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Abstract

In a previous study [Kiselev, S.B., Ely, J.F., 2003. Generalized corresponding states model for bulk and interfacial properties of pure fluids
and fluid mixtures. Journal of Chemical Physics 119(16), 8645–8662] we developed a formulation of the generalized corresponding states
(GCS) model which incorporated critical region non-analytic behavior via a parametric crossover function. The parametric variable in that
model was obtained from the crossover modification of the sine model originally proposed by Fisher et al. [1999. Trigonometric models for
scaling behavior near criticality. Physical Review B 59(22), 14533–14545]. In this work we have developed a new version of the GCS model
that incorporates an analytical sine (ANS) model solution which greatly simplifies the application of the resulting equation of state (EOS).
Similar to the original GCS/CRS model, the new GCS/ANS model contains the critical point parameters and acentric factor as input and yields
a very accurate description of the PVT- and VLE-surfaces of one-component fluids in a wide range of thermodynamic states, including the
nearest vicinity of the critical point. The GCS/ANS model reproduces the saturated pressure and liquid density data with an average absolute
deviation (AAD) of about 1% and the vapor density with AAD of about 2–3%. In the one phase region for ��2�c the model reproduces the
PVT data with an AAD less then 2% and for liquid densities where ��2�c with an AAD of about 1–2%. In combination with the density
functional theory (DFT), the GCS/ANS–DFT model is also capable of reproducing the surface tension of one-component fluids (polar and
non-polar) with high accuracy.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The cubic equation of state (EOS) first introduced by van
der Waals (vdW) (van der Waals and Kohnstamm, 1927), is
the simplest equation, which predicts the existence of the crit-
ical point and yields a qualitative prediction of vapor–liquid
equilibrium in real fluids. It also allows an explicit formula-
tion of the corresponding states (CS) principle. However, the
quantitative difference between predictions of the vdW EOS
and experiment in real molecular fluids is rather substantial,
especially in the critical region. More recent modifications of
the vdW EOS proposed by Redlich and Kwong (1949), Soave
(1972), and Peng and Robinson (1976) amongst others, yield
a much better representation of the thermodynamic properties
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of fluids and fluid mixtures than the original vdW EOS. How-
ever, all these models and their different empirical and semi-
empirical modifications (Anderko, 2000) fail to reproduce the
non-analytical, singular behavior of fluids in the critical region,
which are caused by long-scale fluctuations in density. As a
consequence, they are incapable of simultaneously reproducing
the critical parameters and the vapor–liquid equilibria (VLE),
PVT, and caloric properties in liquid and vapor phases in and
beyond the critical region with the same set of the molecular
parameters.

A general phenomenological procedure for incorporating
the long-range density fluctuations into any classical equation
was proposed by Kiselev (1998). This procedure based on the
renormalization-group (RG) theory can be applied to any ana-
lytical EOS, which predicts a critical point and in the limit of
low densities, is transformed into the ideal gas equation. In this
approach, one needs first formally to split the dimensionless
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molar classical Helmholtz free energy a(T , v) = A(T , v)/RT

in two contributions

a(T , v) = �a(�T , �v) + abg(T , v), (1)

where the critical, �a(�T , �v), and background, abg(T , v),
parts are given by

�a(�T , �v) = ares(�T , �v) − ares
0 (�T ) + P 0(�T )�v

− ln(�v + 1), (2)

abg(T , v) = ares
0 (T ) − P 0(T )�v + aid(T ), (3)

where �T = T/T0c − 1 and �v = v/v0c − 1 are dimensionless
deviations of the temperature T and the molar volume v from
the classical critical temperature T0c and molar volume v0c pre-
dicted by the classical EOS, P 0(T )=P0(T , v0c)v0c/RT is the
dimensionless pressure, ares

0 (T ) = ares(T , v0c) is the dimen-
sionless residual part of the Helmholtz energy along the critical
isochore v = v0c, and aid(T ) is the dimensionless temperature-
dependent ideal gas Helmholtz free energy.

