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Abstract

A simplified modification of the crossover statistical associating fluid theory (SAFT) EOS is used to describe
thermodynamic properties of pure fluids and binary mixtures over a wide range of parameters of state including
the nearest vicinity of the critical point. For pure fluids, the simplified crossover (SCR) SAFT model contains only
three adjustable parameters but allows an accurate prediction of the critical parameters of pure fluids and yields
a better representation of the thermodynamic properties of pure fluids than the original SAFT equation of state.
For binary mixtures, simple mixing rules with only one adjustable parameter are used. A comparison is made with
experimental data for pure refrigerants R12, R22, R32, R125, R134a, R143a, and mixtures R22+R12, R32+R134a
and R125+ R32 in the one- and two-phase regions. The SCR SAFT EOS reproduces the saturated pressure data
with an average absolute deviation (AAD) of about 1.1% and the saturated liquid densities with an AAD of about
0.9%. In the one-phase region, the SCR SAFT equation represents the experimental values of pressure with an AAD
of about 2.2% in the range of temperatures and density bounded byT ≥ T c andρ ≤ 2ρc. © 2000 Elsevier Science
B.V. All rights reserved.
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Vapor–liquid equilibria

1. Introduction

It is well known that all analytical equations of state fail to reproduce the non-analytical, singular
behavior of fluids in the critical region caused by long-scale fluctuations in density. The long-range
fluctuations in the density, which involve a huge number of molecules, cause the thermodynamic surface of
fluids to exhibit a singularity at the critical point. This asymptotic singular behavior of the thermodynamic
properties can be described in terms of scaling laws with universal critical exponents and universal scaling
functions [1,2].

Attempts to develop a crossover equation of state which incorporates the scaling laws asymptotically
close to the critical point and is transformed into the original classical-analytical EOS far from the critical
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point have been made by many authors [3–16]. A most general procedure for transforming any classical
equation of state into the crossover form was proposed recently by Kiselev [17]. This procedure has a
theoretical foundation in the renormalization-group (RG) theory and has been successfully applied to the
cubic Patel–Teja (PT) EOS [17,18] and to the statistical associating fluid theory (SAFT) EOS [19].

As was shown by Kiselev and coworkers [17–19], the incorporation of the universal crossover functions
into a simple classical EOS not only yields a better description of thePVTand vapor–liquid equilibrium
(VLE) properties in the critical region, but also improves the representation of the thermodynamic surface
of dense fluids in general. As input, the crossover cubic and SAFT EOS developed by Kiselev and
coworkers [17–19] requires the original classical EOS parameters, the critical temperature and density
and at least three additional system-dependent parameters more then original classical EOS.

Recently, Jiang and Prausnitz [20] presented a related paper using an equation of state for chain fluids
(EOSCF) and a global RG method developed by White et al. [8–10]. Their crossover model contains
fewer the adjustable parameters than the crossover SAFT EOS [17,18], but the EOSCF+ RG equations
can be solved only numerically and require an additional spline function for a representation of the
thermodynamic surface of real fluids.

The thermodynamic surface of binary mixtures in the critical region differs substantially from that
observed in pure fluids. In the critical region a mixture displays a regime of pure-fluid-like behavior at
fixed field variable (chemical potentialµ) rather than at fixed compositionx [21–24]. As a consequence,
all thermodynamic properties calculated at fixed composition are renormalized in the critical region
of a binary mixture [2,24,25]. There are few crossover models of mixtures formulated in terms of the
chemical potential that incorporate scaling laws in the critical region. Namely, the six-term crossover
model developed by Sengers and coworkers [26,27], the crossover Leung–Griffiths model developed by
Belyakov et al. [28], and the more extensive parametric crossover model developed by Kiselev [29].
In Kiselev’s approach [29,30], all parameters of the theory are expressed as functions of the excess
critical compressibility factor of the mixture. Therefore, if the critical locus of the mixture is known, all
other thermodynamic properties can be predicted [29–33]. So far, all of these crossover equations were
developed for Type I binary mixtures only and they do not reproduce the ideal gas equation of state in
the limit of low densities.

