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Abstract

An investigation has been carried out into the effectiveness of using symplectic/operator splitting generated
algorithms for the evaluation of transport coefficients in Lennard–Jones fluids. Equilibrium molecular dynamics
is used to revisit the Green–Kubo calculation of these transport coefficients through integration of the appropriate
correlation functions. In particular, an extensive series of equilibrium molecular dynamic simulations have been per-
formed to investigate the accuracy, stability and efficiency of second-order explicit symplectic integrators: position
Verlet, velocity Verlet, and the McLauchlan–Atela algorithms. Comparisons are made to nonsymplectic integrators
that include the fourth-order Runge–Kutta and fourth-order Gear predictor–corrector methods. These comparisons
were performed based on several transport properties of Lennard–Jones fluids: self-diffusion, shear viscosity and
thermal conductivity. Because transport properties involve long time simulations to obtain accurate evaluations of
their numerical values, they provide an excellent basis to study the accuracy and stability of the SI methods. To our
knowledge, previous studies on the SIs have only looked at the thermodynamic energy using a simple model fluid.
This study presents realistic, but perhaps the simplest simulations possible to test the effect of the integrators on
the three main transport properties. Our results suggest that if an algorithm fails to adequately conserve energy, it
will also show significant uncertainties in transport property calculations. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The characterization of transport properties of liquids has significantly benefited from numerical simula-
tion techniques. In particular, both equilibrium (EMD) and nonequilibrium molecular dynamics (NEMD)
have provided valuable data that can be used to test and extend transport theories for systems of known
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intermolecular potentials [1–4]. The diffusion, viscosity and thermal conductivity coefficients were orig-
inally studied by equilibrium MD simulations via the Green–Kubo linear response theory. Verlet [5–7]
and Rahman [8] independently performed simulations of a Lennard–Jones liquid for its equilibrium and
transport properties, respectively. Hoover et al. [9] extended the Green–Kubo (GK) technique for viscosity
via a more demanding integration of the stress correlation function. A corresponding equilibrium simula-
tion of the thermal conductivity of Lennard–Jones fluids was performed by Hoheisel and Vogelsang [10].
These equilibrium simulations illustrated system size dependence properties, cancellation of positive and
negative areas under the time integral of the correlation function being calculated and treated the linear
response of the system to some appropriate driving term. However, in these studies, relatively short time
runs (∼5 ps) were used to calculate transport and equilibrium properties to an estimated accuracy of ±5%.

Nonequilibrium MD techniques were pioneered by Hoover [2,3] and Evans [11] in common applica-
tions to shear viscosity. Evans and coworkers also introduced NEMD techniques to evaluate the thermal
conductivity. In the area of diffusion, Holian [9] used NEMD to calculate the color diffusion of a binary
mixture of Lennard–Jones particles and then extrapolated the inter-color diffusion to a color-independent
value. Later, this method was modified by Evans into what is now known as the color diffusion algorithm.
Unlike the earlier simulation, Evans introduced a hot and cold colored particle scheme in which the color
variable was simply coupled to the external color field ci = ±1. A synthetic Hamiltonian was constructed
so as to reproduce the linear response theory limit as the field strength approached zero.

Several authors have compared the two different methods for transport property simulation. Schoen
and Hoheisel [12] used the Green–Kubo relation to calculate the shear viscosity at various conditions by
MD simulations for a LJ fluid, employing the Stormer–Verlet integration scheme. The computations were
performed for 32–2048 particles. Overall, the results showed about 30% difference from Levesque’s MD
yet were in good agreement with the NEMD results obtained by Heyes [13–15]. A significant number
dependence was found for particle numbers less than 256 [12]. In 1988, Hoheisel and Vogelsang [10]
determined transport coefficients of pure liquids and binary mixtures by both nonequilibrium (NEMD)
and equilibrium (EMD) molecular dynamics. Satisfactory agreement with experimental diffusion and
shear viscosity data was found (to within their stated errors). For the bulk viscosity, they found the
MD values 10% smaller than the experimental bulk viscosities which carry relatively large (20–30%)
errors. Erpenbeck [16] performed Green–Kubo calculations and conclusively showed that the stress
autocorrelation exhibited a slow decay mainly due to a large potential contribution.

