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Summary

Accurate calculation of multiphase-fluid transfer between the
fracture and matrix in naturally fractured reservoirs is a crucial
issue. In this paper, we will present the viability of the use of
simple transfer functions to account accurately for fluid exchange
resulting from capillary, gravity, and diffusion mass transfer for
immiscible flow between fracture and matrix in dual-porosity
numerical models. The transfer functions are designed for sugar-
cube or match-stick idealizations of matrix blocks.

The study relies on numerical experiments involving fine-grid
simulation of oil recovery from a typical matrix block by water or
gas in an adjacent fracture. The fine-grid results for water/oil and
gas/oil systems were compared with results obtained with transfer
functions. In both water and gas injection, the simulations empha-
size the interaction of capillary and gravity forces to produce oil,
depending on the wettability of the matrix.

In gas injection, the thermodynamic phase equilibrium, aided
by gravity/capillary interaction and, to a lesser extent, by molecu-
lar diffusion, is a major contributor to interphase mass transfer.
For miscible flow, the fracture/matrix mass transfer is less com-
plicated because there are no capillary forces associated with
solvent and oil; nevertheless, gravity contrast between solvent in
the fracture and oil in the matrix creates convective mass transfer
and drainage of oil.

Using the transfer functions presented in this paper, fracture-
and matrix-flow calculations can be decoupled and solved sequen-
tially—reducing the complexity of the computation. Furthermore,
the transfer-function equations can be used independently to
calculate oil recovery from a matrix block.

Introduction

Naturally fractured reservoirs contain a great amount of the
known petroleum hydrocarbons worldwide and, hence, are an
important source of energy fuels. However, the oil recovery from
these reservoirs has been rather low. This low level of oil recovery
points to the need for accurate reservoir characterization, realistic
geological modeling, and accurate flow simulation of naturally
fractured reservoirs to determine the locations of bypassed oil.

Reservoir simulation is the most practical method of studying
flow problems in porous media when dealing with heterogeneity
and the simultaneous flow of different fluids. In modeling frac-
tured systems, a dual-porosity concept is typically used to idealize
the reservoir on the global scale. In the dual-porosity concept, the
bulk of the fluid transport takes place at high velocities in the
fractures from one grid cell to another irrespective of flowing
phase. On the other hand, in two- or three-phase flow, there is
usually a local exchange of fluids between the fractures and the

adjacent matrix at comparatively low velocities. The issue of fluid
velocities is very critical in naturally fractured reservoirs because,
in multiphase flow, typically water or gas can move rapidly in the
fractures and surround the matrix blocks partially or totally. Once
a matrix block is surrounded partially or totally by a particular
fluid, transfer of fluid phases and components takes place between
the fracture and matrix, which is the focus of this paper. In partic-
ular, deciphering the exchange mechanisms and describing
the pertinent equations of mass transfer constitute the heart of
this paper. Similar issues are relevant to any variant of the dual-
porosity concept, such as the triple-porosity, irrespective of the
idealization concept.

Physical Perspective

First, let us consider a naturally fractured reservoir containing a
single-phase fluid, such as gas. For this case, the reservoir is
produced by fluid expansion by means of production wells. The
production mechanism is rather simple in that the producing well
creates a pressure gradient in the fractures connected to the well
that, in turn, create a pressure drawdown on the adjacent matrix to
create matrix flow. In this scenario, all connected fractures play a
role in bringing gas to the wells. In fact, the early models of
Barenblatt et al. (1960) and Warren and Root (1963) pertain to
this mechanism. We should note that, in these publications, the
driving force for matrix depletion is the pressure differential be-
tween the fracture and matrix only.