In this paper, we continue our study of the crossover SAFT EOS initiated in our previous work [19].
We present a new, simplified crossover SAFT EOS which contains the same number of the adjustable
parameters as original SAFT EOS but yields much better representation of the thermodynamic surface
of pure fluids than original SAFT EOS. In order to extend this EOS to mixtures we formulate the mixing
rules in terms of compositions and develop the simplified crossover SAFT EOS for fluid mixtures.

2. Crossover SAFT model

In order to obtain the crossover formulation of the SAFT EOS one needs to start from the classical
formulation of the Helmholtz free energy density. The original SAFT EOS is given in terms of the residual
Helmholtz free energy per mole [34].

a(T , v) = ares(T , v) + aideal(T , v) (1)

wherea(T , v) is the total Helmholtz free energy,ares(T , v) is the residual Helmholtz free energy, and
aideal(T , v) = −RTln(v)+a0(T ) is the ideal gas Helmholtz free energy per mole at the same temperature
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T and molar volumev = V/N . A general method for transforming any classical equation of state into
a crossover equation was described in detail by Kiselev [17]; therefore, we will not reproduce it here.
In the present work, we will use the crossover SAFT EOS obtained with Kiselev’s method given in our
previous publication [19].

The final expression for the dimensionless crossover Helmholtz free energyĀ(T , v) = a(T , v)/RTfor
the SAFT equation of state can be written in the form [19]

Ā(T , v) = 1Ā(τ̄ , 1η̄) − 1vP̄0(T ) + Āres
0 (T ) + Ā0(T ) −K(τ 2) (2)

where1v = v/v0c − 1 is the classical order parameter,τ = T/T c − 1 is the dimensionless deviation
of the temperature from the critical temperatureTc, and1η = v/vc − 1 is the dimensionless deviation
of the molar volumev from the critical volumevc, and τ̄ and1η̄ are their renormalized values to be
specified below. The critical part of the dimensionless Helmholtz free energy is

1Ā(τ̄ , 1η̄) = Āres(τ̄ , 1η̄) − Āres(τ̄ , 0) − ln(1η̄ + 1) + 1η̄P̄0(τ̄ ) (3)

where the dimensionless residual part of the Helmholtz free energyĀres = ares/RT is given by

Āres(τ̄ , 1η̄) = m


4η̄ − 3η̄2

(1 − η̄)2
+
∑

i

∑
j

Dij

(
u

kT0c(τ̄ + 1)
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)j




+(1 − m) ln ghs(η̄) + Āassoc(τ̄ , 1η̄) (4)

whereDij are universal constants [35],

ghs(η̄) = 2 − η̄

2(1 − η̄)3
(5)

is a hard sphere radial distribution function at contact,η̄=η0c/(1η̄ + 1) is the renormalized reduced
density,η0c = η0mv0/v0c is the reduced critical density,η0 = 0.74048. In Eqs. (1)–(4)R is the universal
gas constant,k the Boltzmann constant, and the parametersv0 andu are given by

v0 = v00

[
1 − C exp

( −3u0

kT0c(τ̄ + 1)

)]3

(6)

u = u0

(
1 + e

kT0c(τ̄ + 1)

)
(7)

whereC = 0.12, e/k = 10, andv00 and u0 are system-dependent parameters. The last term in (4)
corresponds the Helmholtz free energy change due to association [19]. An explicit expression for this
term and the crossover SAFT EOS for self-associated fluids are discussed in [19,36]. Since self-associated
fluids are not considered in this work, we setĀassoc= 0.

In Eqs. (2)–(7), the parametersT0c andv0c are the classical critical parameters found from the original
SAFT EOS through the conditions

P0c = −
(

∂a

∂v

)
T0c

,

(
∂2a

∂v2

)
T0c

= 0,

(
∂3a

∂v3

)
T0c

= 0 (8)
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These equations for the SAFT EOS can be solved only numerically. In general, the critical parameters in
the original SAFT EOST0c, v0c, andP0c are the complicated functions of the parametersm, v00, andu0,
do not coincide with the real (experimental) critical parametersTc, vc, andPc.

