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Abstract

We develop a crossover equation of state (EOS) for square-well fluids with varying well width. This equation yields
the exact second and third virial coefficients, and accurately reproduces first-order (high-temperature) perturbation
theory results. In addition, this EOS yields the correct scaling exponents near the critical point. We perform extensive
new molecular dynamics and Monte Carlo simulations in the one-phase region for varying well wigdths1os,

2.0, and 3.0. We fit the parameters of our EOS to one-phase and two-phase thermodynamic data from our simulations
and those of previous researchers. The resulting EOS is found to represent the thermodynamic properties of these
square-well fluids to less than 1% deviation in internal energy and density and 0.1% deviation in vapor pressure.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Because of its simplicity, the square-well fluid has long served as a model system for understanding
the behavior of real fluids. The interaction enerngy) between two square-well molecules separated by
a distance is given by
+o00, forr <o
ury=1{ —€, foro<r<axo (@H)
0, forio <r

whereo is the diameter of the hard-sphere repulsive interactidas,the strength of the attractive in-
teraction, and. characterizes the range of the attractive interaction. This model interaction possesses
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the basic interactions found in many real fluids: a short-range attractive interaction and a repulsive
excluded volume interactions. As a result, it possesses all the complex behavior of real fluid
systems.

Due to its importance, the thermodynamic properties of the square-well fluid have been extensively
studied using computer simulation methods in both the one-phase region [1-8] and the two-phase regior
[9-11]. There has also been a lot of work in trying to obtain an equation of state (EOS) for variable-width
square-well fluids.

One approach has been to construct empirical forms and to fit the parameters to available simulation
data [12-14]. Unfortunately, in these previous works, the empirical forms did not incorporate known
theoretical results (e.g. the second and third virial coefficients, the scaling behavior near the critical point,
etc.), and as a result their accuracy is limited.

Another approach that has been taken is to take the hard-sphere fluid as a reference system and t
use perturbation theory around the high-temperature limit to obtain the properties of the square-well
fluid [12]. In this approach, the coefficients of the perturbation expansion have been obtained through
empirical fits to simulation data [2,12,15-17], approximate theories for the hard-sphere correlation
functions [18,19], expansion around the— oo limit [20], and expansion around thee — 1 limit
[21,22].

A simpler description of the square-well fluid, based on the lattice theory of fluids, is given by the
guasi-chemical approximation [4,5,8,23—-27]. The advantage of these approaches is that they lead tc
simple analytical forms for the free energy of the system. However, the predictions of the quasi-chemical
approximation are not very accurate.

Integral equation approaches have also been employed with various approximate closure relations
including the Percus—Yevick [28], hypernetted chain [1], mean spherical approximation [29], and hybrid
mean-spherical approximation closures [30]. Although these methods are theoretically based, they still
do not reproduce all the known behaviors of the square-well fluid.

One of the common difficulties with the theoretical approaches is that they do not properly describe the
critical region. Attempts have been made to construct crossover equations of state for square-well fluids
which do yield nonclassical scaling behavior near the critical point [31-33]. However, in these approaches,
the critical scaling exponents are only correct to first-order in the epsilon expansion, and do not yield the
correct scaling of the caloric properties of the system. For example, the predicted isochoric heat capacity
near the critical point is not divergent (i.e. = 0), in contrast to what is expected theoretically (i.e.

a ~ 0.110).

In this work, we attempt to construct a semi-empirical EOS for square-well fluids which will accurately
represent the thermodynamic properties of variable-width square-well fluids at all state points. The form
of the EOS is constructed such that it yields the exact second and third virial coefficients, and also
reproduces the first-order high-temperature coefficient. In addition, near the critical point this EOS also
possesses the correct scaling form.

The remainder of this paper is organized as follows. In Section 2, we describe our classical EOS for
square-well fluids. In Section 3, we formulate a new crossover formulation. This new formulation, unlike
previous ones, is well behaved far from the critical point, even in the infinite temperature limit. We
combine our classical EOS with this new crossover formulation. In Section 4, we provide the details
for our Monte Carlo and molecular dynamics simulations for square-well fluids. In Section 5, we fit the
parameters for our new crossover EOS to available simulation data for square-well fluids. In Section 6,
we summarize the major findings of this paper.
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2. Classical free energy

The residual Helmholtz free energy/®® of a square-well system can be divided into a contribution
from the hard-sphere interactiod$'S and a contribution from the attractive interactioff'

AI’ES= AHS+Aatt (2)

For the free energy of a hard-sphere system, we use the Carnahan—Starling EOS [34], which has been
shown to accurately represent the thermodynamic properties of the hard-sphere fluid. Note that this EOS
possesses the exact second and third virial coefficients.

The behavior of the attractive contribution to the Helmholtz free energy is fairly complex, and many
forms have been proposed to describe it. To get a feeling for how to model this term, we examine the
behavior of A2 in the low-density limit. In this regime, the Helmholtz free energy can be accurately
represented by a virial series

Aatt
Nkg T

where B2 = B, — B'S is the attractive contribution to theth virial coefficient, B, the nth virial
coefficient of the square-well fluid, argf'S is thenth virial coefficient of the hard-sphere fluid. For the
square-well fluid, the second and third virial coefficients are known exactly [35]

B, = ByS[1 — (3° — D A] ()
B3 = B3°[1 — i) A — f2(l) A% — f3(1) A% (5)
whereA = exple/(kgT)] — 1, and

