TERM PROJECT

Version: 2009-11-19 (there may be other versions later)

The term project involves a 2-D formulation and a 1-D solution of the flow equations described in the next several pages. The term project should stand on it's own – feel free to include portions of homework problems. Include anything that you feel will help us know that you understand the material.

- 1) Describe the finite difference formulation for each of the four options in 2-D. Include pictures of 0 and non-zero portions of matrix equations.
- 2) Present the results of your 1-D simulations for option 1, 2, and 4, including a comparison of the different techniques.
- 3) Provide a copy of the source code you used for this project

Option 1: IMPES; Implicit Pressure, Sequential Explicit Saturation

Solve for P_o^{n+1} using an implicit matrix equation, then solve for S_w^{n+1} using an explicit equation.

Option 2: Partially Implicit; Implicit Pressure, Sequential Saturation

Solve for P_o^{n+1} using an implicit matrix equation, then solve for S_w^{n+1} using an implicit matrix equation *with* P_{cow}^{n+1} .

Option 3: Fully Implicit; Iterative Saturation

Solve for P_o^{l+1} , using S_w^n . Next, solve for S_w^{l+1} using P_o^{l+1} . Iterate, alternating between solving for P_o and S_{μ} .

Option 4: Fully Implicit; Coupled

Simultaneously solve for P_{o} *and* S_{w} *.*

Option 1: IMPES; Implicit Pressure, Sequential Explicit Saturation

Solve for P_o^{n+1} using an implicit matrix equation, then solve for S_w^{n+1} using an explicit equation.

Pressure Equation: $\nabla \cdot k \left(\lambda_T^n \nabla P_o^{n+1} - (\lambda_w^n \gamma_w^n + \lambda_o^n \gamma_o^n) \nabla D - \lambda_w^n \nabla P_{cov}^n \right) + \hat{q}_T^{n+1} = \phi C_T^n \frac{\partial P_o}{\partial \lambda_T}$ *t* $\nabla \cdot k\left(\lambda_T^{n}\nabla P_c^{n+1} - (\lambda_w^{n}\gamma_w^{n} + \lambda_o^{n}\gamma_o^{n})\nabla D - \lambda_w^{n}\nabla P_{cov}^{n}\right) + \hat{q}_T^{n+1} = \phi C_T^n\frac{\partial^2 \phi}{\partial \lambda^2}$ ∂ Saturation equation, explicit (IMPES):

$$
\nabla \cdot k \lambda_w^n \left(\nabla P_o^{[n+1]} - \gamma_w^n \nabla D - \nabla P_{cov}^n \right) + \hat{q}_w^{[n+1]} = \phi S_w^n (C_\phi + C_w) \frac{\partial P_o}{\partial t} + \phi \frac{\partial S_w}{\partial t}
$$

Option 2: Partially Implicit; Implicit Pressure, Sequential Saturation

Solve for P_o^{n+1} using an implicit matrix equation, then solve for S_w^{n+1} using an implicit matrix equation *with* P_{cow}^{n+1} .

Pressure Equation: $\nabla \cdot k \left(\lambda_T^n \nabla P_o^{n+1} - (\lambda_w^n \gamma_w^n + \lambda_o^n \gamma_o^n) \nabla D - \lambda_w^n \nabla P_{cov}^n \right) + \hat{q}_T^{n+1} = \phi C_T^n \frac{\partial P_o}{\partial \lambda_T}$ *t* $\nabla \cdot k\left(\lambda_T^{n}\nabla P_c^{n+1}-(\lambda_w^{n}\gamma_w^{n}+\lambda_a^{n}\gamma_a^{n})\nabla D-\lambda_w^{n}\nabla P_{cov}^{n}\right)+\hat{q}_T^{n+1}=\phi C_T^n\frac{\widehat{C}}{2}.$ ∂

Saturation equation, partially implicit:

$$
\nabla \cdot k \lambda_w^n \left(\nabla P_o^{[n+1]} - \gamma_w^n \nabla D - \frac{\partial P_{cov}^n}{\partial S_w} \nabla S_w^{n+1} \right) + \hat{q}_w^{[n+1]} = \phi S_w^{n+1} (C_\phi + C_w) \frac{\partial P_o}{\partial t} + \phi \frac{\partial S_w}{\partial t}
$$

Option 3: Fully Implicit; Iterative Saturation

Solve for P_o^{l+1} , using S_w^n . Next, solve for S_w^{l+1} using P_o^{l+1} . Iterate, alternating between solving for P_o and S_{w} .

