PeGn624 Homework # 10

- Assigned: 2009-02-06
- Due: 2009-02-13

1 Question 1: Expansion

The primary variables are P_o , S_o , T. When $T < T_s$, $S_g = 0$ and T_s is used as the fourth primary variable. When $T \ge T_s$, S_g is used as the fourth primary variable.

1.1 Part (a): Water Equation

Eq. 1 represents the left-hand-side of the water component equation. Expand the finite difference operators in Eq. 1 in terms of the primary variables for a 1D problem. Collect terms for P_o^{n+1} and terms which do not contain P_o^{n+1} .

$$\mathsf{LHSW} = \Delta \left(T_w^n \xi_w^n X_{w1}^n \left(\Delta P_w^{n+1} - \gamma_w^n \Delta D \right) \right) + \Delta \left(T_g^n \xi_g^n Y_{w1}^n \left(\Delta P_g^{n+1} - \gamma_g^n \Delta D \right) \right) + \xi_w q_w X_{w1} + \xi_g q_g Y_{w1}$$
(1)

1.2 Part (b): Oil Equation

Eq. 2 represents the left-hand-side of the oil component equation. Expand the finite difference operators in Eq. 2 in terms of the primary variables for a 1D problem. Collect terms for P_o^{n+1} and terms which do not contain P_o^{n+1} .

$$\mathsf{LHSO} = \Delta \left(T_o^n \xi_o^n X_{o2}^n \left(\Delta P_o^{n+1} - \gamma_o^n \Delta D \right) \right) + \xi_o q_o X_{o2} \tag{2}$$

2 Question 2: Blank Matrix

Create a blank $(4 \times 3) \times (4 \times 3)$ matrix with square cells. Print it so it fills the full page. Bring 10 copies to class on Thursday 2/12 to facilitate taking notes.