Second, let us consider water/oil flow in a fractured reservoir.
In this case, water from an injection well or from the aquifer can
easily flow through the fracture network much faster than through
the matrix. This can be demonstrated by simply imposing a hori-
zontal constant pressure gradient across a thin partially or
completely oil-wet matrix block containing a high conductivity
fracture and then calculating the interstitial velocity of the water
phase in the fracture and matrix. If the matrix block is thick, then
gravity difference between water and oil can lead to oil production
by gravity drainage, if the gravity can overcome the capillary
pressure of the rock. This scenario often applies to a large per-
centage of the oil-wet carbonate reservoirs in the world. Finally, if
the matrix is water-wet, the water imbibes into the matrix to
release oil. Thus, the rock wettability and block size play major
roles in fluid exchange between the fracture and matrix. Similar
arguments can be made for the situation in which a high-mobility
gas surrounds a matrix block. Knowing that gas is the nonwetting
phase, one could resort to the gravity force to overcome the
capillarity resistance to the invading gas.

Third, many large petroleum reservoirs in the world are asso-
ciated with an active aquifer and, then, after the initial production
by depletion drive, these reservoirs create a secondary gas cap. At
this stage of the reservoir life, more than half of the mobile oil is
still locked in the matrix blocks and the aquifer water and the gas-
cap gas curtail the oil productivity of the wells. Obviously, we
would like to find ways to produce part of the remaining oil and
improve the oil-production rate from the wells. Unfortunately, not
many practical options are available to achieve this goal. One
option is to inject a surfactant in the water phase to change the
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wettability and lower the oil/water interfacial tension. The second
option is to inject gas strategically (e.g., to increase reservoir
pressure, oppress water encroachment, reduce gas/oil interfacial
tension, or invoke gas/oil gravity drainage in the right places).
Thus, in multiphase flow it is not the pressure gradient that dom-
inates flow—it is a combination of several local forces and their
interaction that controls oil production.

Fourth, we are always concerned with accuracy and the speed
of computation. For accuracy, employing a fine-grid simulation
should create a more accurate account of flow between the matrix
and fracture. However, this cannot be performed for all matrix
blocks because it will lead to billions of cells in a reservoir model.
The transfer-function approach provides a practical solution be-
cause the data requirement is substantially lower and the speed of
computation is much faster. However, to have a credible replace-
ment for fine gridding of individual matrix blocks, the transfer-
function approach must produce results nearly as accurate as the
fine-grid simulation.

Fifth, the transfer functions are zero-dimensional mathematical
expressions that are designed to account for the transfer of fluids
and components between a 3D matrix block and its surrounding
fractures. The zero-dimensionality works well for single-phase
flow, but it does not work well for immiscible flow and miscible
flow with contrasting densities between the fractures and matrix.
In gravity/capillary-dominated flow, we can provide the transfer
functions with a pseudodimensionality in the vertical direction.
This approach is closely related to the classical 1D gravity-
drainage formulation (Hagoort 1980, Al-Kandari et al. 2002). As
shown in the latter work, the pure oil/gas-gravity-drainage equa-
tion is
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Substituting Eqs. 2, 3, and 4 into Eq. 1, the following equation
is obtained, which is an analog of the gas/oil transfer function:
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Finally, in single-phase flow, the computing grid dimensions
could be smaller than the matrix block, while in multiphase flow
the vertical dimension of the grid should not be smaller than the
matrix-block height. In the latter, it is best to use a fine-grid
simulation of the matrix blocks in the vertical coordinate to match
that of the fractures. This approach is a special version of the
“dual-porosity/dual-permeability formulation,” but because the
fine gridding of the matrix block is performed in the vertical
coordinate only, the computation work can be reduced efficiently
to a conventional 3D, three-phase equivalent.

Literature Review

The heart of dual-porosity multiphase-flow modeling is the trans-
fer function that accounts for the transfer of fluids between the
fracture and the matrix (Barenblatt et al. 1960; Warren and Root
1963; Kazemi et al. 1976; Litvak 1985; Sonier et al. 1988; Gilman
and Kazemi 1988; Balogun et al. 2007).