0, forr<1

fi) =1 0 —18t+323 - 15, forl<i <2 (6)
¥ for2 < i
0, fora <1

f00)=1{ 205 —18* + 1603+ 92 —8), forl<i <2 (7)
$(—32% + 1812 4 48), for2 <
0, fora <1

f20) =1 2802 =13, forl <i <2 ®)
T(BA — 323+ 18,2+ 26), for2 <a

In this limit, we see that each of the virial coefficients is a polynomial function .of
Taking this into consideration, we propose the following empirical formA®Y

Aatt
= —Ag IN(L+ A1A + A A% + A3A3 9
Nk T oIN(1+ A1A + AsA° + A3A®) (9)
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whereN is the number of particles in the syste the Boltzmann constarif, is the absolute temperature
of the system, and the functiods, A1, A>, andA3z are given by Pade approximants [36]

0 2 3 5
o a2y 4 a4 0
1+b5'y
1 a®y
A= — L (11)
Ao [1 + 07y + b7 y2 + bV y3
2 3
ppo G2 F ey (12)
14650y + b5 y2 4+ bPy3
2 3
05"y 4 a’y® (13)

3 =
1+bél)y +bé2)y2+bé3)y3

wherey = mo3p/6 is the packing fraction of the spheres, ands the number density of spheres.
The application of the logarithmic form for the attractive free energy was motivated by the forms of the
Redlich—Kwong and Peng—Robinson engineering equations, and by the observation that the predominar
density dependence seems to soften for high density square-well fluids.

Expanding Eqg. (9) around zero density and comparing the result with the virial series, we find the
following relations

a? =403 -1 (14)
@ _ 5 Ak
b =-3 (3 -1 (15)
@ 1 3 1
0’ =5 8A%—1) + Wsz(x) (16)
0 0
@_ 1
ay) = WS f3(h) 17
0

By using these relations for the coefficients, the resulting free energy will possess the exact second anc
third virial coefficients.
At high-temperatures, the free energy can be expanded as

At € e \?
—— =All— ALl — e 18
Nkg T 1(kBT)+ 2<kBT) + (18)
where the coefficientd/, can be determined from only the properties of the hard-sphere fluid.
For example, the coefficient] can be obtained from the pair correlation function of the hard-sphere

systemgs

Ao
A= 2”0/ dr r?gus(r) (19)
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By expanding our free energy about the infinite temperaturec(i/gsT = 0) limit, we find
Al = AgAy

In order to reproduce the correct first-order perturbation téfnwe fit the parametei:‘f) andbf) to the
results of Eq. (19), witlgys(r) computed by the Verlet—Weis [37] procedure. This fit results in average
deviations fromA] of less than 0.2%, as discussed in Section 5.

In the critical region, the dimensionless Helmholtz free enetdy, v) = A(T, v)/ksT can be split
into the two parts

A(T, v) = AA(T, @) + Areg(T, ) (20)

where the critical, or singular part of the free enemyy is a function of the dimensionless temperature
deviationt = T/ T, — 1 and the order parametgrwhile the regular parzﬁreg(T, v) is a smooth, analytic
function of the temperatur@ and the molar volume = V/N. For the classical EOS, the critical part
AA(t, ¢) is an analytic function of the variables and, asymptotically close to the critical point (where
|t| < 1and|g| <« 1), can be represented by a Taylor expansion

AA(t, 9) = a1ot9* + apap® (21)

that corresponds to the Landau, or mean-field (MF), theory of critical phenomena [38]. In simple fluids, a
dimensionless deviation of the densitgr the molar volume from its critical value (or their combination)

[39], can be chosen as the order parameter, and the quantit(dAA/d¢)., conjugate to the order
parametelp, plays the role of the ordering field. From the conditior= 0 att < 0, we have that the
equilibrium value of the order parameter on the coexistence eugvex |t|/2. Fort > 0, the condition

h = 0 corresponds to the conditign= 0, the susceptibilityy, = (3¢/dh), o =1, and the singular

part of the isochoric heat capacityCy = —(9°AA/37%)y remains constant ¢8| — 0. Thus, for any
classical EQOS, the critical exponents

BL=3. n =1 oL =0. (22)

The MF behavior is valid only in the region where the large-scale fluctuations of the order parameter
are negligibly small. The size of this region is characterized by the Ginzburg nu@t)§40]
6

Gi =« (i) (23)

wherex is a numerical constant which in general depends on the path of approach to the critical point
and the property of interest,is an average distance between particles,fgiglan effective radius of the
interaction between molecules. At zero ordering fiéld< 0), which in the simple fluids corresponds to

the critical isochorey = vc) att > 0 or to the coexistence curve £ v, y) att < 0, the Landau theory

is valid only in the temperature region

G« ||« 1 (24)
As the critical point is approached (— Tt), at temperatures
7] < Gi, (25)

the intensity of the long-range fluctuations of the order parameter anomalously increases and diverges
at the critical point. As a consequence, at these temperatures the critical part of the thermodynamic
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potential A A becomes a non-analytic, scaling function of the dimensionless temperainckthe order
parameterp. At zero ordering field, the asymptotic singular behavior of the thermodynamic properties
can be described in terms of scaling laws [41,42]

Pexs = +Bo|t|P (14 Bi|t|*Y), o = I§1el ™" A+ Milt|?),  ACy = AZ|t| (1 + Aq|r|?)
(26)

where signs+’ correspond to the liquid€) and vapor {) phases, the superscripts’‘correspond to
the high C > T;) and low (' < T) temperature regions, the subscripts ‘0’ and ‘1’ correspond to the
asymptotic and first Wegner correction terms, respectively, and the universal critical exponents

p=0325 y=124 a=2-y-28=0110 A, =051 (27)

In order to describe the crossover from the MF behavior (with the critical exponents given by Eq. (22))
to the asymptotic scaling behavior (given by Eqg. (26)), the crossover theory should be applied [43,44].
We describe this procedure in the following section.