The renormalized pressurēP0(τ̄ ) is given by [19]

P̄0(τ̄ ) = m


4η0c − 2η2
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and the temperature-dependent functionsĀres
0 (T ) andP̄0(T ) in Eq. (2) are given by

Āres
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where the hard sphere distribution functionghs is given by the Eq. (5) with̄η = η0c, and parametersv0

andu are given by Eqs. (6) and (7). Eqs. (9) and (11) have a similar form with the principal difference
between them being that̄P0 in Eq. (11) is a function only of the temperatureT, while P̄0 as given by
Eq. (9) is a function of the renormalized temperatureτ̄ , which depends on both variables,T andv.

The renormalized temperatureτ̄ and order parameter1η̄ in Eqs. (2)–(9) are related to the real dimen-
sionless temperatureτ and the real order parameter1η through

τ̄ = τY−α/211 + (1 + τ)1τcY
2(2−α)/311 (12)

1η̄ = 1ηY (γ−2β)/411 + (1 + 1η)1ηcY
(2−α)/211 (13)

where the factors1τc = 1Tc/T0c = (Tc − T0c)/T0c and1ηc = 1vc/v0c = (vc − v0c)/v0c are the
dimensionless shifts of the real critical temperatureTc and the real critical volumevc from the classical
values,T0c andv0c, defined by Eqs. (8) and Eqs. (12) and (13) with1τ c 6= 0 and1ηc 6= 0 automatically
provide the critical conditions(

∂2Ā

∂v2

)
Tc(v=vc)

= 0,

(
∂3Ā

∂v3

)
Tc(v=vc)

= 0 (14)

(compare with the critical conditions for the classical SAFT EOS given by Eq. (8)). Thus, using the
non-zero critical shifts in Eqs. (12) and (13) one can set for the crossover SAFT EOS the real experimental
values of the critical temperatureTc and volumevc, while the critical pressure

Pc = −RT

(
∂Ā

∂v

)
Tc(v=vc)

(15)
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for the crossover SAFT EOS remains a complicated function of the parametersm, v00, u0, Tc, andvc.The
kernel term in Eq. (2) gives rise to a heat capacity divergence along the critical isochore and can be written
as

K(τ 2) = 1
2a20τ

2(Y−α/11 − 1) + 1
2a21τ

2(Y−(α−11)/11 − 1) (16)

where the first term corresponds to the asymptotic limit and the second term to the first Wegner correction
for the isochoric specific heat [37]. In Eqs. (12)–(16),γ = 1.24, β = 0.325, α = 2−γ −2β = 0.110, and
11 = 0.51 are the universal non-classical critical exponents. The crossover functionY in Eqs. (12)–(16)
is represented in the parametric form [18]

Y (q) =
(

q

1 + q

)211

(17)

which corresponds to the theoretical crossover function obtained by Belyakov et al. [28] in the first order
of anε-expansion.

In Eq. (17) the parametric variableq2 = r/Gi, wherer has a meaning of a dimensionless measure of
the distance from the critical point, andGi is the Ginzburg number of a fluid of interest [17,38,39]. In our
previous work [19], we found the variabler from a solution of the parametric linear model (LM) EOS.
The LM EOS has a theoretical foundation in the renormalization-group theory and was confirmed in the
second order of anε-expansion [40], but it cannot be extended into the metastable region or represent
analytically connected van der Waals loops. Therefore, in the present work, we find the variabler from
a solution of the parametric sine model developed recently by Fisher and coworkers [41]:

τ = r

(
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p2

)
, 1η = m0r

β sin(pθ)

p
(18)

where (r, θ ) are the parametric variables,m0 an adjustable parameter, whileb2 andp2 are the universal
sine-model parameters. Unlike the linear model employed earlier by Kiselev and coworkers [17–19], the
sine model with the parameterp2
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+, where

p2
± = 2b2[1 ± 2

√
(1 − β)] (19)

