HW#4 Solution

a) The K value interpolation *FROM GRAPH* to condition of 160 F and 1500 psia is shown below

	K value		
Temp (F)	C1	C4	C10
120	3.3	0.23	0.005
200	3.4	0.38	0.011
160	3.350	0.305	0.008

From
$$f(V) = \sum_{n=1}^{nc} \left[\frac{(K_m - 1)Z_m}{(K_m - 1)V + 1} \right]$$

(1)

Find f(0) from given parameters and put into eq (1), then f(0) = 0.811, which is more than 0

Find f(1) from given parameters and put into eq (1), then f(1) = -45.05, which is less than 0

So, the system presents two phases, to find V, it is required iteration

$$V^{(l+1)} = V^{(l)} - \frac{f(V)}{f'(V)}$$
(2)

$$f'(V) = \frac{\partial f}{\partial V} = -\sum_{n=1}^{nc} \left\{ \frac{(K_m - 1)^2 Z_m}{\left[(K_m - 1)V + 1 \right]^2} \right\}$$
(3)

Using initial guess of V=0.5

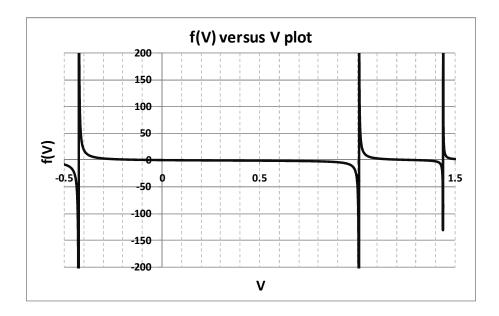
The iteration is processed by coding, so the V value is 0.3681 and L value is 0.6319.

 $X_{\rm m} \, {\rm and} \, \, Y_{\rm m} \, {\rm are \ determined \ by}$ (for two phases system)

$$X_{m} = \frac{Z_{m}}{V(K_{m} - 1) + 1}$$
(4)

$$Y_m = \frac{K_m Z_m}{V(K_m - 1) + 1}$$
(5)

the X and Y of those three components are shown below


part a) K value from graph

L	0.631897	V	0.368103
X1	0.284229	Y1	0.952168
X2	0.141769	Y2	0.043240
Х3	0.574002	Y3	0.004592
sum(X)	1.000000	sum(Y)	1.000000

b) Plot f(V) and V from V={-0.5, 0, 0.5, 1.0, 1.5}

From
$$f(V) = \sum_{n=1}^{nc} \left[\frac{(K_m - 1)Z_m}{(K_m - 1)V + 1} \right]$$
, use K value from interpolation in a) and vary V from -0.5 to 1.5, the plot

is shown below

$$K = \frac{KV1}{P} \exp\left[\frac{KV4}{T - KV5}\right]$$
(6)

Reading KV1, KV4 and KV5 from the tables, then calculate by using eq (6) to acquire K value of each component, and they are presented below

	K value		
Temp (F)	C1	C4	C10
160	3.8783	0.0792	0.0003

Repeat the same steps and equations as problem a), then X and Y for each component and V value will be calculated

part c) K from CMG corelation

L	0.623793
X1	0.254508
X2	0.161415
X3	0.584077
sum(X)	1.000000

|--|

Spring 2010

Y1	0.987063	
Y2	0.012787	
Y3	0.000151	
sum(Y)	1.000000	