3. Crossover free energy

A general procedure for transforming any classical EOS into the crossover form was proposed by
Kiselev [45]. This procedure has a theoretical foundation in the renormalization-group (RG) theory and
has been successfully applied to the cubic Patel-Teja (PT) EOS [45,46] and to the statistical associating
fluid theory (SAFT) EOS [47,48]. Following this method, we first rewrite the classical expression (20)
for the Helmholtz free energy in dimensionless form

A(T,v) = AA(t, ) — 9 Po(T) + AFXT) + Ao(T), (28)

where we use the definitiop = v/ve — 1. Po(T) = P(T, ve)ve/ksT is the dimensionless pressure,
AB(T) = A"™XT,vc)/ksT is the dimensionless residual part of the Helmholtz free energy along the
critical isochore, andio(T) = Ao(T)/kgT is the dimensionless temperature-dependent part of the ideal
gas Helmholtz free energy. The critical part of the dimensionless Helmholtz free energy is

AA(t, ¢) = A™(1, ) — A1, 0) — In (¢ + 1) + ¢ Py(1), (29)

whereA'™s = A'®S/ kg T is the dimensionless residual part of the Helmholtz free energy.
Secondly, we replaceandy in the critical part of the classical Helmholtz free energy in Eq. (28)
by the renormalized values [45]

T =1y %% @ = (pY(V_zﬂ)/‘lAl, (30)

whereY is a crossover function to be specified below and the critical exponents are given by Eq. (27).
Eqg. (30) corresponds to the formal solution of the renormalization-group equations obtained near the
actual critical point of the system with the real critical temperafiyrand critical volumev.. In general,

these critical parameters do not coincide with the classical critical paranfgiarsdvy. which are found

from the classical SW EOS (2) through the conditions

d0A 3%A 33A
pcz_(_> , (_2) —o, (_3> —o (3D)
8U Toc av Toc av Toc
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These equations for the SW EOS can only be solved numerically, and, in gefigral., and Pyc

are complicated functions of the paramete{$ andb'”. Therefore, in order to take into account the
difference between the classical and real critical parameters of the SW fluid, following Kiselev [45], we
have introduced in Eq. (30) the additional terms

T =Y %M 4 (14 1) Ar Y2 /34 (32)
P = (py()/—zﬂ)/‘ml + 1+ (p)A(ch(z_“)/ZAl, (33)

whereAt. = (T; — Toc)/ Toc = ATe/Toc and Age = (Ve — vog)/voc = Avg/vge are the dimensionless
shifts of the critical temperature and the critical volume, respectively. If the real critical parameters of the
systemT, andv. are known, then the critical shifisz. and Ag. are also known. Otherwise, following
Kiselev and Ely [48] one can represent the critical shifts as functions dbithe

8. Gi 8,Gi
. A~ A(pc = - )
1+Gi 1+Gi
where the coefficients, ands, do not depend on the parameters of the intermolecular potential and for

the classical EOS of interest can be treated as constants. For this approach to be feasilel, and

Ag: < 1. Note that preliminary applications of perturbation theory in place of Eq. (9) resulted in values
of At. and Ag. that were too large, motivating the need for more empirical parameters, as exhibited in

Eq. (9).
In order to complete transformation, one needs to add in Eq. (28) the kernel term

At = (34)

2
K(z?) = %az()( ) (Y~%% — 1), (35)

T+1
which provides the correct scaling behavior of the isochoric specific heat asymptotically close to the critical
point. We need to note, that the kernel term as given by Eq. (35) differs slightly from the corresponding
kernel term employed earlier by Kiselev [45]. In order to avoid the unphysical divergencerasc, we
replaced the prefactar® in the kernel term in [45] with the function?/(z + 1)2. In the critical region,
att « 1, the functionr?/(t + 1)2 = 2, and both terms practically coincide. &g > 1, the crossover
functionY (¢) — 1, soK — 0.

The crossover functioli in Egs. (30) and (35) can be written in parametric form [45]

Y(q) = [q/R(@)]™, (36)

where here, unlike the previous crossover model [45], for the fundki@y) we adopted the Pade-
approximant of the numerical solution of the RG equations [49,50]

q2

g+1

In Eg. (36) the parametric variable= r/Gi, wherer is a dimensionless measure of the distance from
the critical point, which at the critical isochore coincides with the dimensionless temperature dewiation
[43—-45]. In the original Kiselev approach [45], the variablgas determined from a solution of the para-
metric linear-model (LM) EOS. The LM EOS has a theoretical foundation in the renormalization-group
theory [51], but it cannot be extended into the metastable region and represent analytically connected
van der Waals loops. Therefore, in the present work, we find the parametric varigibta a solution

R(g) =1+

(37)
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of the parametric sine-model developed recently by Fisher et al. [52] and represented in crossover form
by Kiselev and Ely [48]. With account of the redefinition of the funct®y) adopted in this work, the
crossover sine-model equation for the variaplean be written in the form

AP A Y A ’ (1-28)/ A1
<q Gi>[1 4b2 (1 qGi)]_b (moGiﬂ) (@) ’ (38)

wheremg is a system-dependent parameters, ahd= 5> = 1.359 are the universal sinep?-, and

linear-model b?, parameters [48]. The linear-model crossover equation for the parametric variable

employed earlier by Kiselev [49] is recaptured from Eq. (38) when the sine-model pargrheten.
Finally, the crossover expression for the Helmholtz free energy can be written in the form