The foundations of the current models were laid by Barenblatt
et al. (1960) and Warren and Root (1963). These authors dealt
with the mathematical formulation of single-phase flow in dual-

porosity systems. The material-balance equation described by the
transfer function, t, defined as the flow rate per unit volume of
rock, had this general form:

t ¼ s
k

m
pf � pm

 �

; (6)

where s is the shape factor; k is matrix permeability; m is fluid
viscosity; and (pf – pm) is the pressure difference between the
fracture and the matrix. Warren and Root (1963) provided an
analytical solution for radial flow for well-testing purposes and
idealized a fractured reservoir as a set of stacked sugar cubes.
Kazemi et al. (1976) extended the Warren and Root (1963) model
to water/oil flow and developed a numerical algorithm to solve the
fracture-flow equations while accounting for matrix/fracture fluid
transfer by use of a multiphase transfer function.

Hydrocarbon reservoirs produce fluids under a combination of
mechanisms that include capillarity, gravity drainage, viscous dis-
placement, pore compaction, and fluid expansion. Depending on
the flowing phases present, capillary and gravity forces are gener-
ally dominant in fractured reservoirs. These forces can work in
tandem or can oppose each other (Gilman 2003).

Sonier et al. (1988) and Litvak (1985) provided a dynamic
approach to improve the modeling of the interaction of gravity
and capillary forces in the matrix/fracture system without fine
gridding. Gilman (1986), however, used a fine-grid approach to
develop a more accurate method to account for gravity forces
better.

Another issue is the viscous displacement in the matrix blocks
of the dual-porosity models. Gilman and Kazemi (1988) presented
a formulation to account for this effect. Viscous displacement is
much more significant in single-porosity systems.

Results from imbibition experiments (Mattax and Kyte 1962),
centrifuge experiments (Kyte 1970), physical models (Kleppe and
Morse 1974), fractured-core floods (Kazemi and Merrill 1979),
stacked cores (Horie et al. 1990), and newer imbibition experi-
ments (Morrow et al. 1995) provided the foundation for scaling
laboratory results to field conditions.

Fung (1991) and Uleberg and Kleppe (1996) dealt with the
finer details of simulating gravity drainage in dual-porosity reser-
voirs including the effect of oil reinfiltration from one block to a
block underneath, which could lead to lower oil recovery from the
fractures in specific conditions.

The magnitude of capillary pressure in the fracture is difficult
to assess. However, if one assumes that there is some capillary
continuity between matrix blocks across the fractures, then a
match-stick dual-permeability model can be used as opposed to
the dual-porosity model (Fung 1991).

Additional light was shed on the mechanism of oil production
from naturally fractured reservoirs by Saidi (1983), Kazemi et al.
(1993), Lekberg and Kleppe (1996), Al-Kandari (2002), and
Lu et al. ( 2006).

Research results are also available from laboratory investiga-
tions and related numerical simulations of fractured systems on a
single matrix block (Blair 1964; Iffly et al. 1972; Klepe and
Morse 1974). Yamamoto et al. (1971) developed the earliest com-
positional model for studying recovery mechanisms from single
matrix blocks surrounded by different fluids.

Shape Factor

There has been much discussion in the literature on the functional
form of the shape factor. Shape factor is a geometric factor char-
acteristic of the geometry and boundary conditions of the matrix
block. In fact, we propose that the shape factor is generally phase-
sensitive. For instance, for the same reservoir, in single-phase
flow, the effective matrix-block dimensions are generally smaller,
while for multiphase flow, the effective matrix-block dimensions
are larger because a displacing fluid, such as gas, tends to finger
through larger fractures to surround more of the matrix rock.
Similar arguments can be applied to the effective block height
because of film flow between blocks in the vertical direction and
vertical reinfiltration of oil from one block to another.
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An expression for shape factor was presented by Warren and
Root (1963) as follows:

s ¼ 4n nþ 2ð Þ
l2

; (7)

where n is the number of normal sets of fractures and l is the
characteristic length of a matrix block,

l ¼
Lx; n ¼ 1

2LxLy= Lx þ Ly

 �

; n ¼ 2

3LxLyLz= LxLy þ LyLz þ LzLx

 �

; n ¼ 3

8<
: : (8)

Kazemi et al. (1976) later proposed a shape-factor expression
based on standard seven-point finite difference:

s ¼ 4
1

L2x
þ 1

L2y
þ 1

L2z

" #
; (9)

where Lx, Ly, and Lz represent the dimensions of a matrix block.
The coefficient 4 in Eq. 9 can be replaced by p2 using the analyti-
cal solution of pressure diffusion in a parallepiped-shaped
matrix block (Kazemi and Gilman 1993; Chang 1993; Lim and
Aziz 1995).