always has a solution in the reTmfl
(p)Tjfl
/F6 1S5t
/F2 1 Tffl
12.3595384TDfl
(` w 9fl
(sc34)Tjfl
</F6 1 Tffl
1.0077 TD54fl
0 Tcfl
[(])-270fl
/F9 1S526./F1 1 Tffl
4.1198 017.2
(�)j/F2 1 Tffl
0.505 028.2
(�)1]TJfl
F1 1 Tffl
1.0552 344fl
0 Tcfl
0 Tfl
(sc34)j!/F6 1 Tffl
1.0077 129 fl
0 Tcfl
[(])-270fl
/F9 1S)]TJ.fl
/F6 1SAt
/F2 1 Tffl
12.3540 TDDfl
(b)Tjfl
/F6 1 Tffl
7.671 0 0 7.671 132.938 -24.53 36377(2)Tjfl
/F1 1 Tffl
-0.049 0 0 10.959 331.8695 -8.345
0 99(D)Tjfl
/F6 1 Tffl
1.182 0 512fl
(b)Tjfl
/F6 1 Tffl
7.671 0 0 7.671 132.941 lfl2.514 3832(2)Tjfl
/F1 129 -28.243 T24
(C)Tj29 -(((sc34)LM/F1 1 Tffl
-0.049 0 0 10.959 331.816 T02.235
0 99(D)Tj
(D)Tjfl
/F2 1 T6fl
1.182 0 512fl
(b)Tjfl1/F2 1 Tffl
0.505 0 fl
(b)Tjfl:/F6 1 Tffl
0.373 027 fl
(b)Tj[( TDfl
/F6 1S526./F1 1 Tffl
0.5053 011.2
(�2D!/F6 1 Tffl
1.007 38702fl
(b)Tjfl
/F2 1-4 33481818 TDfl
[(sine-Eq.fl
/65 7))Tjfl
-
/65 7is-
/65 7⁄ransform26.3/65 7into-
/65 7⁄03.8(65 7origin(w)8(65 7fl)-226l)-226.3(65 7de)15(ersal)lop26.3/65 7¯.3/65 7Schoworkers





S.B. Kiselev, J.F. Ely / Fluid Phase Equilibria 174 (2000) 93–113 99

Table 1
Constants in Eqs. (23)–(26) for the SCR SAFT EOS

Coefficients

δτ 3.4× 10−2

v
(0)

1 −4.9× 10−2

d
(0)

1 0.166

δρ 5.4

v
(1)

1 5.0× 10−3

d
(1)

1 5.5

the parametersd0
1 andd1

1 in Eq. (26), are not sensitive to the choice of fluid. Therefore, in the simplified
crossover (SCR) SAFT EOS, all these parameters were considered constant. The values of all universal
parameters for the SCR SAFT EOS are given in Table 1.

In this study, we have applied the SCR SAFT EOS for the description of the experimental data of
refrigerants R12, R22, R32, R125, R134a, and R145a in the one- and two-phase regions. Similar to the
crossover SAFT EOS forn-alkanes [19], the inverse Ginzburg numberg = 1/Gi for hydrofluorocarbons
was represented as linear function of the molecular weight:

g = g(0) + g(1)Mw (27)

where the parametersg(0) = 6.6345 andg(1) = 0.0945 were found from a fit of the SCR SAFT EOS to the
VLE data for R32 and R125. After the determination of the parameterg, only three adjustable parameters
m,v00, andu0 in the SCR SAFT EOS were left. For all refrigerants, we found these parameters from a fit of
the SCR SAFT EOS only to saturated pressure and liquid density data. The values of all system-dependent
parameters, together with calculated and experimental values of the critical parameters for R12, R22, R32,
R125, R134a, and R145a, are given in Table 2. Good agreement between calculated and experimental
values of critical parameters is observed. The maximum deviation of the calculated values from the
experimental ones does not exceed 0.6 K forTc (or about 0.17%), 0.25 mol l−1 (or about 4%) forρc, and
0.1 MPa (or about 2%) forPc. A comparison of the saturated pressure data with the values calculated with
SCR SAFT EOS is shown in Fig. 1. The calculated and experimental values of saturated liquid densities
are shown in Fig. 2. The percentage deviations of experimental saturated pressures and liquid densities
from the values calculated with the simplified crossover SAFT equation of state are given in Fig. 3. The
SCR SAFT EOS describes the saturated pressures and liquid densities for all refrigerants with an average
absolute deviation (AAD) of about 1%.