A(T,v) = A™(T, §) — A®(T,0) — In (@ + 1) + ¢ Po()
— AvPy(T) + AGXT) + Ao(T) — K(z?) (39)

whereAv = v/vg; — 1 is the dimensionless deviation of the volume from the classical critical volume
voe, Po(T) = P(T, voo)voe/ ks T, and AL(T) = A™(T, voc)/ ks T are the dimensionless pressure and
residual part of the Helmholtz free energy along the classical critical isoehereqg., and the explicit
expressions for the renormalized residual pgf(z, ), and analytical functionsd"S(z, 0) and Po(T)

for the classical SW EOS are given in Appendix A. The crossover SW EOS can be obtained from the
crossover expression (39) by differentiation with respect to volume

9A RT[ v [dA v o= v (K
pr=-(2) =T[5 () L aaet (2] )
v/, v ve \9¢ /r  Voc ve \ ¢ /1

where the kernel terriC depends on the order parameageonly through the argument of the crossover
functionY (¢).

Egs. (28)—(39) completely determine the crossover Helmholtz free energy for the SW fluids. Far away
from the critical poiny > 1 (or|t| > Gi atv = v), the crossover functioki(g) — 1, the renormalized
temperature and volume tend to their classical vatues r andg — Av, and Eq. (39) is transformed
into the classical Helmholtz free energy density (2). Asymptotically, close to the criticalgpeint (or
|7| < Gi atv = v), the crossover functiofi (¢) = ¢, the parameters = tg /2 (or 7 = t?-/2
atv = ve) andg = ¢qv—2P/4 the critical part of the free energyA (7, ¢) is renormalized, and the
crossover Eqg. (39) for Helmholtz free energy reproduces the asymptotic scaling laws (see Eq. (26)).

4, Simulation details

Molecular dynamics (MD) simulations were performed in the NVE ensemble for 1-3 ns of simulated
time. Estimating the simulated time at each temperature requires assumptions about the mass and enert
of the model potentials. The mass was taken as 16 amu and the valagggofvere taken as 146,

73, and 19K for. = 1.5, 2.0, 3.0, respectively. Simulations for a given potential model along a given
isochore were initialized with FCC cells in accordance with the number of atthsifnulated in each
system. Subsequent simulations along the same isochore were initialized from the final configuration of
the preceding simulation with velocities rescaled to reduce the temperature. Simulated time was 3 ns for
y < 0.19in all cases except = 3.0. The long-range of the 3.0 potential resulted in slow simulations
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because of the large number of neighbors. Simulated time was 1 ns=f00.19. The heat capacity of
the system was estimated by regressing the values of internal etiemgyh a third-order polynomial
and computing the derivative. Note that the fluctuations in compressibility factor were relatively small
compared to fluctuations intemperature or internal energy. This happens because higher local temperatures
induce higher local pressures. Since the pressure is in the numerator of the compressibility factor and
temperature is in the denominator, their fluctuations tend to cancel.
In addition, Monte Carlo simulations were also performed for square-well fluidsweitt.5, 2.0, and
3. In these simulations, the system was started in a perfect face-centered cubic lattice and equilibrated
using random displacements of each of the molecules. For each set of conditions, the simulations were
divided into separate runs, each consisting dfdtempted moves per molecule. The reported properties
were taken as the average value of the runs, and the uncertainty was estimated by the standard deviation
The simulation results are available from the authors upon request.

5. Comparisonswith simulation data

The crossover EOS for SW fluids contains the following system-dependent parameters: the original
classical parameters” andb!” (i, j = 0-3) in Eq. (2), theSi, the critical amplitudeyo in the kernel
term, and the sine-model parametey. As mentioned above, the parametef%, a?, «{?, andb{" are
directly related to the second and third virial coefficients of SW fluids and can be determined exactly (see
Egs. (14)~(17)). The coefficients” andb® determine the behavior of the residual internal enérgy
in the limit * — 0 (or, equivalently, the coefficient] in Eq. (18)).

Furthermore, since the third virial coefficients, and as a consequence the paravﬁé.teé%), and
b{" in Eq. (2), have different analytical forms in the regions< 2.0 and fori > 2.0, the analytical
expressions for coefficienléz) and bf’) extracted from Eg. (2) also have different forms fox 2.0
andi > 2.0 regions. Therefore, in this work the coeﬁiciebf@ andbf) were represented by a Taylor
expansion

4
b =bio+ ) bi} AN, i=2and3 “
k=1

where the parameter of expansion

Lr—15 forr <20
AL = (42)
»—3.0, forr=>20

andthe coefficien‘rsi’;}c for each region were found from a fit of Eq. (2) to the for hard-sphere MC simula-

tiondataford}. The coefﬁcientég’} are listed in Table 1 and a comparison with the simulation data is given

in Fig. 1. In the entire density range shown in Fig. 1 the maximum deviation of the calculated valjes of

from the MC simulation results is less than 0.2%, which roughly corresponds to the accuracy of the data.
Even after this elucidation, the CR EOS still contains adjustable paranaéteasds”’ which can be

determined only from a fit of the CR EOS to the simulation data. If we also add to this number three

crossover parametefd, apo, andmg, which in principle can dramatically change the thermodynamic



130

SB. Kiselev et al./ Fluid Phase Equilibria 200 (2002) 121-145

Table 1

Coefficentsy), in Eq. (41)

Coefficient A<2 A>2

b2 1.5093018500 0.4697011630
b 0.9673047240 —4.604133228
b2 6.3087619550 —26.67612171
b —0.709455318 —43.58375157
b2, —20.27785515 —19.76736755
b3 0.5077587980 —0.528853757
b —0.771042541 5.1546638240
b, —20.76688587 40.508756730
b —12.04372937 72.750520860
b, 61.302467810 35.181735840

description of SW fluids, it becomes clear that obtaining a reliable statistical analysis of the crossover
behavior requires further restrictions on the empirical parameters. In order to obtain a representative
statistical analysis of the crossover behavior of SW fluids, the number of the empirical parameters should
be essentially restricted.