Kazemi et al. (1992) and Morrow et al. (1995), respectively,
used the following shape-factor equation for reservoir modeling
and for correlating water-imbibition oil recovery from laboratory
experiments.

s ¼ 1

V

XJ
j¼1

Aj

dj
; (10)

where Aj represents the area for the open surface j of the matrix
block; dj represents the distance from the center of the matrix
block to the open surface j; J is the total number of open surfaces;
and V is the volume of the matrix block. Eq. 10 reduces to Eq. 9
for sugar-cube or match-stick models and its validity was con-
firmed recently by Heinemann and Mittermeir (2006). Rangel-
German and Kovscek (2003) consider shape factor to be a matching
parameter that changes with flow regimes and, hence, a function
of time.

Transfer Function and Gravity Shape Factor

The general approach to modeling matrix/fracture fluid transfer is
by means of a simple transfer function for a single matrix block
surrounded by fractures. This transfer function should account for
imbibition, gravity drainage, fluid expansion, and molecular dif-
fusion. Then, the transfer function becomes a major building
block for dual-porosity/dual-permeability simulation of naturally
fractured reservoirs.

It can be shown that for water/oil flow, the transfer function
based on the conventional single-porosity formulation (Kazemi
et al. 1976) has the following form for the water phase:

tw ¼ s
kmkrw
mw

pf � pm
� 
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� �
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 �n o
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and

tw ¼ fm
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 � @pwm

@t
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The gravity term in Eq. 11 resulted from a mathematical exten-
sion of single-phase-flow theory and requires an objective analy-
sis by adhering to the local physics of multiphase interactions. For
instance, for water/oil flow, the gravity term in Eq. 11 should be a
function of both the height of the matrix block and the contrast
between the fluid dynamic forces between the fracture and matrix.
This was first recognized by Litvak (1985), later by Sonier et al.
(1988), and eventually by Kazemi and Gilman (1993). As a fol-
low-up to these early developments, in Balogun et al. (2007) it is
shown that Eq. 11 becomes

tw ¼ s
kmkrw
mw

pf � pm
� 
þ sz

s

� �
gw hwf � hwm

 �n o

: (13)

In a later section, we will present other forms of Eq. 13 that will
include rock and fluid expansion and molecular diffusion. Gas
diffusion in and out of the matrix block involves interphase-
mass-transfer and phase-equilibrium calculations (Hoteit and
Firoozabadi 2006), which will be presented in a later section.

Finite-Difference Model

Fluid flow in reservoirs is typically modeled numerically by
finite-difference discretization of the continuity equation and
Darcy’s law. For reference purposes, we first focus on water/oil
flow to demonstrate the fluid mechanics of the fracture/matrix
mass transfer. Then, we will include water/oil/gas flow and com-
positional effects.

Fig. 1 depicts a schematic of a segment of a naturally fractured
reservoir (Beliveau 1989). For numerical modeling, the fracture/
matrix reservoir segment in Fig. 1 can be idealized by a model
similar to the sketch shown in Fig. 2 (Civan and Rasmussen 2002).

Fig. 2 is a representation of a grid cell in a dual-porosity
reservoir model that consists of a network of fractures surrounding
matrix blocks of various sizes. In this paper, we study oil-recovery
predictions from only one of the matrix blocks. Fig. 3 presents the
gas/oil capillary/gravity-force balance for a single-cell matrix
block for which fluid exchange is approximated with a simple
transfer function, tg. A detailed fine-grid model of the same ma-
trix block using the relevant flow equations is presented in a later
section.

Single-Porosity Water/Oil/Gas Formulation

In this section, the flow equations to model water/oil/gas flow are
presented. These equations are used to model the fracture/matrix
interaction in a fine-grid, single-porosity setting.