Unlike our previous crossover SAFT EOS based on the LM EOS for the parametric variableq [19], the
SCR SAFT EOS not only gives an accurate representation of the thermodynamic properties of pure fluids
in the two-phase region but also is capable of representing the analytically connected van der Waals loops
in the metastable region. The van der Waals loops calculated for refrigerant R32 with the SCR SAFT
EOS are shown in Fig. 4.

Since in the optimization of the model no experimental data in the one-phase region were used, it
is interesting to test the predictions of the model in the one-phase region. A comparison of the calcu-
lated liquid density with experimental data for R134a is shown in Fig. 5. The maximum deviation of
the experimental densities from the calculated ones for all points presented in Fig. 6 does not exceed
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Table 2
System-dependent constants for the simplified crossover SAFT EOS

Parameter R12 R22 R32 R125 R134a R143a

v00 (mL.mol−1) 9.1736 6.4522 4.0768 5.7531 4.9959 6.1525
m 4.2972 4.7746 5.6816 6.0515 6.5899 5.6319
u0/k (K) 153.17 140.02 124.18 116.85 125.18 122.70
Mw 120.91 86.469 52.024 120.00 102.03 84.044
ω 0.177 0.221 0.277 0.303 0.327 0.261

Critical parametersa

T calc
c (K) 385.40 368.94 351.50 339.67 374.72 346.47

T
exp

c (K) 385.01 369.32 351.35 339.33 374.27 345.88
ρcalc

c (mol.L−1) 4.7692 6.2044 8.3855 4.8398 5.0856 5.2505
ρ

exp
c (mol.L−1) 4.6974 5.9559 8.2008 4.7600 5.1390 5.1282

P calc
c (MPa) 4.0991 4.8245 5.7003 3.5961 4.0457 3.7812

P
exp
c (MPa) 4.1290 4.9210 5.7950 3.6290 4.0650 3.7640

Average absolute deviation (AAD%)b

Psat 0.87 1.27 1.10 1.14 1.13 1.34
ρL

sat 0.95 0.71 1.95 0.53 0.53 0.95
PVT 2.88 1.99 2.09 2.24 1.84 2.48

a Superscripts “calc” and “exp” correspond to the calculated and experimental values, respectively. The experimental critical
parameters were taken from [31] for R12 and R22, from [33] for R32, R125 and R134a, and from [55] for R143a.

b AAD calculated in the temperature region 0.7T c ≤ T ≤ T c for Psat, at 0.5T c ≤ T ≤ T c for ρL
sat, and in the one-phase

region atT ≥ T c andρ ≤ 2ρc for PVTdata.

0.6 mol l−1, or about 4%. These deviations are mostly observed at low temperatures viz.T ≤ 0.7T c,
or u/kT ≥ 0.6. Since for simple non-associating fluids the SAFT EOS is simply a combination of the
repulsive hard-sphere contribution and the dispersion term which is represented in the power series of
u/kT [34], it is not surprising that at lower temperatures whereu/kT ≈ 1 the crossover SAFT EOS gives

Fig. 1. Saturated pressure data for R12 [56–58], R22 [59,60], R32 [61], R125 [62], R134a [63], and R143a [64] (symbols) with
predictions of the simplified crossover SAFT equation of state (lines).
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Fig. 2. Saturated density data for R12 [65], R22 [66], R32 [61], R125 [62,67,68], R134a [69], and R143a [64] (symbols) with
predictions of the simplified crossover SAFT equation of state (lines).

worse results than in the high-temperature region, atu/kT � 1. In order to improve the representation of
experimental data with the crossover SAFT EOS in the regionu/kT ≈ 1, the original SAFT EOS should
be improved first. One way of doing this is to include into the original SAFT EOS the additional dipolar
and quadrupolar contributions as was done, for example, in the BACKONE equations [45]. However,
one should admit that even in the present form, the SCR SAFT EOS yields a major improvement in

Fig. 3. Percentage deviations of experimental saturated pressures (top) and saturated liquid densities (bottom) for pure refrigerants
from the values calculated with the simplified crossover SAFT equation of state. Legend as in Figs. 1 and 2.
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Fig. 4. The van der Waals loops for refrigerant R32 calculated with the simplified crossover SAFT equation of state. The symbols
represent experimental data obtained by Defibaugh et al. [70] and by Holste et al. [71].

the description of thePVTsurface of pure refrigerants in the one- and two-phase regions. In Fig. 6, we
show the calculated pressures in comparison with experimental data for R32. The dashed curves in Fig. 6
correspond to the values calculated with crossover Patel–Teja (CR PT) EOS [17]. As one can see, the
SCR SAFT EOS yields much better representation of the high-densityPVTdata than CR PT EOS. The
values of AAD for pressure in the one- and two-phase region for all refrigerants are presented in Table 2.

