HW#8

Assigned: Thursday, October 22, 2009

Due: Thursday, October 29, 2009

This problem involves calculating the P/z vs G_P performance for a naturally fractured gas reservoir.

The required properties are listed at the end. Please use a correlation to calculate $\frac{1}{z}\frac{\partial z}{\partial P}$. Use

 $\Delta t = 100 days$; run until P/z = 1 atm.

Computational steps:

- 1) Calculate the properties which do not change with time (r_e, r_o, WI, etc)
- 2) Calculate $q_g B_g = -WI(\overline{P} P_w)$
- 3) Calculate $\tau_g = \frac{q_g B_g}{\pi r_e^2 \Delta z}$
- 4) Calculate $\frac{\partial P_m}{\partial t}$ from $C_g = \phi_m C_{Tm} \frac{\partial P_m}{\partial t}$
- 5) Calculate $P_f P_m$ from $\sigma k_m \lambda_{gm} (P_f P_m) = \tau_g$
- 6) Update G_p .
- 7) Go back to step 2 for a new \overline{P}

Submit:

- a) Plot of P/z vs G_P
- b) Table of values of P/z vs G_P

Data:

•
$$P_i = 5000 \, psi$$

• T = 180F

• $P_{wf} = 1000 \, psi$

• $k_f = 1000md$

• $\phi_f = 10^{-4}$

• $k_m = 3.10^{-3} md$

• $\phi_m = 0.1$

•

• Well spacing: 40 acre

• $r_w = 0.25 ft$

• $\Delta z = 30 ft$

• $\gamma_g = 0.6$ to air

• s=2

• $L_x = L_y = 20 feet$

• $L_z = 30 feet$

•

• $\mu_g = 0.02$

• $k_{rgf}^* = 1$

 $\bullet \quad k_{rgm}^* = 0.6$

• $S_{wm} = 0.30$

• $S_{wf} = 0.05$

• $C_{\phi,m} = 3.10^{-6} \, psi^{-1}$

• $C_{\phi,f} = 5.10^{-6} \, psi^{-1}$

• $C_w = 3.10^{-6}$