With this in mind, we chose the SW fluid with= 3.0 as our first model system. SinGe o I;® oc 18,
we expect that for this theGi is small [53], classical MF behavior over the entire experimentally available
region, and the crossover parameiers andmg are statistically irrelevant. The critical amplitudg,

1 " 1 1 Il

0.0 0.1 0.2 0.3 04 0.5 0.6

y

Fig. 1. Variation ofA; with packing fraction for different square-well widths. Symbols correspond to Monte Carlo simulation
results and the lines represent the values calculated with the crossover EOS.
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A=3.0

10—

o  Ref 11 .

CR EOS (Gi=2.9-10°3; a,4=0) ]
£l critical point

........ Quasi-chemical EOS

———Long-range EOS

06 X TPT2 calculations ¢ ]

0.8

*

o
047

0.2

0.0 ‘ ' ‘ ' '
6.5 7.0 7.5 8.0 8.5 9.0 95 100

Fig. 2. Vapor pressur@* as function of the temperatui& for the square-well fluid with. = 3.0. The open circles correspond

to the molecular dynamic results of Orkoulas and Panagiotopoulos [11], the crossed symbols mark the critical points, the solid
lines correspond to the values calculated with the crossover EOS, the dotted—dashed lines represent the values calculated with the
classical quasi-chemical model (QCM) [8], the long-dashed lines correspond to the long-range approximation (LRA) [21,22],
and the ants correspond to the values calculated with the second order thermodynamic perturbation theory (TPT2) [54].

determines the non-analytic singular behavior of the isochoric specific heat, which is not observed in
this system, and the parametey effectively takes into account a variation of the prefaetan Eq. (23)

for different definitions of theési [42,44], which we suppose to be small for this system. Therefore, we
initially set AT, = Avc = azo = 0,mo = 1, and all other parameters were found from a fit of the CR EOS

to our MD and MC simulation data for the compressibility fackhand the residual internal energy

in the one-phase region, and to the MC simulation VLE-data obtained by Orkoulas and Panagiotopoulos
[11]. We found that th&i for this system is really very smaigi = 2.9 x 103, and that for the adequate
description of all simulation data for SW fluid with= 3.0 only nine adjustable parameters in Eg. (2)

are needed. Comparisons of the crossover model with the simulation data are given in Figs. 2—4. The
average absolute deviation (ADD) between correlated and simulation data were less than 1% for both
internal energy and density. For the vapor pressure, the ADD is of about 0.1% in the temperature region
7.4 < T* < TZ. Atlow temperatures, the deviations of the vapor pressure calculated with the CR EOS
from the MC data are increased up to 0.5%.The ants in Figs. 2 and 3 correspond to the values calculated
with the second-order thermodynamic perturbation theory (TPT2) [54] and the dashed lines represent the
values calculated with the classical quasi-chemical model (QCM) [8] (dotted—dashed lines) and long-range
approximation (LRA) [21,22] (long-dashed lines). For the vapor pressure these values are very close to the
ones calculated with the CR EOS, that confirms our assumption about dominant classical behavior in this
system. As one can see, the LRA and TPT2 also yield a fairly good prediction for the saturated densities in
SW fluidwithA = 3.0, while the QCM predicts the much lower critical temperature in this system and, as a
consequence, fails to reproduce the saturated liquid densities and the vapor densities in the critical region.
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of Orkoulas and Panagiotopoulos [11] for the system &ize 12 (squares) anfl = 6 (triangles), and the other conditions are
same as in Fig. 2.

As our second step, we tried to redefine the parametefrom a fit of the crossover model to the
isochoric heat capacity,y, obtained by numerical differentiation of the molecular dynamic results for
U,. Our results forCy are shown in Fig. 5. Incorporation of a non-zero valuedggrin the CR EOS for
the SW fluid withi. = 3.0 does not improve description of the isochoric heat capacity far from the critical
region and causes unphysical behavior at temperature&i. In order to avoid this unphysical behavior,
the parametetiyg, like the Gi, should be very small. This observation confirmed our initial assumption
about the predominantly classical behavior of this system. Hence, the parapetanains zero in our
best representation of this system.

The classical behavior of the SW fluid with= 3.0 is, in our opinion, a major reason why the critical
temperaturel} = 9.96 obtained from a solution of Eq. (31) for this system differs frofn= 9.87
obtained by Orkoulas and Panagiotopoulos [11] from the analysis of their MC simulation results. Their
analysis was performed on the basis of the asymptotic scaling laws with the non-classical critical exponents
as given by Eq. (27). However, it is valid only in the temperature range as given by Eq. (25). Our analysis
shows, that actually all VLE-data in the critical regian< 1) for the SW fluid withix. = 3.0 presented
in [11] belong to the MF region as given by Eq. (24) witl= 0.5, rather than to the scaling region given
by Eg. (25). As a consequence, the real critical temperature for this system is slightly higher than the
critical temperature obtained by Orkoulas and Panagiotopoulos [11] from the analysis of the VLE-data
with 8 = 0.325.