The diffusion constants obtained from both equilibrium and nonequilibrium approaches are in excellent
agreement. In general, nonequilibrium MD simulations seem to suppress the system size dependence
(N-dependence) of simulated properties and physically identify the flux (color, stress tensor, heat flux)
per unit field (color field, strain rate, heat field) as color conductivity (closely related to the diffusion
constant), viscosity and thermal conductivity. Despite the unexpectedly small N-dependence of this type
of simulation, relatively long time runs are required to ensure the system achieves a nonequilibrium
steady-state. Effectively the longer runs required by the NEMD simulations included corrections to the
time truncation of the correlation functions often found in the equilibrium simulations. An excellent
review of the history behind the early NEMD works can be found in separate texts by Hoover [2,3] and
Evans and Morriss [4].

Recently, numerous simulation studies have centered on the stability and energy conserving proper-
ties of symplectic numerical integrators. These integrators were well known to high energy physicists
and astronomers since the early sixties, but have only been recently discovered in liquid state theory
applications. Discussion of some of the early developments in this area can be found in [17–19]. The
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liquid state community was initiated to these symplectic methods by Berne and Tuckermann [20–22] as
well as independently by Yoshida [18,19]. It is interesting to note that the pioneering works of Verlet
and Rahman can be contrasted nowadays in the use of symplectic and nonsymplectic (specifically the
traditional Runge–Kutta) algorithms respectively. Many of the later applications have concentrated on
the energy conserving property of these symplectic integrators for systems ranging from simple spherical
interactions to sophisticated polymer models with both short and longer ranged forces. Xu [23] studied
viscosity in polymer solutions; Stevens et al. [24] modeled polymer flow in butane-lined channels for
thermostatted conditions; Tuckermann et al. [25,26] studied the quantum mechanical simulations of the
Car-Parinello problem using appropriate symplectic integration.

In this paper, we revisit the original calculations of the diffusion, viscosity and thermal conductivity
coefficients using the Green–Kubo formalism in which the equations of motion are solved with symplectic
integration schemes. Our motivation for reevaluation of the classical Green–Kubo approach lies in the
belief that the time averaging of many trajectories in the appropriate time correlation function might
counter the accuracy of the symplectic integration routines. It is not obvious that the enriched areas of
phase space opened up by symplectic integration significantly contribute to the transport coefficients.
In Section 2, we summarize the Green–Kubo formalism for the transport properties under study and in
Section 3, we discuss the simulation details. Our results and conclusions are given in Section 4.

2. Theory

It is well established that linear response theory gives the fluctuation–dissipation formula for the
diffusion constant D as the time integral of the velocity autocorrelation function as

D = 1

3

∫ ∞

0
dt〈v(0)v(t)〉 (1)

D can be equivalently defined by the Einstein formula as the long time gradient of the mean square
displacement vector

D = lim
t→∞

〈(r(t)− r(0))2〉
6t

(2)

Similarly the viscosity η for planar flow is the time integral of the stress autocorrelation function

η = V

kT

∫ ∞

0
dt〈Pxy(0)Pxy(t)〉 (3)

where Pxy is the xy-component of the pressure tensor P given as

P =
N∑
i=1

pipi
m

− 1

2

N∑
1≤i,j≤N

rijFij (4)

Integration of Eq. (3) gives rise to three contributions to the viscosity-the kinetic (involving only the
momentum terms from Eq. (4)), cross and potential (involving only the force and position terms from
Eq. (4)).
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The thermal conductivity λ is associated with the heat flux correlation function

λ = V

kT2

∫ ∞

0
dt〈Jxq(t)Jxq(0)〉 (5)

with

Jq = m

2

N∑
i=1

v2
i vi −

1

2

∑
i �=j

[rij∇u(rij)− u(rij)I]vi (6)

Here rij = rj − ri is the interparticle distance vector from particle i to j and Fij = −∇u(rij) is the force
being exerted on particle i by particle j. In all of these equations, the angular brackets 〈 〉 indicate an
ensemble average over an equilibrium distribution f(Γ ) of the phase variables Γ .