Pressure and Velocity Equations. The total pressure equation for
water/oil/gas flow is given by
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where

lT ¼ lw þ lo þ lg; (15)

q̂T ¼ q̂w þ q̂o þ q̂g; (16)

and

cT ¼ cf þ Swcw þ Soco þ Sgcg: (17)

After solving the pressure equation, the following equation can
be used to calculate the total velocity of the flowing phases:

~vT ¼~vo þ~vw þ~vg; (18)

or
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� �
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Saturation Equations. Water, oil, and gas saturations are defined
by the flow equations for each phase:
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and

�r �~vg þ q̂g ¼ f
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@t
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Flux Across Fracture/Matrix Interface. Fluid rates in and out of
the matrix block (for the fine-grid model) are calculated at all
open boundaries using the product of the phase Darcy velocities
at the boundaries and respective cross-sectional areas. For exam-
ple, the water, oil, and gas rates can be calculated, respectively, as
follows:

qw ¼ vwA; (23)

qo ¼ voA; (24)

and

qg ¼ vgA; (25)

or

qw ¼ �Tw rpw � gwrDð Þ; (26)

qo ¼ �To rpo � gorDð Þ; (27)

and

qg ¼ �Tg rpg � ggrD
� �

: (28)

Oil recovery is then calculated by a simple time integration of
the oil-production rate.

Dual-Porosity Water-/Oil-/Gas-Flow Formulation

The dual-porosity formulation has many benefits, including a
more realistic description of high velocity fracture flow and sub-
stantial reduction of the number of computing gridpoints.

Pressure Equation. The pressure equation used in modeling
water/oil/gas flow in naturally fractured reservoirs is
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� �
rDf

�lwfrpcwof þ lgfrpcgof

2
64

3
75

� tw þ to þ tg

 �þ q̂Tf

8>>>><
>>>>:

9>>>>=
>>>>;

¼ fcTð Þf
@pof
@t

: : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : :(29)

Saturation Equations. The saturation equations for dual-porosity
flow are
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Fig. 3—Schematic of gas/oil capillary-/gravity-force balance for a matrix block.

Fig. 2—Idealization of a naturally fractured reservoir, after Civan
et al. (2002).

Fig. 1—Schematic of a segment of a naturally fractured reser-
voir, after Beliveau (1989).
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Additionally,

q̂Tf ¼ q̂wf þ q̂of þ q̂gf ; (37)

lT ¼ lwf=m þ lom=f þ lgf=m; (38)

hwf ¼ Swf � Swrf
1� Swrf � Sorf

� �
Lz ¼ SwDLz; (39)

hof ¼ Sof � Sorf
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Lz ¼ SoDLz; (40)
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hgf ¼ Sgf
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� �
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The implementation of Eqs. 29 through 32 is very easy in the
implicit-pressure/explicit-saturation (IMPES) formulation because
it eliminates the phase pressures. Furthermore, this form clearly
shows the interaction between gravity and capillarity. Finally, this
form allows the use of the IMPES, instead of a fully implicit
formulation for a dual-porosity reservoir.

Single-Porosity Compositional Formulation

The flow equations for three-phase compositional formulation are
presented because they are relevant to the fine-grid simulation and
the issue of molecular-diffusion vs. convective-dispersion mixing
of components:
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for c = 1, 2 . . .Nc + 1.
To solve the above equations, the initial and boundary cond-

itions are needed as are a set of pertinent thermodynamic con-

straints. These additional requirements are discussed in many
publications—notably by Acs et al. (1985); Watts (1986); and
Wong et al. (1990); thus, we refer the reader to these publications.

Dual-Porosity Compositional Formulation

The following equations are derived by extending the convention-
al volume-balance compositional formulation (Acs et al. 1985;
Watts 1986; Wong et al. 1990) to dual-porosity systems:

Fracture Flow.
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�r � JMol
w;c; f þ JDispw;c;f

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� tT;c; f =m þ q̂T;c;f ¼ @

@t

fzcf
vT; f

� �
; . . . . . . . . . . . . . . . . . . (43)

for c= 1, 2 . . .Nc + 1.

