HW#7

Assigned: Friday, October 23, 2009

Due: Tuesday, November 3, 2009

Use HW #3, case 2 as a reference: explicit solution, $\Delta t = 0.1 day$, NX = 20, $\Delta x = 5 ft$, $\Delta y = 10 ft$, $\Delta z = 10 ft$, $\phi = 0.20$, $t_{max} = 10 days$, $u_T = 10 ft / day$. Add end effects to the output node using $S_{w.end} = 0.5$.

Flow equation:
$$-u_T \frac{f_{wi}^n - f_{w,i-1}^n}{\Delta x} = \frac{S_{wi}^{n+1} - S_{wi}^n}{\Delta t}$$

End effects: if $S_{w,\mathit{IMAX}}^n < S_{w,\mathit{end}}$, then $f_{w,\mathit{IMAX}} = 0$, else $f_{w,\mathit{IMAX}}^n = f_w[S_{w,\mathit{IMAX}}^n]$

- (a) Compare the plot for HW #3, case #2 with the same plot for this problem (S_w vs x for various times)
- (b) Plot the oil recovery factor vs time for both problems and compare