In the second step, one replaces the classical values of �T

and �v in the critical part �a(�T , �v) with the renormalized
values (Belyakov et al., 1997; Kiselev and Ely, 2001)

� = �Υ −�/2�1 + (1 + �)�TcΥ
2(2−�)/3�1 , (4)

� = �Υ (�−2�)/4�1 + (1 + �)�vcΥ
(2−�)/2�1 , (5)

where �=0.11, �=0.325, and �=2−2�−�=1.24 are universal
non-classical critical exponents (Albright et al., 1986; Anisimov
and Kiselev, 1992) � = T/Tc − 1 is a dimensionless deviation
of the temperature from the true critical temperature Tc, � =
v/vc − 1 is a dimensionless deviation of the molar volume v

from the true critical molar volume vc, �Tc =(Tc −T0c)/T0c �
1 and �vc = (vc − v0c)/v0c � 1 are dimensionless shifts of
the critical temperature and volume, and Υ (q) is a crossover
function (Belyakov et al., 1997; Kiselev and Ely, 2001).

Since the RG equations cannot be solved analytically, no
rigorous theoretical expression for the crossover function can
be obtained. Therefore, in practice, different approximants are
used for the crossover function Υ . The simplest one is a phe-
nomenological expression obtained by Kiselev (1998)

Υ (q) =
(

q

1 + q

)2�1

, (6)

where q = (r/Gi)1/2 is a renormalized distance to the critical
point and r(�, �) is a parametric variable. The crossover func-
tion Υ as given by Eq. (6) coincides with the corresponding
RG-theory crossover function obtained in the first order of
�-expansion by Belyakov and co-workers (Belyakov et al.,
1997). Initially, the renormalized distance q was found by
Kiselev and co-workers from a solution of the crossover linear
model (LM) (Kiselev, 1998; Kiselev and Ely, 1999; Kiselev
and Friend, 1999). In our more recent works, we found q from
a solution of the crossover sine (CRS) model (Kiselev and

Ely, 2000, 2003, 2004; Kiselev et al., 2000, 2001)

(
q2 − �

Gi

) [
1 − p2

4b2

(
1 − �

q2Gi

)]

= b2
{

�[1 + v1 exp(−10�)] + d1�

m0Gi�

}2

Υ (1−2�)/�1 , (7)

where m0, v1, d1, and Gi are system-dependent parameters,
while the universal parameters p2 and b2 can be set equal to
the LM parameter b2

LM = 1.359. The CRS model, unlike the
crossover LM, can be extended into the metastable region and
at temperatures T < Tc gives analytically connected vdW loops.
The term ∝ d1� in Eq. (7) corresponds to the rectilinear di-
ameter of the coexistence curve, which appears from the cu-
bic term in the Landau expansion (Landau and Lifshitz, 1980;
Patashinskii and Pokrovskii, 1979). The LM crossover equation
for the parametric variable q employed earlier by Kiselev et
al. (Kiselev, 1990, 1997; Kiselev and Rainwater, 1998; Kiselev
and Sengers, 1993) is recaptured from Eq. (7) when parameter
p2 → 0. Finally, a crossover expression for the Helmholtz free
energy can be written in the form

a(T , v) = �a(�, �) − �vP 0(T ) + ares
0 (T ) + aid(T ). (8)

The crossover EOS can be obtained by differentiation of
Eq. (8) with respect to the volume

P(v, T ) = −RT

(
�a

�v

)
T

= − RT

v0c

{
v0c

vc

(
��a

��

)
T

− P 0(T )

}
.

(9)

In our previous work (Kiselev and Ely, 2003), we used this
approach to develop a generalized CS model with crossover
(GCS/CRS), that contains only the critical parameters and acen-
tric factor as input but accurately reproduces the PVT- and
VLE-surfaces and the surface tension of one-component fluids
(polar and non-polar) in a wide range of thermodynamic states,
including the nearest vicinity of the critical point. However,
since Eq. (7) is a transcendental equation with respect to q, it
can only be solved numerically. This makes the calculation of
the crossover function and its first and second derivatives with
respect to the temperature, density, and composition compli-
cated and restricts its widespread practical application for en-
gineering calculations. In order to overcome this shortcoming
of the GCS/CRS model, we develop here a fully analytical for-
mulation for the crossover function that can be used in the GCS
and other models.

We proceed as follows: in Section 2 we describe an analytical
sine (ANS) model for the crossover function Υ . In Section 3,
we present a redefined formulation for GCS model and provide
its comparison with experimental VLE, PVT, and surface data
for pure fluids. Our results are summarized in Section 4.

2. Analytical sine model

Far away from the critical point q → ∞, the crossover
function Υ → 1 and the renormalized temperature � = � +
(1 + �)�Tc = T/T0c − 1 and order parameter � = � + (1 +
�)�vc = v/v0c − 1 coincide with their classical values �T
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and �v. Thus, in this limit the crossover expression for the
Helmholtz free energy, Eq. (8) is always transformed to its
classical analog, Eq. (1). Therefore, in order to develop an ANS
model, which reproduces an asymptotic scaling behavior in
the critical region, one needs to first consider the asymptotic
behavior of the crossover function as q → 0.