Matrix Flow.

tT;c; f=m ¼ @

@t

fzcm
vT;m

; (44)

for c= 1, 2. . .Nc + 1.

Pressure Equations. Fracture Pressure Equation.

XNcþ1

c¼1

�vT;c; f Uc; f þ
XNcþ1

c¼1

�vT;c;f tT;c;f =m ¼ ff ðcf þ cvTÞf
@pf
@t

:

(45)

Matrix Pressure Equation.

XNcþ1

c¼1

�vT;c;mtT;c; f=m ¼ fm cf þ cvT

 �

m

@pm
@t

: (46)

In Eqs. 45 and 46,

Uc; f¼

r� xcf xof lof kf rpof�gofrD

 �� 
�r� JMol

o;c; fþJDispo;c; f

� �
þr� ycf xgf lgf k rpgf�ggfrD

� �h i
�r� JMol

g;c; fþJDispg;c; f

� �
þr� wcf xwf lwf k rpwf�gwfrD


 �� 
�r� JMol
w;c; fþJDispw;c; f

� �
þq̂T;c; f

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
;

(47a)

q̂T;c; f ¼ xcxoq̂o þ ycxgq̂g þ wcxwq̂w; (47b)

tT;c; f=m ¼
xcxoto þ ycxgtg þ wcxwtw

þs Sgfm

~t

� �
xg; f=m

h i
DMol

o:c ðyc; f � y�c:mÞ

8<
:

9=
;; (48)

tw ¼ skmlwf=m
pof � pom

 �
þ sz

s gw hwf � hwm

 �� pcwof � pcwom


 �
" #

;

(49)

tg ¼ skmlgf=m
pof � pom

 �
� sz

s gg hgf � hgm

 �þ pcgof � pcgom


 �
" #

;

(50)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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to ¼ skmlof=m
pof � pom

 �
þ sz

s go hwf � hwm

 �� hgf � hgm


 �� 
� 	
;

(51)

cf ¼ 1

f
@f
@p

; (52)

cvT ¼ � 1

vT

@vT
@p

� �
T;N

; (53)

vT ¼ 1

xoSo þ xgSg þ xwSw
; (54)

JMol
o;c ¼ �xoSof

XNc�1

n¼1

DMol
o;c;n

~t
rxn; (55)

JMol
o;Nc

¼ �
XNc�1

k¼1

JMol
o; k ; (56)

JMol
g;c ¼ �xgSgf

XNc�1

k¼1

DMol
g;c;n

~t
ryn; (57)

JMol
g;Nc

¼ �
XNc�1

k¼1

JMol
g;k ; (58)

JMol
w;c ¼ �xwSwf

DMol
w;c

~t
rwc; (59)

and

JDispo;c ¼ ½JDispo;c �i; j ¼
ðal � atÞo vo;ivo; j

�� ��= ~voj j
þat;o ~voj j

" #
dij

þðal � atÞo vo;ivo; j
�� ��= ~voj j

8>><
>>:

9>>=
>>;; (60)

where
c =1, 2. . .Nc;
i = 1, 2, 3 = x, y, z,
j = 1, 2, 3 = x, y, z.

Analysis of Results

Water/Oil Simulation. Several water/oil-displacement numerical
experiments were designed to calculate the oil drainage from the
matrix using a fine-grid simulation and the single-cell transfer-
function computation for the same matrix block. The numerical-
model experiments covered a variety of situations by altering the
matrix size, wettability, capillary pressure, and the boundary con-
ditions. An extensive set of results were presented in an earlier
paper (Balogun et al. 2007), but for this paper only one example
(Case 1) is presented.

Table 1 shows the rock and fluid properties of the matrix
block for Case 1. Fig. 4 shows the relative permeability and
capillary pressure curves used in the models. Fig. 5 shows the oil
recovery obtained from the transfer function and from the fine-
grid model. It can be observed that there is close agreement
between the two models.

