

	84-a	,			racers"
		le-Well Injection			
	Type of aL <u>Aquifer Location (meters) Reference</u>		ce		
	Alluvial Lyons, France 0.1-0.5 Fried, 1975		975		
Type of		Distance B Injectio Observatio	n and n Wells	œL	
Aquifer		(meter	\		eference
Chalk	Dorset, Engl	and 8	3		novich and mith, 1978
Alluvial	Lyons, Franc	e 6&1	2 4	.3 Fri	ed, 1975
Alluvial	Eastern Fran	ice 6&1	2 11	.0 Fri	ed, 1975
Fracture		55	38		ve and eetem, 1971
Fracture carbona		121	15		ssen and ordes, 1975
Fracture crystal		.)	134		ster et al., 970
		4 ×			
	Single-Wel	1 Tracer Test wit	h Surface Geoph	vsics	

Table B1 CONTINUED Dispersivities at various scales &measured by various methods from "Ground Water Tracers"

Dispersivities Measured on a Regional Scale by Model Calibration

	e of lifer	Location	Approximate Distance Traveled by Solute (meters)	al, (<u>meters</u>)	aT meters	Reference
Allu	vial	Lyons, France	1,000	12	4	Fried, 1975
Lime	stone	Brunswick, GA	1,500	61	18	Bredehoeft & Pinder, 1973
Allu	vial	Rocky Mtn. Arsenal, CO	4,000	30	30	Konikow, 1977
Allu	vial	Arkansas River Valley, CO	5,000	30	9	Konikow & Bredehoeft, 1974
Glac dep	ial osit	Long Island, NY	1,000	21.3	4.3	Pinder, 1973
Basa	lt	Snake River	4,000	91	137	Robertson, 1974

	Complementar	y Error	Function (erfo	;)	ter an
Error Function	$\operatorname{erf}(\beta) = \frac{2}{\pi} \int_0^\beta e^{-\epsilon^*} d\epsilon$			e−e¹ d€	
		e	$\operatorname{rf}(-\beta) = -\operatorname{erf}$	β	-
-			$\operatorname{erfc}(\beta) = 1 - e$	rf (β)	
Tables are listed in		β	erf (β)	erfc (β)	
the back of ground		0	0	1.0	
•		0.05	0.056372	0.943628	
water hydrology		0.1	0.112463	0.887537	
water nyarology		0.15	0.167996	0.832004	
haaka		0.2	0.222703	0.777297	
books		0.25	0.276326	0.723674	
		0.3	0.328627	0.671373	
		0.35	0.379382	0.620618	
		0.4	0.428392	0.571608	
		0.45	0.475482	0.524518	
		0.55	0.520500 0.563323	0.479500	
		0.55	0.603856	0.436677	
		0.65	0.642029	0.357971	
		0.7	0.677801	0.322199	
WARNING		0.75	0.711156	0.288844	
		0.8	0.742101	0.257899	
EXCEL DOES NOT		0.85	0.770668	0.229332	
EXCEL DOES NOT		0.9	0.796908	0.203092	
		0.95	0.820891	0.179109	
		1.0	0.842701	0.157299	
		1.1	0.880205	0.119795	
THIS		1.2	0.910314	0.089686	
11115		1.3	0.934008	0.065992	
		1.5	0.966105	0.047715	
ACCURATELY AT		1.6	0.976348	0.023652	
		1.7	0.983790	0.016210	
EXTREME VALUES		1.8	0.989091	0.010909	
		1.9	0.992790	0.007210	
OF BETA		2.0	0.995322	0.004678	
		2.1	0.997021	0.002979	
		2.2	0.998137	0.001863	
		2.3	0.998857	0.001143	
		2.4	0.999311	0.000689	
		2.5	0.999593	0.000407	
		2.6 2.7	0.999764 0.999866	0.000236	
		2.8	0.999925	0.000134	
		2.9	0.999959	0.000041	
		3.0	0 999978	0.000022	A CONTRACT OF A