Asymptotically close to the critical point at q � 1, and the
crossover function becomes

Υ (q)�q2�1 =
( r

Gi

)�1
. (10)

Thus, Eq. (7) is transformed into the trigonometric model orig-
inally developed by Fisher and co-workers (Fisher et al., 1999)

� = r

(
1 − 2b2 [1 − cos(p	)]

p2

)
, � = m0r

� sin(p	)

p
, (11)

and in the case p2 = b2

(r − �)

[
r − 1

4
(r − �)

]
=

(
b

m0
�̂

)2

r2−2�, (12)

where we have introduced a notation �̂=�[1+v1 exp(−10�)]+
d1�. Along the critical isochore (�̂ = 0) Eq. (12) has a solution
r =� when ��0 and r =|�|/3 when � < 0, and along the critical
isotherm (� = 0) its solution is given by

r =
(

4b

3m0
|�̂|

)1/�

. (13)

Eq. (12) does not contain the crossover function Υ and, there-
fore, is simpler than Eq. (7). However, it is still a transcendental
equation with respect to r and can only be numerically solved
for arbitrary � and �. In order to overcome this shortcoming,
we rewrite Eq. (12) in the form

(r − �)

[
r − 1

4
(r − �)

]
=

(
b

m0
|�̂|

)a

r2−b, (14)

and set a = 1/� and b = 1. Given this notational change, Eq.
(14) can be rewritten in the form

3r2 − r

[
4

(
b

m0
|�̂|

)1/�

+ 2�

]
− �2 = 0, (15)

with the solution

r=4((b/m0)|�̂|)1/�+2�+
√

[4((b/m0)|�̂|)1/�+2�]2+12�2

6
.

(16)

Along the critical isochore (�̂ = 0), the solution of Eq. (15) ex-
actly coincides with corresponding solutions of Eq. (12), while
along the critical isotherm, � = 0, the solution reads

r = 4

3

(
b

m0
|�̂|

)1/�

. (17)

If we perform the renormalization m0 → m0(3/4)1−�, this
result also coincides with the corresponding solution of the
original sine model, Eq. (13).
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Fig. 1. The crossover function Υ , Eq. (6), along the separate isochores as
a function of � calculated with the parametric variable q defined from the
crossover sine, Eq. (18) (solid curves), and analytical sine, Eq. (7) (dashed
curves), model.

Finally, the parametric variable q in Eq. (6) for the crossover
function Υ (q) in the ANS model can be written in the form:

q2=4((b/m0)|�̂|)1/�+2�+
√

[4((b/m0)|�̂|)1/�+2�]2+12�2

6Gi
.

(18)

It easy to show that when � < 0 (or T < Tc) the ANS model
predictions as given by Eqs. (6) and (18) are very similar to
the CRS model and can be extended into the metastable region
where |�|� |�c/�V,L − 1| (or �V (T )����L(T )).

A comparison of the crossover function Υ (q) calculated
with the parameter q defined from the CRS model (Eq. (7)
with v1 = d1 = 0 (or �̂= �=�c/�− 1), Gi = 0.01, and m0 = 1)
and from the ANS model (Eq. (18) with m0 = 1.2) is shown
in Fig. 1. As one can see, along the critical isochore � = 0 and
along the critical isotherm � = 0 at � � 1, the two crossover
functions are practically indistinguishable, thus providing a
correct renormalization of all thermodynamic properties in
the asymptotic critical region where q � 1. Far way from
the critical point (at q � 1, or at � > 10 and � > 1), both
crossover functions approach unity as they must in order to
approach the ideal gas state. However, there are some system-
atic deviations between these two crossover functions in the
intermediate-crossover region where 0.05 < ��1 and � < 1
(or 0.1 < q < 10). This means, that if one were to switch
from the full crossover model (CRS) to the analytical (ANS)
model, all system-dependent parameters, namely the coef-
ficients m0, v1, d1, and the Ginzburg number Gi, should be
redefined.