The second system considered here is the SW fluid with1.5. For the classical SW EOS, we used
the same number of adjustable parametérsandb|’ as in the previous case far= 3.0. All these
parameters together with the crossover param@&gelso, andmg were found from a fit of the CR EOS
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Fig. 4. Compressibility factor (a) and residual internal energy (b) along various isochores as functions of the inverse temperature

p* = 1/T* for the square-well fluid withh. = 3.0. The symbols correspond to the Monte Carlo (empty circles) and molecular
dynamic (filled circles) results of this work fa¥ = 500, and the lines represent the values calculated with the crossover EOS.

toour(Z,y,T), (U, y, T),and(Cy, y, T) data in the one-phase region, and VLE-data presented in [11]
at conditionAT, = Av; = 0. We found that the best description of all data is achieved with the crossover
parameters

Gi=0629  ap=4059  mg=0.852 (43)

In contrast to the previous case fore= 3.0 , theGi for the SW fluid withA = 1.5 is not small. Hence,
the crossover contribution is essential in the redidn< 1. As a consequence, the critical temperature
for this system obtained from a solution of Eq. (31) with the optimized values of the parawy(@tamj

by), T2 = 1.244, appears to be very closefip = 1.218 obtained by Orkoulas and Panagiotopoulos [11]
from the analysis of their MD VLE-data with = 0.325. The critical temperature reported by Orkoulas

and Panagiotopolous [11] has been obtained as extrapolation of the critical temperatures for the system
sizesL = 6, 8, and 12 to the infinite system with— oo, while ourT¢ is a critical temperature of the

real finite-size system.
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Fig. 5. Isochoric heat capacity along various isochores as function of the inverse tempgtature/ T* for the square-well

fluid with » = 3.0. The symbols correspond to the values obtained by numerical differentiation of the molecular dynamic results
for U, presented in Fig. 4, and the lines represent the values calculated with the crossover E@g with(solid lines) and

with ayo = 11.5 (dashed lines).

We have also analyzed the finite-size effect of the residual internal ebgragd the isochoric heat
capacity for this system. The results of our analysis on the near-critical isogher®.16 are shown
in Figs. 10 and 11. The dashed curves in both figures represent the values calculated with the classica
EOS (i.e. with theGi and the critical amplitude,, set to zero). The classical EOS gives qualitatively
wrong behavior for the residual internal energy and the isochoric heat capacity in the critical region,
while the CR EOS yields a very good representation of the simulation data up to the inverse temperature
B* = 0.75. However, in the vicinity of the critical point atTb < g* < 0.8 (or |t| < 7 x 1072?),
the finite-size effect becomes essential, and all simulafiprdata lie in this region below the values
calculated with the CR EOS. Even for the system viNth= 2048 patrticles, the largest system considered
in this work, the systematic deviations from the asymptotic scaling behavior appadr at 0.03 (or
|r| < 3 x 1072), which is the accuracy of the determination of the critical temperature from these data.
It is interesting to note, that unlike the experimental data for real fluids, the simulation results do not
show any jumps iU, or Cy as the coexistence curve is crossed. They just smoothly penetrate into the
metastable and even unstable regions without exhibiting any anomalies. For real fluids calorimetric data
could be used to improve the accuracy of the critical temperature (see, for example, [55,56]), but the lack
of divergence for simulation data of finite systems precludes application of that approach in the present
instance. , '

In the next step, we used, for the critical shifts, Eq. (34) and redefined the coefficjéatsdb!” from a
fit of the CR EOS to the same dataset in the temperature @gihee0.75 but with the critical temperature
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Fig. 7. Coexistence curve of the square-well fluid wite- 1.5. The open symbols correspond to the molecular dynamic results
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conditions are same as in Fig. 6.
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T; = 1.218 and the critical density. = 1.623, as proposed by Orkoulas and Panagiotopoulos [11]. With
the optimized values of the coefficientd andb'” we found fori = 1.5 the classical critical parameters
Tj = 1.222 andyc = 1.554, which in this case do not coincide with the real critical paraméteend

ye, and, with theGi as given in Eq. (43), the coefficients

8, =782x103  §,=111x10"% (44)

Comparisons of the crossover model with the simulation data for the SW fluidwwithl.5 are given

in Figs. 6-9. Excellent agreement of the predictions of the CR EOS with simulation data is observed,

while all classical EOS fail to reproduce the vapor pressure and saturated densities for this system in
the critical region (see Figs. 6 and 7). The average deviation of the values calculated with the CR EOS
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Fig. 8. Compressibility factor (a) and residual internal energy (b) along various isochores as functions of the inverse temperature
B* = 1/ T* for the square-well fluid with. = 1.5. The symbols correspond to the molecular dynamic results of Alder et al. [58]
(empty squares), of this work fa¥ = 500 (filled triangles) an&v = 2048 (filled circles), and to the Monte Carlo results of this

work for N = 500 (empty circles), and the lines represent the values calculated with the crossover EOS.
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Fig. 9. Isochoric heat capacity along various isochores as function of the inverse tempgtaturk/ T* for the square-well

fluid with » = 1.5. The empty symbols correspond to the Monte Carlo results of this work fer 500, the filled symbols

correspond to the values obtained by numerical differentiation of the molecular dynamic resttpfesented in Fig. 8, and
the lines represent the values calculated with the crossover EOS.

from simulation results is less than 1% for all properties shown in Figs. 7—11. For the vapor pressure, the
average deviation is less than 0.1% (see Fig. 6).

