HW#3

Assignment: September 15, 2009 **Due:** Friday, September 25, 2009

Please compare the following four 1D Buckley Leverett cases

- Case 1, done in HW#2. Explicit solution, $\Delta t = 0.1 day$, NX = 10, $\Delta x = 10$ feet.
- Case 2, Explicit solution, $\Delta t = 0.1 day$, NX = 20, $\Delta x = 5 feet$.
- Case 3, Implicit solution, $\Delta t = 0.1 day$, NX = 10, $\Delta x = 10$ feet.
- Case 4, Implicit solution, $\Delta t = 0.1 day$, NX = 20, $\Delta x = 5 feet$.

For each case, plot the results every 5 time steps on the same figure, using S_w from 0 to 1 and x from 0 to 100. Make sure the length of the x-axis is about the same as the y-axis when printed.

For each case, provide a table of the Sw versus grid cell at 10 days.

Write a short summary of how you solved the problem. Write a comparison of the 4 cases. Why are they different?

Please provide a printed copy of the source code.

Hints:

For this problem, you need to write your own back-substitution program. If the matrix solution becomes more complicated we will provide you with matrix solvers.

Solve for $\frac{\partial f_w}{\partial S_w}$ analytically and then implement this equation in your code.