3. Simulation details

The MD simulations were carried out on a system of 256 Lennard–Jones particles at the triple point,
where the reduced temperature and density areT ∗ = kT/ε = 0.722 andρ∗ = ρσ 3 = 0.8442, respectively.
A series of simulations were run, each starting from the same initial configuration, with each simulation
being run the same reduced time, namely t∗ = 1000. The reduced time-steps considered are: �t∗ =
�t(mσ 2/ε)1/2 = 0.0025, 0.005, 0.010, 0.015, 0.020. The Lennard–Jones potential is defined as usual

u(r) =



4ε

((σ
r

)12
−

(σ
r

)6
)

if r ≤ rcut

0 otherwise
(7)

where the cut-off radius was taken as rcut = 2.5σ . A selection of numerical integrators was tested
including traditional algorithms (usually nonsymplectic) and the more recent symplectic integrators (SI).
For historical reasons, we chose the fourth-order nonsymplectic Gear (G4) and Runge–Kutta (RK4) [27],
as well as the second-order, time-invertable symplectic [20–22] position-Verlet (pV2) and velocity-Verlet
(vV2) and a noninvertable second-order algorithm optimized by McLachlan and Atela (MA2) [28]. The
three symplectic algorithms investigated in this study are summarized in Table 1.

The simulation runs were divided into 10 independent batches such that these 10 batches formed an
approximate Gaussian distribution for which the mean and its uncertainty can be calculated. This block
sampling technique gives reliable error estimates from computer simulations.

Table 1
Summary of nonpredictor–corrector algorithmsa investigated

Integrators Order Force evaluations Coefficients

Ruth [17], position Verlet [21] 2 1 a1 = 1/2, a2 = 1/2, b1 = 0, b2 = 1
Velocity Verlet [21] 2 1 a1 = 0, a2 = 1, b1 = 1/2, b2 = 1/2
McLachlan and Atela [28] 2 2 a1 = 1/

√
2, a2 = 1 − a1, b1 = 1/

√
2, b2 = 1 − b1

a Basic algorithm pseudo-code: for (k = 1, 2){p(k) = p(k−1) + bk�tF(q(k−1)); q(k) = q(k−1) + ak�tG(p(k))}, where F is the
force and G the Hamiltonian derivative with respect to momentum.
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4. Results and discussion

4.1. Energy conservation

Energy conservation provides useful information to study the characteristic of SIs and has been the
basis for most SI evaluations presented in the literature. For NVE (e.g. unconstrained Hamiltonian-based
simulations), the expectation value of the energy should be constant. In fact, the degree to which the
energy is conserved is often used to monitor the efficacy of various parts of the simulations. Energy
conservation results for the integrators used in this study are summarized in Table 2 which compares the
average total energy drift 〈H(t)〉 −H(0) as a function of reduced time-step size and integration method.
Each algorithm was employed to generate the energy out to a common reduced time of t∗ = 1000. As
expected, the nonSIs (RK4 and G4) show significant deviations from the initial total energy. Also, G4
becomes unstable well before the other four algorithms. G4 is stable at a reduced time-step of 0.001, but
begins to exhibit significant deviations at a time-step of 0.0025. The energy deviations observed for G4
can be improved by rescaling the velocity every 5000 time-steps with the net result that the method then
allows simulation runs up to a time-step of 0.005. For time-steps larger than 0.005, the G4 simulations
become unstable, both with and without velocity scaling.

In general, instabilities in these algorithms reflect the discrete nature of the numerical solution of the
equations of motion. If the time-step size is too large, the displacement during one time-step results in
an erroneous particle overlap, which does not occur if particles experience continuous change in their
interaction potential. If two particles find themselves severely embedded in their repulsive cores after a
large time-step, steep repulsive LJ potential causes a very large repulsive force between the pair. This
causes an enormous change in the pair’s dynamics and causes them to fly apart at huge velocities. Evidence
of too long of a time-step can be found in: large fluctuations of the total energy of the system; a very
large rise in the velocity of some of the particles; or the simulation “melting down” with a very large
temperature.

