PeGn624 Homework # 13

- Assigned: Monday, February 23, 2009
- Due: Monday, March 2, 2009

1 Question 1: Left-Hand-Side Expansion

The primary variables are P_o , S_o , T. When $T < T_s$, $S_g = 0$ and T_s is used as the fourth primary variable. When $T \ge T_s$, S_g is used as the fourth primary variable.

1.1 Part (a): Water Equation

Eq. 1.1 represents the left-hand-side of the water component equation. In homework #10, you expanded this in terms of P^{n+1} . Now complete this expansion in terms of δP_o for a 1D problem. Collect terms for δP_o .

$$\mathsf{LHSW} = \Delta \left(T_w^n \zeta_w^n X_{w1}^n (\Delta P_w^{n+1} - \gamma_w^n \Delta D) + \Delta \left(T_g^n \zeta_g^n Y_{w1}^n (\Delta P_g^{n+1} - \gamma_g^n \Delta D) + q_w \zeta_w X_{w1} + q_g \zeta_g Y_{w1} \right)$$
(1.1)

1.2 Part (b): Oil Equation

Eq. 1.2 represents the left-hand-side of the oil component equation. In homework #10, you expanded this in terms of P^{n+1} . Now complete this expansion in terms of δP_o for a 1D problem. Collect terms for δP_o .

$$\mathsf{LHSO} = \Delta \left(T_o^n \zeta_o^n X_{w1}^n (\Delta P_o^{n+1} - \gamma_o^n \Delta D) + q_o \zeta_o X_{o2} \right)$$
(1.2)

2 Question 2: Energy Equation Expansion

For the energy equation expansions, note that H(T) is a function of T only. U is a function of H(T), P, and $\zeta(P,T)$.

2.1 Part (a): Left-Hand-Side for $T < T_s$

Eq. 2.1 represents the left-hand-side of the energy equation. Complete this expansion in terms of the primary variables for a 1D problem. Collect terms for δP_o , δT , δS_o , and δT_s .

$$\mathsf{LHSE} = \Delta \left(T_w^n \zeta_w^n X_{w1}^n H_w^n (\Delta P_w^{n+1} - \gamma_w^n \Delta D) + \Delta \left(T_g^n \zeta_g^n Y_{w1}^n H_g^n (\Delta P_g^{n+1} - \gamma_g^n \Delta D) + \Delta \left(T_o^n \zeta_o^n X_{w1}^n H_o^n (\Delta P_o^{n+1} - \gamma_o^n \Delta D) + \Delta \left(T_e^n \Delta T \right) + q_w \zeta_w X_{w1} H_w + q_g \zeta_g Y_{w1} H_g + q_o \zeta_o X_{o2} H_o \right)$$
(2.1)

2.2 Part (b): Left-Hand-Side for $T \ge T_s$

Eq. 2.1 represents the left-hand-side of the energy equation. Complete this expansion in terms of the primary variables for a 1D problem. Collect terms for δP_o , δT , δS_o , and δS_g .

2.3 Part (c): Right-Hand-Side for $T < T_s$

Eq. 2.2 represents the right-hand-side of the energy equation. Complete this expansion in terms of the primary variables for a 1D problem. Collect terms for δP_o , δT , δS_o , and δT_s .

$$\mathsf{RHSE} = \frac{\mathsf{VR}}{\Delta t} \Delta_t \left(\phi(S_w \xi_w X_{w1} U_w + S_g \xi_g Y_{w1} U_g + S_o \xi_o X_{o2} U_o) \right) + \frac{\mathsf{VR}}{\Delta t} \Delta_t \left((1 - \phi)(\rho_R C_R T) \right) \quad (2.2)$$

2.4 Part (d): Right-Hand-Side for $T \ge T_s$

Eq. 2.2 represents the right-hand-side of the energy equation. Complete this expansion in terms of the primary variables for a 1D problem. Collect terms for δP_o , δT , δS_o , and δS_g .