We need to note that the values of AAD presented in Table 2 for the one-phase region are not a result of a
fit of the SCR SAFT EOS to experimental data in the one-phase region, but a pure prediction of the model

Fig. 5. Liquid density data [72] for R134a (symbols) with predictions of the simplified crossover SAFT equation of state (lines).
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Fig. 6.PρT data [61,70,71] for R32 (symbols) with predictions of the simplified crossover SAFT equation of state (solid lines)
and with the crossover cubic EOS [17] (dashed lines).

with the parameters obtained for the two-phase region. We are not aware of any other three-parameter
model with the same power of predictability. Recently, Fermeglia et al. [46] presented a comparison with
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while for the energetic parameteru0(x), we adopt the van der Waals mixing rule:

u0(x) =
∑

i

∑
j

xixju
0
ij (29)

associated with the quadratic equation

u0
ij =

√
u0

i u
0
j (1 − kij ), kij = kji , kii = kjj = 0 (30)

wherekij is a binary interaction parameter. With these mixing rules, the critical parameters which appear
in Eqs. (2)–(11) are not anymore the real critical parameters of a mixture which can be found from the
conditions(

∂µ

∂x

)
Pc,Tc(v=vc)

= 0,

(
∂2µ

∂x2

)
Pc,Tc(v=vc)

= 0 (31)

but the pseudo-critical parameters which are determined by Eqs. (14). This is a major simplification of the
model. The mixing rules as given by Eqs. (28)–(30) are simpler than those derived by Huang and Radosz
[47,48] for the original SAFT EOS then the more rigorous critical region field-variable mixing rules
adopted in [26–30]. However, as we show below, using these simple mixing rules, the SCR SAFT EOS
yields a satisfactory representation of the thermodynamic properties of mixtures of hydrofluorocarbons
in a large range of temperatures and densities.

We have chosen the refrigerant mixtures R22+ R12, R32+ R134a, and R125+ R32 for comparison
with the model. The interaction parameters werek12 = 0.04 for R22+R12,k12 = 0.005 for R32+R134a,
andk12 = 0.02 for the R125+R32 mixture. These values were obtained from a fit of the SCR SAFT EOS
to the experimentalPVTxdata in the one-phase region obtained by Takaishi et al. [49] for the R22+ R12
mixture and by Magee and Haynes [50] for R32+R134a and R125+R32 mixtures. A comparison of the
calculated values of pressure along isochores with experimental data of Takaishi et al. [49] is presented in

Fig. 7.PVTdata for the R22+R12 mixture obtained by Takaishi et al. [49] with predictions of the computer program CREOS97
(dashed curves) and the simplified crossover SAFT equation of state (solid curves).
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Fig. 8.PVTdata for R32+ R134a mixtures obtained by Magee and Haynes [50] (symbols) with predictions of the computer
program CREOS97 (dashed curves) and the simplified crossover SAFT equation of state (solid curves).

Fig. 7. Figs. 8 and 9 compare the values obtained from our model with thePVTxdata of Magee and Haynes
[50]. The dashed curves in all figures represent the values calculated with the parametric crossover model
(computer program CREOS97) obtained in [31] for the R22+ R12 mixture and in [33] for R32+ R134a
and R125+ R32 mixtures (Fig. 10). The SCR SAFT model shows good agreement for all mixtures. The
maximum deviation of the calculated values of pressure from the experimental ones does not exceed 2%.

Fig. 9. PVT data for R125+ R32 mixtures obtained by Magee and Haynes [50] (symbols) with predictions of the computer
program CREOS97 (dashed curves) and the simplified crossover SAFT equation of state (solid curves).



