Numerical Solution of first order ODEs:

General form: \(\frac{dy}{dx} = f(x, y) \)

\[\begin{pmatrix} \frac{dy}{dx} \\ \frac{d^2 y}{dx^2} \\ \vdots \\ \frac{d^n y}{dx^n} \end{pmatrix} = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix} \]

Simple, familiar example: Newton's Law of motion:

\(\begin{pmatrix} \frac{d\vec{x}}{dt} \\ \frac{d\vec{v}}{dt} \end{pmatrix} = \begin{pmatrix} \frac{\vec{F}(\vec{x}, t)}{m} \end{pmatrix} \)

Specific solution requires boundary conditions; e.g.,

\(x(0) = x_0 \)
\(v(0) = v_0 \)

In typical numerical analysis fashion we must define a domain of interest (time interval).

Discretizing in uniform space:

\(h = \frac{(t_f - t_i)}{N} \)
Under the marker assumption of "smoothness", use Taylor expansion about the last known value, i.e.

Starting:

\[x_{i+1} = x_i + \frac{dx}{dt} \cdot h + \frac{1}{2} \frac{d^2 x}{dt^2} \cdot h^2 + \ldots \]
\[v_{i+1} = v_i + \frac{dv}{dt} \cdot h + \frac{1}{2} \frac{d^2 v}{dt^2} \cdot h^2 + \ldots \]

Truncate to leading order:

\[x_{i+1} = x_i + v_i \cdot h + O(h^2) \]
\[v_{i+1} = v_i + F(x_i, v_i, 0) \cdot h + O(h^3) \]

Now that we "know" \(x_i, v_i \) we can get the next point. Repeatedly, we have for the \((i+1)\)-th step:

\[x_{i+1} = x_i + v_i \cdot h \]
\[v_{i+1} = v_i + \frac{F(x_i, v_i, t_i)}{m} \cdot h \]

"Euler" (damped, explicit, integration).
Problems with Euler.

Consider spring-mass system:

\[\frac{dx}{dt} = v, \quad \frac{dv}{dt} = -\frac{k}{m} x \]

For definiteness, take \(x(t=0) = x_0, \quad v(t=0) = 0 \).

The exact solution is:

\[x(t) = x_0 \cos \omega t \]
\[v(t) = \omega x_0 \sin \omega t \]

where

\[\omega = \sqrt{\frac{k}{m}} \]

This system conserves the total energy:

\[E = \frac{1}{2} m v^2 + \frac{1}{2} k x^2 \]

\[= \frac{1}{2} m \left(\frac{k}{m} \right) x_0^2 \sin^2 \omega t + \frac{1}{2} k x_0^2 \cos^2 \omega t \]

\[= \frac{1}{2} k x_0^2 \left(\sin^2 \omega t + \cos^2 \omega t \right) = \frac{1}{2} k x_0^2 \]

(independent of \(t \))
Examine the Euler algorithm at $t = 1$ (one time step):

$$
\begin{align*}
 x &= x_0 + v_0 \cdot h = x_0 \\
 v &= v_0 - \frac{k}{m} x_0 \cdot h = -\frac{k}{m} x_0 \cdot h
\end{align*}
$$

The energy is not conserved:

$$
\begin{align*}
 E(t = h) &= \frac{1}{2} m \left(-\frac{k}{m} x_0 \cdot h \right)^2 + \frac{1}{2} k x_0^2 \\
 &= E_0 + \frac{1}{2} \left(\frac{k}{m} x_0^2 \right) h^2
\end{align*}
$$

The algorithm gets (x, v) current to $O(h^2)$, but the energy diverges as $O(h^2)$.
Higher order Euler - \(\frac{dy}{dx} = f(x,y) \)

\[y(1) = y_0 + y'(0) h + y''(0) \frac{h^2}{2} + \ldots \]

\[= y(0) + f(0,y_0) h + \frac{d}{dx} f(x,y) \frac{h^2}{2} + \ldots \]

\[\frac{df}{dx} \bigg|_{x=0} = \frac{2f}{2x} + \frac{df}{dy} \frac{dy}{dx} \bigg|_{x=0} = \left[\frac{d^2 f}{dx^2} + \frac{df}{dy} \right] \]

Useful if \(f \) is known analytically.

Otherwise use finite element approximations.

Specifically, at \(x = i+1 \):

\[y_{i+1} = y_i + \frac{h}{2} \left(f_i + f_{i+1} \right) \]

\[+ \left(\frac{f_i - f_{i-1}}{h} + \frac{f_{i+1} - f_i}{h} \right) + \left(\frac{y_i - y_{i-1}}{h^2} \right) \frac{h^2}{2} \]

Better approach - implicit.
Implicit Multistep approach.

Formally, we can write the integration step exactly:

\[y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} f(x, y) \, dx \]

This is not yet useful because we need \(f \) at points we haven't evaluated yet. But we can use Taylor to use information outside the integration region to evaluate \(f \) inside:

Easiest non-trivial case - linear

\[f(x_i \leq x \leq x_{i+1}) = f_i + \left(f_i - f_{i-1} \right) (x - x_i) + \cdots \]

Now do the integral to get 2nd order "Adams-Bashforth"

\[y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} [f_i + \frac{(f_i - f_{i-1}) (x - x_i)}{1}] \, dx \]

\[= y_i + f_i \frac{h}{2} + \frac{f_i - f_{i-1}}{2} \left(x_{i+1} - x_i \right) \]

\[= y_i + f_i \frac{h}{2} + \frac{f_i - f_{i-1}}{2} \left(x_{i+1} - x_i \right) \]