3. Redefined GCS model

The GCS model developed in our previous work (Kiselev
and Ely, 2003), was based on the analytical–classical cubic
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Fig. 2. P�T data (symbols) for water (Rivkin and Akhundov, 1962, 1963; Rivkin et al., 1966; Rivkin and Troyanovskaya, 1964) (left) and carbon dioxide
(Duschek et al., 1990; Gilgen et al., 1992) (right) with predictions of the GCS/CRS (solid curves), and GCS /ANS models (dashed curves), model. The empty
symbols correspond to the one-phase region, and the filled symbols indicate the VLE data with the IAPWS-95 Formulation (IAPWS, 1996).
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Fig. 3. The vapor pressure (left) and saturated density (right) data for hydrofluorocarbons R12 (Fernandez-Fassnacht and Del Rio, 1985; Kells et al., 1955;
McHarness et al., 1955; Watanabe et al., 1977), R134A (Baehr and Tillner-Roth, 1991; Morrison and Ward, 1991), R32 (Malbrunot et al., 1968), and R125
(Defibaugh and Morrison, 1992; Kuwubara et al., 1995; Magee, 1996) (symbols) with predictions of the GCS/CRS (solid curves), and GCS /ANS models
(dashed curves), model.

Patel–Teja (PT) EOS (Patel, 1996; Patel and Teja, 1982) and
the CRS model for the crossover function Υ (q), Eqs. (6) and
(7). In this work, we reformulated the GCS model by using
the ANS model defined by Eq. (18) for Υ (q). The differences
between CRS and ANS models in the intermediate range of
the parameter q, force us to redefine the CS correlations for
the classical compressibility factor Zc0, the parameters v1, d1,
m0, the Ginzburg number Gi that were reported in our previous
work (Kiselev and Ely, 2003).

Following the methods used to develop the GCS/CRS model,
we set T0c = Tc (or �Tc = 0 in Eq. (4)). Then, using a proce-
dure described in our previous work, we found that the param-
eter m0 for the GCS/ANS model can be also considered as a

system-independent constant, m0 = 2.5, while for the classical
compressibility factor Zc0, and the coefficients v1 and d1 can
be represented as simple linear functions of the real compress-
ibility factor Zc:

Zc0 =
{

0.080227 + 0.879825Zc, Zc < Zmax
c ,

0.333333, Zc �Zmax
c = 0.287672,

(19)

d1 = 13.7932 − 52.8651Zc, (20)

v1 = −0.022223 + 0.125625Zc. (21)

For the Ginzburg number in the GCS/ANS model we adopted
the same expression as in the GCS model, but with redefined
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numerical values of all coefficients

Gi−1 = 2.99301 · 102
1/2
(

1 − 2.51423
1/2 + 1.93960
3/2
)

+ 7.51973 · 10Zc + 0.621342Mw, (22)

where 
 is Pitzer’s acentric factor and Mw is the molecular
weight. After this redefinition, the GCS/ANS model for one-
component fluids can be written in the same form as in the
GCS/CRS model

Pr = f ANS(Tr , �r ; 
, Zc), (23)

where, however, instead the GCS/CRS crossover function f CR

we now use the ANS model crossover function f ANS. An
exact analytical expression for f ANS can be obtained from
Eqs. (8) and (9), where for the classical residual Helmholtz free
energy one should use an analytical expression obtained from
the integration of the cubic PT EOS

ares(T , v) = − 1

RT

∫
P PT(T , v) dv + a0(T ). (24)

Since all derivatives (�Υ/��)�, (�Υ/��)�,
(
�2Υ/��2

)
�,(

�2Υ/��2
)
�, and

(
�2Υ/�� ��

)
in the ANS model can be taken

analytically, the corresponding derivatives of the crossover
function f ANS and, consequently, of the pressure P(T , v) with
respect to the temperature, T, and density, � = 1/v, can be ob-
tained in a closed analytical form. This makes the GCS/ANS
model much more convenient for the practical applications
than the GCS/CRS model.

The predictions of the GCS/ANS model for water, carbon
dioxide, and some hydrofluorocarbons are compared with ex-
perimental data and the predictions of the GCS/CRS model
in Figs. 2 and 3. As one can see, in all cases the GCS/ANS
and GCS/CRS predictions either coincide, or lie very close to
each other. Like the GCS/CRS model, the GCS/ANS model
reproduces the saturated pressure and liquid density data for
all fluids with an average absolute deviation (AAD) of about
1% and the vapor density with an AAD of about 2–3%. In the
one phase region where ��2�c the GCS model reproduces the
PVT data with an AAD less than 2% and for liquid densities
where ��2�c, with an AAD of about 1–2%.