The third system which we considered in this work is the SW fluid wita 2.0. Unlike the previous
systems considered in this work, the VLE properties of the SW fluid with 2.0 have not been as
carefully studied, and the actual critical temperature and density were not established with the same
accuracy as for the SW fluid with = 1.5. As was pointed out earlier by Kiselev and Ely [48], the
coefficientss, ands,, in Eq. (34) do not depend on ti&. Therefore, in order to avoid over fitting, we
used the same coefficients ands, in Eq. (34) for critical shifts for the SW fluid with = 2.0 as for
A = 1.5 (see Eq. (44)), and only ti@& was treated as an adjustable parameter. As we mentioned earlier,
the parametet:q just renormalizes the numerical prefackoin Eq. (23) which depends on the path of
approach to the critical point in the definition of t&&, but not on the parameters of the intermolecular
potential. Therefore, for this parameter, we also adopted the same value as obtained befeselfbr
(see Eq. (43)), while all other parameters, including the crossover parameters

Gi = 0.488 aro = 3.796 (45)

were found by fitting the CR EOS to o4&, y, T) and (U;, y, T) data in the one-phase region, and
VLE-data obtained by Elliott and Hu [10].

Fig. 12 shows the compressibility factor and residual internal energy along separate isochores as
functions of the inverse temperatugg = 1/T*. Good agreement between calculated values and
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Fig. 10. Finite-size effect of the residual internal energy along the isogher®.16 for the square-well fluid with = 1.5. The
empty symbols correspond to the Monte Carlo results of this workifer 108 (squares)Y = 500 (triangles), and&/ = 2048
(circles), the filled symbols correspond to the molecular dynamic results of this work for the\saand the lines represent the
values calculated with the classical (dashed lines) and crossover (solid lines) EOS.

simulation data for both properties is observed. Deviations between the calculated values and simu-
lation data in Fig. 12 are small, but at high densitigs{ 2y.) the isochores for the residual internal
energy calculated with the CR EOS exhibit some waviness, which is physically unattractive. We do not
have a complete phase diagram for the SW fluid wite= 2.0 and, therefore, do not know for cer-
tain the location of the solid—liquid coexistence curve in this system. But if we compare.0 fluid
with the phase diagram for the Lennard—Jones (LJ) fluids obtained by Vliegenthart and Lekkerkerker
[57] (see Fig. 1 in [57]), we can also assume that, similar to the LJ fluids, in the SW fluidiwith
2.0 all data withT* < T} andy > 2y, shown in Fig. 12 belong to the metastable liquid or solid
phase. Future analysis of the 2.0 fluid should focus on enforcing consistency of the CR EOS with
simulation data at high density, in addition to generating more simulation data along the coexistence
curve.

The vapor pressure and coexistence curve simulation results obtained for the SW fluid=wt0
by Vega et al. [9] and by Elliott and Hu [10] are shown in Figs. 13 and 14. In the critical region,
there is an obvious discrepancy between the two datasets. Vega et al. [9] analyzed their simulation datz
for the coexistence densities with the effective critical exporert 0.53, which is very close to the
MF value 8. = 0.5, while Elliott and Hu [10] used the non-classical vajgie= 0.325. As a conse-
quence, the critical temperature extracted by Vega et al. [9] from their simulationTfata, 2.764,
is higher than the critical temperature obtained by Elliott and Hu [ID],= 2.61. TheGi for this
system,Gi = 0.488, is slightly smaller that th&i for the SW fluid withn = 1.5 (see Eg. (43)),
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Fig. 11. Finite-size effect of the isochoric heat capacity along the isochete€0.16 for the square-well fluid with = 1.5.
The filled symbols correspond to the values obtained by numerical dedifferentiation of the molecular dynamic resllts for
presented in Fig. 10 and the other conditions are same as in Fig. 10.

but bigger than the valugi = 0.111 obtained from Eq. (23) withy// = » = 2.0 andGij—15 =
0.629. Thus, for the SW fluid with. = 2.0 the Gi (Gi = 0.488), is not small enough to provide a
mean-field behavior in the critical region. Therefore, we would expect the critical temperature obtained
by Elliott and Hu [10] to be closer to the actual value. However, the critical temperature calculated
with CR EOS (i.e.Ty = 2.702) lies between the values obtained by Vega et al. J9] € 2.764
and by Elliott and Hu [10] ¥ = 2.61), while the critical density calculated with CR EO%, (=
1.394) practically coincide with the critical density obtained by Elliott and Hu [3@]-€ 1.40). Sim-
ilar to observations foh. = 3.0, application of3 = 0.50 to the coexistence data of Elliott and Hu
results in closer agreement in the critical temperature with the CR EOS but with a smaller critical
density.

In order to estimate the influence of t on the values of the critical parameters for SW fluid with
L = 2.0, we fit the CR EOS to the same dataset but with fixed valu@ ef 0.112. The result of these
calculations is shown in Figs. 13 and 14 by dashed-dotted curves. In the region where the simulation
data exist, both fitsGi = 0.488 andGi = 0.112) give practically identical results. The major difference
between these two fits is in the critical region, where the CR EOS @itk 0.112 predicts a critical
temperature7; = 2.787, which is very close to the valug = 2.764 obtained by Vega et al. [9]. In
Fig. 15, we compare the calculated values of the isochoric heat capacity with the values obtained by
numerical differentiation of the molecular dynamics resultdfofsee Fig. 12). The solid lines in Fig. 15
represent the values calculated w@h = 0.488, dashed-dotted lines witei = 0.112, and the dashed
lines correspond to classical EOS obtained from the CR EOS by s&ltiaga,o = 0. For the SW fluid
with o = 2.0, similar to the SW fluid withh. = 1.5, the CR EOS with small values of ti@& (Gi = 0
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Fig. 12. Compressibility factor (a) and residual internal energy (b) along various isochores as functions of the inverse temperature
p* = 1/T* for the square-well fluid witlh. = 2.0. The symbols correspond to the molecular dynamic results of this work for
N = 500 and the lines represent the values calculated with the crossover EOS.

or Gi = 0.112) are unable to even qualitatively describe isochoric heat capacity in the critical region. In
order to reproduce quantitatively the asymptotic singular behavior of the isochoric heat capacity in the
critical region theGi for the SW fluid witha = 2.0, Gi = 0.488, should be the same order of magnitude
as for the SW fluid withh. = 1.5. This conclusion is inconsistent with our estimates obtained with Eq. (23)
for an ideal van der Waals fluid witla/l = A, but is in a qualitative agreement with the independent
estimates of th&i for the square-well fluids obtained by Brilliantov [53].