Suppose that source enters the up gradient end of a column At a continuous concentration of C_o=1000mg/l K = 0.1 cm/sec dh = 10 cm dl = 100 cm $\phi = 0.2$ Dispersivity $\alpha_x = 5$ cm What will the concentration be at 50 cm after 1000sec? average linear velocity $\overline{v} = \frac{Kdh}{\phi dl} = \frac{0.1 \frac{cm}{sec}}{0.2} \frac{10cm}{100cm} = 0.05 \frac{cm}{sec}$ distance traveled in 1000sec? $d = \overline{v}t = 0.05 \frac{cm}{sec} 1000 \sec = 50cm$ By inspection we know that the concentration should be $0.5^*C_o=500$ mg/l But let's carry out the calculation

Analytical Solution
for transport in
uniform 1D flow
continuous source
3D spreading
without chemical
reaction
See previous
graphic
Upper case
Y and Z
Are the source
width and height
$$C(x,y,z,t) = \frac{C_o}{8} \left(erfc \left(\frac{x - \overline{v_x t}}{2\sqrt{D_x t}} \right) \right)$$
$$\left(erf \left(\frac{y + \frac{Y}{2}}{2\sqrt{D_y \frac{x}{\overline{v}}}} \right) - erf \left(\frac{y - \frac{Y}{2}}{2\sqrt{D_y \frac{x}{\overline{v}}}} \right) \right)$$

Analytical Solution
for transport in
uniform 1D flow
continuous source
3D spreading
without chemical
reaction
If source is on the
water table such that
spreading is only
downward
Omit (/2) on Z terms
$$\begin{pmatrix} C(x,y,z,t) = \frac{C_o}{8} \left(erfc \left(\frac{x - \overline{v_x}t}{2\sqrt{D_x t}} \right) \right) \\ \left(erf \left(\frac{y + \frac{Y}{2}}{2\sqrt{D_y \frac{x}{\overline{v}}}} \right) - erf \left(\frac{y - \frac{Y}{2}}{2\sqrt{D_y \frac{x}{\overline{v}}}} \right) \right) \\ \left(erf \left(\frac{z + Z}{2\sqrt{D_z \frac{x}{\overline{v}}}} \right) - erf \left(\frac{z - Z}{2\sqrt{D_z \frac{x}{\overline{v}}}} \right) \right)$$

What do you make of the concentration relative to the C we obtained for the slug source?

How much mass enters the system in 1000sec? $M = CQT = CAV_{D}T$

How would you go about developing a contour map of the plume?

If you did not know the dispersivities, how could you use this equation to estimate them?

How might you set up the problem if 8g/d arrived at the water table over a $1m^2$ area in an aquifer with the properties and conditions used for the example?

Analytical Solutions for transport provide smoothed representations of plumes Be sure to practice using this topic's exercises

View an animation of contaminant transport

Consider how what you see will affect:

