f} {\rm G} - \sum_{\rm reactants} \Delta_{\rm f} {\rm G}$ $\log {\rm K} = \frac{-\Delta_{\rm r} {\rm G}^{\circ}}{2.303 \ {\rm RT}}$	8.20574587 × 10 ⁻⁵	m ³ ·atm·K ^{−1} ·moΓ ¹
	8.314472	ст ³ ·MPa·K ⁻¹ ·moГ ¹
	8.314472	L·kPa·K ⁻¹ ·mol ⁻¹
	8.314472	m ³ ·Pa·K ⁻¹ ·moΓ ¹
	62.36367	L·mmHg·K ⁻¹ ·mol ⁻¹
	62.36367	L·Torr·K ⁻¹ ·mol ⁻¹
	83.14472	L·mbar·K ⁻¹ ·moΓ ¹
	0.08314472	L·bar·K ⁻¹ ·moΓ ¹
G^{o} - Gibbs free energy change of reaction at standard state R – gas constant	1.987	cal⋅K ⁻¹ ⋅moΓ ¹
	6.132440	lbf·ft·K ⁻¹ ·g-moΓ ¹
energy per degree Kelvin per mole	10.73159	ft ³ ·psi· °R ⁻¹ ·lb-mol ⁻¹
T – Temperature Degrees Kelvin °K=°C+273.15	0.7302413	ft ³ ·atm·°R ⁻¹ ·lb-mol ⁻¹
2.303 converts in to log	998.9701	ft ³ ·mmHg·K ⁻¹ ·lb-mol ^{−1}
	8.314472 × 10 ⁷	erg·K ⁻¹ ·moΓ ¹

How much of a substance will dissolve in water? SOLUBILITY PRODUCT

Suppose we have the dissolution reaction for anhydrite: $CaSO_4(s) \leftrightarrow Ca^{2+} + SO_4^{2-}$ in this case K equilibrium constant is a solubility product (K_{SP})

$$K = K_{sp} = \frac{a_{Ca^{2+}}a_{SO_4^{2-}}}{a_{CaSO_4}(s)} = a_{Ca^{2+}}a_{SO_4^2}$$

activity of most pure solids can be taken equal to unity (so $a_{CaSO_4(s)} = 1$)

Calculate K_{sP} by finding the Gibbs free energy change of reaction:

$$\Delta_{\mathsf{r}} \mathbf{G}^{\mathsf{o}} = \Delta_{\mathsf{f}} \mathbf{G}^{\mathsf{o}}_{\mathsf{Ca}^{2+}} + \Delta_{\mathsf{f}} \mathbf{G}^{\mathsf{o}}_{\mathsf{SO}_{4}^{2-}} - \Delta_{\mathsf{f}} \mathbf{G}^{\mathsf{o}}_{\mathsf{CaSO}_{4}(\mathsf{s})}$$

and calculating

$$\text{ogK}_{\text{SP}} = \frac{-\Delta_{\text{r}}G^{\circ}}{2.303\text{RT}}$$

Will a substance dissolve or precipitate? ION ACTIVITY PRODUCT (IAP)

Consider again:

 $CaSO_4(s) \leftrightarrow Ca^{2+} + SO_4^{2-}$

Equilibrium constant in terms of activities of reactants & products at equilibrium

$$\mathsf{K} = \left(\mathsf{a}_{\mathsf{Ca}^{2^+}}\right)_{\mathsf{equil}} \left(\mathsf{a}_{\mathsf{SO}_4^{2^-}}\right)_{\mathsf{equil}}$$

However, a real solution may or may not be in equilibrium. The ion activity product (IAP) has the same form as the equilibrium constant, but involves the actual(measured) activities:

$$\mathsf{IAP} = \left(\mathsf{a}_{\mathsf{Ca}^{2+}}\right)_{\mathsf{actual}} \left(\!\mathsf{a}_{\mathsf{SO}_4^{2-}}\right)_{\mathsf{actual}}$$

If IAP = K, the solution is in equilibrium with anhydrite

if IAP < K, the reaction will proceed to the right (dissolution)

if IAP > K, the reaction will proceed to the left (precipitation)

Consider the acid-base reaction

$$H_2CO_3 \leftrightarrow HCO_3^- + H^+$$

 $K = 10^{-6.35}$
Which way should the reaction go if
 $pH = 7$ $a_{H_2CO_3} = 10^{-4}$ $a_{HCO_3^-} = 10^{-3}$?

CARBONATE	EQUILIBRIUM
Most important acid-base system in	water, controls the pH of most waters
Water exposed to the atmosphere d creating carbonic acid H ₂ CO ₃	issolves carbon dioxide CO ₂ (g)
$CO_2(g) + H_20 \rightarrow CO_2(aq)$	Gas dissolution
$CO_2(aq) + H_20 \Leftrightarrow H_2CO_3$	Carbonic acid formation
Carbonic acid dissociates in two sto 1) Carbonic acid donates one pr H ₂ CO ₃ ⇔ 2) Bicarbonate donates a proton HCO ₃ ⁻ ⇔	eps oton (H ⁺) to create bicarbonate HCO ₃ ⁻ H ⁺ + HCO ₃ ⁻ (H ⁺) to form carbonate CO ₃ ²⁻ H ⁺ + CO ₃ ²⁻
Reaction	Equilibrium constant (25°C)
$CO_2(aq) + H_20 \Leftrightarrow H_2CO_3$	рК _н = 1.46
$H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$	pK ₁ = 6.35