All system-dependent coefficients in the CR EOS for SW fluids with 1.5, 2.0, and 3.0 are listed
in Tables 2 and 3. In Table 3, the critical parameters for SW fluids with1.5, 2.0, and 3.0 calculated
with the CR EOS are compared with the critical parameters obtained by other investigators.

The computer program with the CR EOS for SW fluids witk- 1.5, 2.0, and 3.0 is available from the
authors upon request.
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Table 2

System-dependent parameters for the crossover EOS

Coefficient A=15 A=20 A=30

Classical parameters
ad 1.86937E+-00 3.00299E-00 4.325278-00
a? ~1.09222E-01 1.54331E-01 5.446628-01
ay) 5.15214E-01 2.63444B-02 —1.20356E-01
ay ~1.17971E-02 —2.02965E-01 —5.25380E-01
b —5.89252E-01 2.88015E-01 7.68267B-00
a® 3.44813E-01 1.81800E-02 1.324618-02
bY —1.29119E-01 —2.17453E-01 5.38847E01
by 5.13234E-01 1.29514E-02 8.63347E-00
ay —1.10254E-01 —9.05033E-01 —1.18665E-03

Crossover parameters
Gi 0.62856 0.48814 2 x 1073

az 4.05865 3.79583 0
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Table 3

Critical parameterts for SW fluids

A Source T Ye P

15 This work 1.218 0.162 0.097
[11] 1.218 0.162 0.095
[10] 1.270 0.160 0.110
[9] 1.219 0.157 0.108
[59] 1.215 0.167 0.097

2.0 This work 2.702 0.139 0.208
[10] 2.610 0.140 0.170
[9] 2.764 0.118 0.197
[59] 2.671 0.134 0.191
[60] 2.684 0.123

3.0 This work 9.961 0.133 0.889
[11] 9.871 0.135 0.841

6. Conclusions

We have performed extensive molecular dynamics and Monte Carlo simulations for square-well fluids
over arange of values fardeveloped a new semi-empirical crossover EOS for variable-width square-well
fluids. Unlike previous equations of state, our model possess the exact second and third virial coefficients,
reproduces the first high-temperature perturbation coefficient, and exhibits the correct scaling behavior
in the critical regime. The parameters of our EOS were fit to our new simulation data, as well as the data
of previous workers. The resulting EOS was found to provide an extremely accurate description of the
thermodynamic properties of the systems we examined.
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Appendix A

The renormalized residual part of the Helmholtz free energy
4y — 3y°
a-5%
is obtained from Egs. (2)—(17) by replacement— A = exple/[kgToct + 1]} — 1L andy — j =
yoe/ (@ + 1), whereyoe = 7o 3/6uvge. The analytic function

AT, ) = Ao(P) IN[14+ A1(5)A + A2(5) A% + A3(3) A% (A1)

Ayoc — 33,

A7, 0) = 1 y00? Ao(yoo) IN[1 + A1(yoc) A + A2(yoo) A% + As(yo) A (A.2)
— JYOc
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is obtained by settingg = yoc in EQ. (A.1). The analytic function

_ aAres aAres(l-.’ 0)
i =1 (M) g (100
Y J (g=0) Yoc z

is given by
_ 14 yoe+vE -3 dA . - .
Po(d) = 2% 0 ~ Yoo _ ) 250 1y (14 A4 + 4242 + 434
(1 — yoc) dyoc
dA; - dAs - dAs - _ _ -
—Ao< L Ry 3A3> (14 A1A + Ay A + AgA3)~L
d)’Oc dy0c dy0c
where
2 3 5 0 2 3
dAg _ 2ay” yoc + 3ay” yi, + 5ay va. _ 2@ ay’ yoc+ ay’ y&. + ag’ vo. + ag
dyoc 1+ b7 y3, ° L+ b y3,)?

dy0c - AS dyOc 1+ bgl)yOC + b;Z)ygc =+ bf)ygc Ao

1 2 3
1 [ ai)yoC+a§)y§C+a§)y8C (b(l)
)

1 2 3
2 3 2 3
dA; 2a5? yoc + 3ay” y3, ay’ yé + ay) yae

dA; 1 dAg ail)yoC + aiz)ycz,C + af')yg’c 1 ail) + 2a§2)y0c + 3a
1+ b yoo + b y2,

2 + 2]9;2) Yoc + 3[?;3) yCZ)C)

dyoc 1+ b;l)yOC + b;z) ygc + bf) ygc 1+ b;l) Yoc + béz) ygc + bés) yg’c)2
x (bSY + 262 yoc + 365 y2))

2 3 2 3
dAs _ 2aé)y00+saé )ygc . aé)y§c+aé)ygc
dyoc 1+ 5P yoe+ bPy2 +bPy3. 1+ bPyoc + b Y2 + b y3)
x (b + 2b% yoc + 365 y2.)
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