106 S.B. Kiselev, J.F. Ely / Fluid Phase Equilibria 174 (2000) 93–113

Fig. 10.PVT data for R32+ R134a mixtures obtained by Fukushima and co-workers [51] (symbols) with predictions of the
computer program CREOS97 (dashed curves) and the simplified crossover SAFT equation of state (solid curves).

Only for the R22+ R12 mixture along the isochoreρ = 7.118 mol.L−1, systematic deviations up to 4%
are observed.

In Fig. 9, we compare the predictions of the model forPVTx properties for a 45.67 mol% R32+
54.33 mol% R134a system with the experimental data of Fukushima et al. [51]. The data are over a wide
range of temperatures from 314 to 424 K and at pressures from 1.5 to 10.1 MPa, and densities over the
rangeρ = 0.902–10.033 mol l−1. Since these data were not used for the optimization of the model,
this is a good test of the predictability of the model. The SCR SAFT EOS shows good agreement with
the data, while the parametric crossover model gives systematic deviation from the experimental data
at isochoresρ = 0.902 and 1.236 mol l−1. This deviation is a direct consequence of the fact that the
parametric crossover model fails to reproduce the ideal gas limit.

Even though the parameters forkij were found using one-phase data, the SCR SAFT EOS can be
extrapolated into the two-phase region. Figs. 11–14 show the VLE coexistence curves for R22+ R12,
R32+R134a, and R125+R32 mixtures in the critical region and below. The model agrees very well with
the data up to temperaturesT = 0.99T c(x). For calculations of the VLE properties of the mixtures, we
used an iterative algorithm developed by Lemmon [52]. As was also pointed out in [18], this algorithm
does not converge very close to the critical point of a mixture, at|τ(x)| ≤ 10−2, and alternative algorithms
should be used. For comparison, we also have shown the predictions from the parametric crossover model
CREOS97 [33] and NIST REFPROP [53]. As one can see, far from the critical point, all models give
practically identical results which are in good agreement with experimental data. However, as the critical
point approaches the NIST REFPROP, predictions become less accurate and exhibit systematic deviations
from experimental data, while the SCR SAFT EOS yields a reasonably good description of experimental
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Fig. 11. Dew-bubble curves for R22+ R12 mixtures. The symbols indicate experimental data obtained by obtained by Takaishi
et al. [49], and the curves represent predictions from the computer program CREOS97 (dashed curves) and the simplified
crossover SAFT equation of state (solid curves).

data up toT = 0.99T c(x). Fig. 15 shows the experimental VLE data for R125+ R32 mixtures obtained
by Higashi [54] at four isotherms far from the critical point with the predictions of the SCR SAFT EOS,
the parametric crossover model CREOS97 [33], and NIST REFPROP [53]. Quantitatively, all models
give similar predictions which are in good agreement with experimental data; however, qualitatively,

Fig. 12. VLE data for R22+ R12 mixtures obtained by Takaishi et al. [49] (symbols) with predictions of the computer program
CREOS97 (dashed curves) and the simplified crossover SAFT equation of state (solid curves).
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Fig. 13. VLE data for R32+ R134a mixtures of Higashi [73] and of Fukushima [74] at two concentrations of R134a and
predictions from the computer program NIST REFPROP [53], the computer program CREOS97 (dashed curves), and of the
simplified crossover SAFT model (solid curves).

Fig. 14. VLE data for R125+ R32 mixtures of Higashi [54] at two concentrations of R32 and predictions from the computer
program NIST REFPROP [53], the computer program CREOS97 (dashed curves), and of the simplified crossover SAFT model
(solid curves).
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Fig. 15. The pressure–composition diagram for R125+ R32 mixtures. The symbols indicate experimental data obtained by
Higashi [54] at four temperatures, and the curves represent predictions from the computer program CREOS97 (dashed curves),
the computer program NIST REFPROP [53] (dashed–dotted curves), and of the simplified crossover SAFT model (solid curves).

the results are different. Experimental data obtained by Higashi for R125+ R32 mixtures [54] exhibit
the appearance of an azeotrope at approximately 90 mol% R32 at temperatures less thanT = 303 K.
The SCR SAFT model predicts the appearance of an azeotrope atT ≤ 283 K, the computer program
CREOS97 predicts an azeotrope at temperaturesT ≥ 303K. The newest version of NIST REFPROP
[75,76] predicts a very weak azeotrope for R125+R32 mixtures atP=0.1–0.4 MPa at compositions of
about 0.9 mole fraction R32. ByP=1 MPA, the azeotrope disappears. We cannot say for sure which
prediction is correct. In order to answer this question, more experimental information for this mixture is
needed.