1) the predictions you make using the analytical solutions

2) the concentrations you obtain in samples from field sites

View DVD

NOW CONSIDER THE NON-MECHANICAL ASPECTS OF CONTAMINANT TRANSPORT

Analytical Solution for transport in uniform 1D flow	$C(x, y, z, t) = \frac{C_o}{8} \exp\left(\frac{x}{2\alpha_x} \left(1 - \sqrt{1 + \frac{4\lambda\alpha_x}{\overline{v}}}\right)\right)$ $\left(erfc\left(\frac{x - \overline{v}t\left(1 + \sqrt{\frac{4\lambda\alpha_x}{\overline{v}}}\right)}{2\sqrt{\alpha_x\overline{v}t}}\right)\right)$
continuous source 3D spreading with Decay Upper case Y and Z	$\left(erf\left(\frac{y+\frac{Y}{2}}{2\sqrt{\alpha_{y}x}}\right) - erf\left(\frac{y-\frac{Y}{2}}{2\sqrt{\alpha_{y}x}}\right) \right)$ If R>1 Divide \overline{v} by R
Are the source width and height Same modifications apply for downward &	$\left(erf\left(\frac{z+\frac{Z}{2}}{2\sqrt{\alpha_z x}}\right) - erf\left(\frac{z-\frac{Z}{2}}{2\sqrt{\alpha_z x}}\right)\right) \begin{array}{c} \text{Note this} \\ \text{includes a} \\ \text{simplification} \\ \text{of } D=\overline{\alpha v} \end{array}\right)$
	$\int_{y} \frac{x}{\overline{v}}$ if D [*] is ignored then equivalent to $\alpha_{y}\overline{v}\frac{x}{\overline{v}}$ which = $\alpha_{y}x$

	C(x, y, z, steadystat e) =
Analytical Solution for transport in uniform 1D flow	$\frac{C_o}{4} \exp\left(\frac{x}{2\alpha_x} \left(1 - \sqrt{1 + \frac{4\lambda\alpha_x}{\overline{v}}}\right)\right)$
continuous source 3D spreading	$\left(\begin{array}{c} Y \\ Y + T \end{array} \right) \left(\begin{array}{c} Y \\ Y - T \end{array} \right)$
with Decay	$\left erf \left \frac{\frac{y+2}{2\sqrt{\alpha x}} \right - erf \left \frac{y+2}{2\sqrt{\alpha x}} \right \right $
Upper case Y and Z	$\left(\begin{array}{c} \left(2\sqrt{a_{y}x} \right) \\ \left(2\sqrt{a_{y}x} \right) \end{array} \right)$
Are the source width and height	$\begin{pmatrix} \begin{pmatrix} z+Z \end{pmatrix} \begin{pmatrix} z-Z \end{pmatrix} \end{pmatrix}$
AT STEADY STATE	$\left erf \left \frac{\frac{2}{2}}{2\sqrt{\alpha r}} \right - erf \left \frac{2}{2\sqrt{\alpha r}} \right \right $
i.e. Mass is decaying as fast	$\left(\begin{array}{c} 2\sqrt{\alpha_z} \lambda \end{array}\right) \left(\begin{array}{c} 2\sqrt{\alpha_z} \lambda \end{array}\right) \right)$
as it is being supplied at the source	lf R>1 Divide ⊽ by R

THINK IN TERMS OF ORGANIZING THE ANALYTICAL SOLUTIONS IN TERMS OF

THE TYPE OF SOURCE:

SLUG OR CONTINUOUS

TYPE OF SPREADING:

1D, 2D, 3D

TYPE OF CONTAMINANT BEHAVIOR:

DECAYING, ADSORPING

(and if so steady-state? center-line?)

A transport model for your exploration: http://inside.mines.edu/~epoeter/_GW/22ContamTrans/TransportModel/tdpf1.0web/pflow/pflow.html Explore plume spreading as a function of heterogeneity as represented by K variation AND local heterogeneity as represented by the input dispersivity Create grid. Make sure you understand the size of the system you are working with. Properties: Run at least 1 homogeneous and 1 heterogeneous model Calculate heads Choose particle movement for flow (this is by random walk ... advecting based on Ks and gradient then randomly displacing each particle based on dispersivity) Be aware of the number of particles you use given spacing, grid size and your drawn area Use the same particles for the above comparison of 1 homogeneous and 1 heterogeneous model Choose # days per second such that you will get transport across your grid in a matter of a minute or so (make a rough estimate of travel time given gradient, K, porosity and distance) Always choose to show center of mass, std deviation bars of particles and plot the variance of particle locations. Run both your homogeneous and heterogeneous models with and without local dispersion. When you use local dispersion make sure it is a reasonable value. Try varying the value. For all cases note the spatial variance of the particles. Explain the results. When does it stop plotting spatial variance? Why?