Although the second-order MA is not time-reversible, it is very competitive or even better than the Verlet
methods in the limit of large time-steps. This is probably due to the fact that the MA algorithm was derived
on the basis of the Ruth SI, except that the coefficients were chosen to minimize the error associated with
the �t2 term. Its numerical scheme shows a connection between the decomposition process such that at
each step the evolution of the system under the Hamiltonian contains the solution involving the potential
contribution for a time bk�t followed by the consideration of the kinetic contribution for a time ak�t.
These schemes are different than G4 in that the force prediction in G4 is irrelevant to the correction process

Table 2
Calculated total energy drift 〈H(t)〉 −H(0) obtained for various numerical algorithms and time-step-sizes

Method Reduced time-step

0.0025 0.005 0.010 0.015 0.020

pV2 0.0004249 0.0009577 0.0035131 0.0047460 0.0394091
vV2 0.0001994 0.0013480 0.0023139 0.0037985 0.0744680
MA2 0.0001551 0.0007414 0.0021894 0.0034915 0.0332518
G4 0.0038772 – Overflow Overflow Overflow
RK4 −0.0015252 −0.0467584 −0.4709937 −0.9894928 −2.587943
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for the position. All results indicate that the SI methods not only are better than the nonSIs during the
long time simulations, but also allow larger time-steps to be used with acceptable uncertainties. Results
for energy conservation suggest that the position Verlet is better in the limit of large time-steps, whereas
the velocity Verlet is better in the limit of small time-steps. These results support the conclusions of
Tuckerman [21].

4.2. Diffusion coefficients

Diffusion coefficients in this work were calculated from both the mean square displacement (the Einstein
expression) and the Green–Kubo expressions given above. Table 3 summarizes the diffusion and viscosity
simulation results. Satisfactory agreement of the diffusion coefficients was obtained with previous studies
[8,10,16,29] with the generally accepted reduced value being 0.029 [30]. Fig. 1 displays the results
obtained for the diffusion coefficients as a function of time-step-size using the Green–Kubo expression
(open symbols) and MSD (solid symbols) relation Eq. (2). Even though, the diffusion coefficients in
Table 3 were generated from the same initial configuration, the results from Einstein expression are
consistently higher than those from the Green–Kubo expression. We note, however, that the precision of
the Einstein extrapolated results tends to be less than those of the Green–Kubo calculations. Statistical
analysis shows that the results from both expressions are not significantly different. Results at other

Fig. 1. Comparison of Green–Kubo diffusion coefficients as a function of time-step. The points have been offset around their
time-step so that the error bars can be more clearly identified. Open symbols denote Green–Kubo results while solid symbols
give the MSD results: (�) G4; (�) RK4; (�) position Verlet; (�) velocity Verlet; (�) McLachlan–Atela.
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Fig. 2. Time evolution of the GK diffusion coefficient evaluated with a simulation time-step of �t∗ = 0.005: (�) RK4; (�)
position Verlet; (�) velocity Verlet; (�) McLachlan–Atela.

time-steps or other numerical methods for normalized autocorrelation functions essentially provide the
same trend.

Even at a time-step�t∗ = 0.005, simulations based on G4 cannot generate reasonable results without
using rescaling for momentum drift. For larger time-steps the G4 algorithm fails completely, even with
velocity rescaling. As expected, the RK4 algorithm is more stable than the G4: for small time-steps
it gives reasonable diffusion results without rescaling. However, deviations gradually appear for even
a moderate time-step size. Fig. 2 shows the time dependence of the GK diffusion coefficient during
a typical run at �t∗ = 0.005. The large time-step results for RK4 without rescaling show significant
deviations and eventually become unphysical for�t∗ > 0.01. Fig. 1 clearly shows the advantages of the
symplectic integrators, for large time-steps. All three algorithms provide physically acceptable results at
large time-steps: more importantly they do so with uncertainties comparable to RK4 and G4 obtained
using significantly smaller time-step sizes. It would be remiss of us not to point out that accurate diffusion
constants can be generated (albeit expensively) from the RK4 algorithm for large time-steps by rescaling
the velocities as often as possible. This constant updating significantly improves previous results as shown
in Table 2.

For large time-steps, vV2 is less reliable than the pV2 and MA2 algorithms in agreement with
Tuckerman’s earlier [20] results for energy conservation. The diffusion results clearly show the time
and precision advantages of symplectic integrators over nonsymplectic integrators with pV2 being con-
siderably more reliable than all others at higher time-step size. Comparison between pV2 and vV2 methods
suggests that pV2 may give slightly better results as seen in the uncertainties of the Einstein diffusion
method. However, both algorithms are equally competitive for the GK results.