5. Conclusions

On the basis of the crossover SAFT EOS obtained before [19], we develop a simplified crossover
modification of the SAFT equation of state which, similar to the original SAFT EOS, contains only
three adjustable parameters but gives an accurate prediction of the critical parameters for pure fluids and
yields a much better representation of thePVTand VLE properties pure fluids in and beyond the critical
region than original SAFT EOS and CR PT EOS [17]. Unlike our previous crossover EOS based on the
linear model EOS for the parametric variableq [17,19], the SCR SAFT EOS based on the parametric
sine model [41] can be extended into the metastable region and represents analytically connected van
der Waals loops. In the present work, we tested the SCR SAFT EOS experimental data again for pure
refrigerants in the one- and two-phase regions. Good agreement with experimentalPVTand VLE data
was achieved in the wide rage of the parameters of state including the critical region.

In order to extend the crossover SAFT EOS to mixtures, we formulate the simple mixing rules for the
system-dependent parameters of the model in terms of composition. Although with these simplified mix-
ing rules the crossover SAFT EOS does not reproduce some of the known scaling laws in the asymptotic
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critical region of mixtures, at dimensionless temperatures|τ(x)| ≥ 10−2, it yields an accurate represen-
tation of the thermodynamic surface of the mixtures of hydrofluorocarbons in the one- and two-phase
regions. To extend the obtained results to other, more complex fluids and their mixtures, the model should
be checked with other mixing rules, with a more rigorous theoretical basis.

List of symbols
a Helmholtz free energy per mole (total, res, assoc, etc.)
a2i coefficients in the kernel term (i = 0 andi = 1)
Ā dimensionless Helmholtz free energy (total, res, etc.)
b2 universal linear-model parameter
C integration constant in Eq. (6)
d1 rectilinear diameter amplitude
d

(j)

1 constants in Eq. (26)(j = 0, 1)

Dij universal constants in Eq. (4)
e/k constant in Eq. (7) (K)
ghs hard sphere radial distribution function
Gi Ginzburg number
1η order parameter
k Boltzmann’s constant≈ 1.3814× 10−23 J/K
kij binary interaction parameter
K kernel term
m number of segments
m0 sine-model critical amplitude
Mw molecular weight
N total number of molecules
p2 universal sine-model parameter
P pressure
Pc critical pressure
q argument of crossover function
r parametric variable
R gas constant
T temperature (K)
Tc critical temperature (K)
1T dimensionless deviation of the temperature from the classical critical temperature
u/k temperature-dependent dispersion energy of interaction between segments (K)
u0/k temperature-independent dispersion energy of interaction between segments (K)
v molar volume
v1 system-dependent coefficient in Eq. (21)
v

(j)

1 coefficients in Eq. (25)(j = 0, 1)

v0 temperature-dependent segment volume
v00 temperature-independent segment volume
1v classical order parameter
1vc shift of the critical volume
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V total volume
x composition of a mixture
Y crossover function

Greek letters
α universal critical exponent
β universal critical exponent
δ1 universal constant in Eq. (21)
δτ constant in Eq. (23)
δρ constant in Eq. (24)
1η̄ re-scaled order parameter
1ηc dimensionless shift of the critical volume
1 difference
11 universal critical exponent
γ universal critical exponent
µ chemical potential of a mixture
τ reduced temperature difference
1τ c dimensionless shift of the critical temperature
τ̄ re-scaled reduced temperature difference
θ parametric variable
ρ molar density
ρc critical density (mol/l)

Superscripts
assoc association
G gas
ideal ideal gas
L liquid
res residual

Subscripts
c critical
sat saturated
0 classical
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