Gas/Oil Simulation. The numerical model to study a gas-invoked
oil drainage from a matrix block was constructed using
a multicomponent-fluid system shown in Tables 2 through 6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . .

Fig. 4—Relative permeability and capillary pressure used in
simulation, after Balogun et al. (2007).

Fig. 5—Matrix oil recovery as a function of time for Case 1, after
Balogun et al. (2007).
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The matrix block has dimensions of 20�18�20 ft in the x-y-z
coordinates, respectively, with a porosity of 0.20 and permeability
of 100 md. A vertical x–z fracture was placed in the center of the
matrix block, with a fracture permeability of 10,000 md and
porosity of 0.0056. Gas was injected from the top of the fracture
at a constant rate of 100 Mscf/D and was produced from the
bottom of the fracture at a constant pressure. The grid dimension
was 1 ft both in the vertical direction (z) and perpendicular to the
fracture plane (y). The top and the bottom of the matrix, except for
the fracture cross section, were sealed to gas flow. Thus, gas could
enter the matrix only through the fracture face, and oil from the
matrix could be produced through the fracture face.

Eclipse 300 (Schlumberger; Houston; 2005a) was used to gen-
erate oil drainage vs. time. The oil recovery from the matrix for
four levels of gas/oil capillary holdup pressure (or the capillary
threshold) is shown in Fig. 6. The gas-/oil-saturation distributions
at the end of the experiments are shown in Fig. 7. These two
figures clearly show the enormous sensitivity of oil drainage to
the capillary holdup pressure.

To determine the effect of the molecular diffusion, both as a
mixing mechanism and as a mass-transport vehicle, simulations
were conducted and the results are shown in Fig. 8. It can be seen
clearly that the molecular diffusion effect is rather small.

In fact, if one calculates the effective molecular diffusion from
Eqs. 55 and 57 and compare it with the dispersion coefficient
from Eq. 60, one sees that even for interstitial velocities as low
as 1 ft/D, the molecular diffusion is insignificant.

Finally, we used the following gas/oil-transfer-function mate-
rial-balance equation to calculate oil recovery from the matrix.
The results are shown in Fig. 9, which compare extremely well
with the simulation results shown earlier. Note that there is a
difference in the ultimate recovery, which is caused by the fact
that Eq. 61 does not include the compositional effects taken into
account in the fine-grid simulation runs.

� skm
lng; f=ml

n
o;m=f

lnT

� pncgom � pncgof

� �
þ sz

s


 �
gno � gng

� �
hngf � hngm

� �
2
64

3
75

’ fm

Snþ1
o � Sno
Dt

: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . . . (61)

By comparing the transfer functions of this paper with the
1D gas/oil-gravity-drainage theory [Eq. 5 (Al-Kandari 2002)],
and the numerical results of this work, we believe that when
flow is dominated by gravity drainage, then s should be set
equal to sz; thus sz/s becomes 1. In Part II of this paper
(Al-Kobaisi et al. 2009), we expand Eq. 5 by finite differences
to show why sz/s, for gravity-drainage-dominated situations,
becomes 1.

Conclusions

The objective of this paper is to provide a critical review and
proper use of the matrix/fracture transfer functions by comparing
their output to the output of the fine-grid matrix-block simulation.
The following is a relevant summary:
• A set of transfer functions is provided for various applications
to simulate and calculate oil recovery from a matrix block in
dual-porosity models. The transfer-function approach is shown
to be accurate and computationally more economical than fine
gridding the matrix blocks.

• For immiscible flow, the transfer functions clearly show that
oil drainage from a matrix block is overwhelmingly controlled
by capillary and gravity forces. Viscous displacement is not
typically accounted for in many dual-porosity simulators and,
in general, is negligible. Oil production by fluid expansion
can also be accounted for by means of a transfer-function
approach.
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• For typical production times, molecular diffusion has a very
minor effect on oil recovery from matrix blocks. Molecular
diffusion, however, has significant long-term effects on compo-
nent redistribution or gas production from nanodarcy rocks.