Fig. 2 shows that the GCS/ANS model as well as the
GCS/CRS model generates analytically connected vdW loops
in the metastable region at temperatures T < Tc. This allows
us to use the GCS/ANS model in the density functional theory
(DFT) expression for the surface tension (Kiselev and Ely,
2003)

� = c
1/2
0

∫ �L

�V

[
�Â(�)

]1/2
d�, (25)

where �Â(�) = �Ab(T , �) − ��(T , �V,L) = �RT�a(T , �)

is the excess part of the Helmholtz free energy density, and
�(T , �V,L) = (��A/��)T is the chemical potential of the bulk
fluid along the saturated curve � = �V,L(T ).

In this work, we have used Eq. (8) with all parameters ob-
tained from the GCS/ANS model for the calculation of the
excess free energy density �Â(T , �) that appears in Eq. (25).
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Fig. 4. The surface tension data for water (IAPWS, 1994) (symbols) with
predictions of the GCS/CRS–DFT (solid curves) and GCS/ANS–DFT (dashed
curves) model.

Using the methods from the development of the GCS/CRS–DFT,
for ordinary and heavy water we set

c0 = (1 − 
0)
2kBT �1/3

c , (26)

where kB is Boltzmann’s constant, and for all other fluids

c0 = (1 − 
0)
2kBTc�

1/3
c . (27)

For the parameter 
0 in Eqs. (26) and (27) we use the relation


0 = 0.141782Mw(1 − 3.31649Zc − 0.3545
), (28)
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bon dioxide (symbols) with predictions of the GCS/CRS–DFT (solid curves)
and GCS/ANS–DFT (dashed curves) model.

which differs from the corresponding expression in the
GCS/CRS–DFT model (Kiselev and Ely, 2003).

A comparison of the GCS/ANS–DFT predictions for the
surface tension with experimental data for water is shown
in Fig. 4. The solid curves in Fig. 4 correspond to the values
calculated with the GCS/CRS–DFT with the experimental
values of the parameter 
0 = 0.33 (Kiselev and Ely, 2003),
while the dashed curves represent the GCS/ANS predic-
tions with the parameter 
0 determined from Eq. (28). In
the entire temperature range from the critical temperature to
T = 400 K, good agreement between experimental data and
GCS/ANS predictions is observed. At temperatures T < 400 K,
the GCS/ANS predictions lie systematically lower than ex-
perimental data. But even at low temperatures the deviations
from experimental data do not exceed 7%, which can be con-
sidered to be excellent predictions in a fluid as complex as
water. The GCS/ANS–DFT predictions are compared with sur-
face tension data for methane, ethane, and carbon dioxide in
Fig. 5. Again, excellent agreement between GCS/ANS–DFT
and experimental data for all fluids is observed.

4. Conclusion

A general phenomenological procedure for transformation
of any classical equation into the crossover form, which in
the critical region reproduces theoretically well established
scaling laws, and in the limit of low densities is transformed
into the ideal gas equation was proposed by Kiselev (1998).
In this work, using this procedure and a new ANS model
for the crossover function, we developed a new formulation
for the GCS model, which uses the Patel–Teja (PT) EOS

(Patel and Teja, 1982) as a reference EOS for one-component
fluids. Unlike the GCS model developed before (Kiselev and
Ely, 2003), the new GCS/ANS model is fully analytical and
does not require a numerical solution of any transcendental
equation. When T > Tc and ��1.8�c, the GCS/ANS model
reproduces the pressures and, when � > 1.8�c, the liquid den-
sities with an AAD of about 1–2%. In the temperature region
T �Tc, the new GCS/ASN reproduces the saturated pressure
data with an AAD of about 0.5–1%, the liquid density data with
an AAD of about 1%, and the vapor density to within 2–3%.
In combination with the DFT, the GCS/ANS–DFT model
also yields an excellent description of the surface tension of
one-component fluids.

In present work, we considered the GCS with a simple cubic
PT EOS as an example. In principle, the same approach, i.e.,
replacement of the CRS model employed before (Kiselev and
Ely, 2003) with the new ANS model, can be also be applied
to other types of crossover equations including SAFT (Hu et
al., 2003a; Kiselev and Ely, 1999; Kiselev et al., 2001), SAFT-
BACK (Hu et al., 2003b), SAFT-VR (McCabe and Kiselev,
2004a,b), and structure optimized empirical multi-parameter
equations of state (Sun et al., 2005). Of course, all system-
dependent parameters in these equations must be redefined.
Similar to the GCS model, the GCS/ANS can be also extended
to binary mixtures. Work in this direction is now in progress,
and the results will be reported in future publications.
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