4.3. Shear viscosity

The shear viscosity provides a clearer picture of the advantages of SIs in long time simulations. Fig. 3(a)
illustrates the results and uncertainties as a function of time-step and the numerical values obtained from
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Fig. 3. Comparison of the overall shear viscosity (a), potential contribution to the viscosity (b) and kinetic contribution to the
viscosity (c) as a function of time-step and integration method. The solid symbols are results reported by other investigators: (�)
G4; (�) RK4; (�) position Verlet; (�) velocity Verlet; (�) McLachlan–Atela.

the GK expression (3) are presented in Table 3. Fig. 3(b) and (c), respectively show the calculated potential
and kinetic contributions to the viscosity. In this work we found (on average) η = 3.23, whereas literature
values were found to be 3.18±0.26 by Hoheisel [10], 3.4 by Heyes [30], 3.77±0.17 by Erpenbeck [16],
and 2.72 by Levesque and Verlet [29]. The older value of Levesque is somewhat in question.

For small time-steps, uncertainties in the kinetic contribution to the viscosity obtained from vV2 are
much smaller than pV2 while the latter provides a smaller error estimate for the potential contribution. The
total shear viscosity from pV2 seems to be better than vV2, although their differences are not statistically
significant. This is because the potential and cross-values and their errors dominate over the smaller
kinetic contribution. For large time-steps, pV2 seems to provide more accurate and precise values for the
both the kinetic and potential terms.

Further comparison between SI and nonSI methods reinforces the diffusion results and conclusions,
but with much stronger evidence for the advantages of SI algorithms for shear viscosity simulations. RK4
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Table 4
Thermal conductivity for different time-steps and algorithms

Method Time-step

0.0025 0.005 0.010 0.015 0.020

pV2 6.8267 (0.5840) 6.8868 (0.6425) 6.6686 (0.6910) 6.7721 (0.7106) 6.9242 (0.8386)
vV2 6.8521 (0.4855) 6.8183 (0.6644) 6.8564 (0.5745) 6.8211 (0.7562) 6.9721 (0.8932)
MA2 6.8727 (0.5402) 6.8930 (0.6541) 6.7905 (0.6315) 6.9398 (0.7212) 6.9997 (0.8085)

gives very large uncertainties compared to the SI methods for both potential and kinetic contributions to
the viscosity. For larger time-steps at which the SI methods converge, the nonSI algorithms are far too
large and their results are not shown here.

Although not specifically reported in Table 3, the kinetic contribution to the shear viscosity obtained
from RK4 is much less than those obtained from other algorithms. Also, a large deviation of the potential
contribution from RK4 is found earliest among all algorithms and the associated shear viscosity is found
to be greater than 100 with�t∗ = 0.010, a time-step for which the Verlet methods give a shear viscosity
in the physically acceptable range of 3.0–3.3.

4.4. Thermal conductivity

The thermal conductivity is one of the most difficult transport coefficients to calculate [11] because of the
long time relaxation of the heat flux vector when using the Green–Kubo approach. The typically accepted
value for the reduced thermal conductivity is 6.9 [30]. Hoheisel and coworkers have previously used
the Stormer–Verlet algorithm (a symplectic method) to investigate the number dependence of the three
transport coefficients being investigated here. Our results for the thermal conductivity study concentrate
on the symplectic methods, pV2, vV2 and MA2 and Table 4 summarizes our results for these three
methods at five different time-steps. These results support the findings from the previous sections on the
shear viscosity and diffusion studies: for essentially large time-step size�t∗ = 0.02 all three symplectic
algorithms approximate the thermal conductivity quite well yet with larger error bars than those found at
the smaller time-step size �t∗ ≤ 0.015.

5. Summary and conclusions

In this study, the results of using symplectic integrators for transport property simulations were presented
and compared those obtained with nonsymplectic integrators. The SI results are superior to those obtained
with nonSI integrators, G4 and RK4, especially for large time-steps. We found that the SIs provide
excellent results for total and kinetic energy conservation which is a key to successful simulations with
large time-steps. The uncertainties in the results obtained for the transport coefficients using symplectic
integrators were: diffusion coefficients based on either the Green–Kubo or Einstein formalism 1%, shear
viscosity 5–6%, and finally for thermal conductivity, approximately 10%. It is important to emphasize
the successful large step size estimates for all three transport coefficients studied here. Essentially, the
simulations carried out at �t∗ = 0.02 estimate the transport coefficients to within 2% (or less) of the
corresponding value obtained in the �t∗ = 0.0025 simulations.
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