• For miscible flow, the fracture/matrix mass transfer is less
complicated because there is no capillary force, say, between
the solvent (gas) and oil; nevertheless, gravity contrast between

solvent flowing in the fracture and oil residing in the matrix
creates convective mass transfer between fracture and matrix by
gravity. For the immiscible case, the gas enters the matrix from
the highest fracture contact point, while in the miscible case the
solvent (gas) could enter at any point, but upon entry it will try to
rise to the top of the matrix. In this journey, the solvent mixes
with the oil and oil composition changes rapidly.

Fig. 6—Oil recovery as a function of capillary holdup pressure.

Fig. 7—Gas-saturation profile for pth = 2.0 (a); pth = 1.0 (b); pth = 0.0 (c); and pc = 0.0 (d).
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Nomenclature

A = area of an open surface of a matrix block or cross

sectional area normal to flow, ft2

c = compressibility, psi-1

d = distance from the center of a matrix block to an open

bounding surface, ft

D = depth, ft

Dm = molecular diffusion, ft2/D

D̂pc = capillary dispersion coefficient for gas-oil flow, ft2/D

f = fractional flow, fraction

f̂ = fractional flow for gas/oil gravity drainage, fraction

h = gravity head, ft

J = molecular diffusion and/or hydrodynamic dispersion

mass vector, lbm mol/D

k = 0.006328 � absolute permeability, md

kf = 0.006328 � absolute fracture permeability, md

kr = relative permeability

k�r = relative permeability endpoint

k�ro = maximum relative permeability to oil

k�rw = maximum relative permeability to water

l = characteristic length of a matrix block, ft

L = matrix-block dimension, ft

n = number of fracture sets

no = oil exponent

nw = water exponent

Nc = total number of components

p = phase pressure, psi

q = reservoir-flow rate, ft3/D

q̂ = reservoir flow rate per rock volume, day-1 or lbm mol/

ft3�day
RF = recovery factor, fraction

S = saturation, fraction

SgD = dimensionless gas saturation, fraction

SoD = dimensionless oil saturation, fraction

Sorw = residual-oil saturation to water, fraction

SwD = dimensionless water saturation, fraction

Swr = irreducible water saturation, fraction

t = time, days

û = interstitial free fall velocity for the oil phase, ft/D

~u = interstitial velocity vector, ft/D

v = darcy velocity, ft/D

~v = darcy velocity vector, ft/D

vT = specific total volume, ft3/lbm mol

�vT;c = partial total molar volume for comp c, ft3/lbm mol

V = volume of a matrix block, ft3

VR = volume of a gridblock, ft3

wc = mole fraction of water component c, fraction
xc = mole fraction of oil component c, fraction
yc = mole fraction of gas component c, fraction
y�c = mole fraction of gas component c for saturated-oil phase

at pressure p, fraction
zc = total mole fraction of component c, fraction
al = longitudinal dispersion coefficient, ft

at = tranversal dispersion coefficient, ft

g = fluid gravity gradient, psi/ft

Dt = time step, days

Dx = x-direction grid dimension, ft

Dy = y-direction grid dimension, ft

Dz = z-direction grid dimension, ft

l = mobility coefficient, cp-1

m = viscosity, cp

x = molar density, lbm/lbm mol

r = density, lbm/ft3

s = matrix block shape facture, 1/ft2

t = matrix/fracture transfer function, day-1

~t = tortuosity, dimensionless

f = porosity, fraction

Subscripts

c = component

f = fracture

g = gas

m = matrix

o = oil

pc = capillary

w = water

T = total

x = x-direction index

y = y-direction index

z = z-direction index

f = pore
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SI Metric Conversion Factors

cp � 1.0* E – 03 = Pa�s
ft � 3.048* E – 01 = m
ft2 � 9.290 304* E – 02 = m2

ft3 � 2.831 685 E – 02 = m3

�F (�F – 32)/1.8 = �C
lbm� 4.535 924 E – 01 = kg
psi � 6.894 757 E + 00 = kPa

*Conversion factor is exact.
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