Pressure Equation:

$$
\nabla \cdot k \left(\lambda_T^{[n+1]} \nabla P_o^{n+1} - (\lambda_w^{[n+1]} \gamma_w^n + \lambda_o^n \gamma_o^{[n+1]}) \nabla D - \lambda_w^{[n+1]} \nabla P_{cov}^{[n+1]} \right) + \hat{q}_T^{n+1} = \phi C_T^{[n+1]} \frac{P_o^{n+1} - P_o^n}{\Delta t}
$$

Saturation equation, fully implicit:

$$
\nabla \cdot k \lambda_{w}^{n+1} \left(\nabla P_{o}^{[n+1]} - \gamma_{w}^{[n+1]} \nabla D - \frac{\partial P_{cov}^{[n+1]}}{\partial S_{w}} \nabla S_{w}^{n+1} \right) + \hat{q}_{w}^{[n+1]} = \phi S_{w}^{n+1} (C_{\phi} + C_{w}) \frac{P_{o}^{[n+1]} - P_{o}^{n}}{\Delta t} + \phi \frac{S_{w}^{n+1} - S_{w}^{n}}{\Delta t}.
$$

Option 4: Fully Implicit; Coupled

Simultaneously solve for P_{o} *and* S_{w} *.*

Water Saturation equation, fully implicit:

$$
\nabla \cdot k \lambda_{w}^{n+1} \left(\nabla P_{o}^{n+1} - \gamma_{w}^{n} \nabla D - \frac{\partial P_{cov}^{n+1}}{\partial S_{w}} \nabla S_{w}^{n+1} \right) + \hat{q}_{T}^{n+1} = \phi S_{w}^{n+1} (C_{\phi} + C_{w}) \frac{P_{o}^{n+1} - P_{o}^{n}}{\Delta t} + \phi \frac{S_{w}^{n+1} - S_{w}^{n}}{\Delta t}
$$

Oil Saturation equation, fully implicit:

$$
\nabla \cdot k \lambda_o^{n+1} \left(\nabla P_o^{n+1} - \gamma_o^n \nabla D \right) + \hat{q}_T^{n+1} = \phi S_o^{n+1} (C_\phi + C_o) \frac{P_o^{n+1} - P_o^n}{\Delta t} + \phi \frac{S_o^{n+1} - S_o^n}{\Delta t}
$$

Capillary pressure and relative permeability equations:

$$
k_{row} = k_{row}^{*} \left(\frac{S_o - S_{owr}}{1 - S_{wr} - S_{owr}} \right)^{n_{ow}} \qquad k_{rw} = k_{rw}^{*} \left(\frac{S_w - S_{wr}}{1 - S_{wr} - S_{owr}} \right)^{n_w}
$$

$$
P_{cov1} = \alpha \ln \left[\frac{1 - S_w - S_{owr}}{1 - S_{wx} - S_{owr}} \right] \qquad P_{cov2} = -\alpha \ln \left[\frac{S_w - S_{wr}}{S_{wx} - S_{wr}} \right]
$$

$$
P_{cov} = \begin{cases} P_{cov,max}, & S_w \le S_{wr} \\ P_{cov,min}, & S_w \ge (1 - S_{owr}) \\ \min[P_{cov2}, P_{cov,max}], & S_{wr} \le S_w \le S_{wx} \\ \max[P_{cov1}, P_{cov,min}], & (1 - S_{owr}) \ge S_w \ge S_{wx} \end{cases}
$$

Data:

$$
NX = 10, NY = 10, \Delta x = 10ft, \Delta y = 10ft, \Delta z = 10ft
$$

\n
$$
k_{rw}^{*} = 0.1 \t k_{row}^{*} = 0.7 \t n_{w} = 1.5 \t n_{ow} = 2.5 \t S_{orv} = 0.30 \t S_{wr} = 0.25
$$

\n
$$
\alpha = 0.8; S_{wx} = 0.5 \t P_{cov,max} = +5 \text{psi} \t P_{cov,min} = -5 \text{psi}
$$

\n
$$
\mu_{w} = 0.6 \text{cp} \t \mu_{o} = 2.4 \text{cp} \t \gamma_{w} = 0.433 \text{psi} \t \text{ft} \t \gamma_{o} = 0.433 * 0.8 \text{psi} \t \text{ft}
$$

\n
$$
\phi = 0.20, \t q_{IN} = 200 \text{ft}^{3} / \text{day}, \t k = 100 \text{md}
$$

\n
$$
P_{i} = 3000 \text{psi}, \t P_{w} = 2500 \text{psi}, \t S_{wi} = 0.25
$$

\n
$$
C_{\phi} = 310^{-6} \text{psi}^{-1}, \t C_{w} = 410^{-6} \text{psi}^{-1}, \t C_{o} = 1010^{-6} \text{psi}^{-1}
$$