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Abstract

Engineering equations of state (EOS) deal with the majority of fluids of interest in process and equipment design in the chemical industries.
Accuracy and universality are two desirable features the engineering EOS require, however, both of them cannot be simultaneously obtained
without some degree of compromise. Therefore a simultaneous optimization algorithm is proposed to develop an accurate but compact
engineering EOS for wide range of fluids with one single functional form. The algorithm is based on a simulated annealing method, and
operates on different fluids at the same time to achieve the best average results. A 14-term EOS is developed based on this algorithm that has
good accuracy for selected non-polar and polar fluids. The resulting equation is compared with two different 12-term EOS developed by Span
and Wagner, one for polar fluids, the other for non-polar fluids. The new 14-term EOS also gives good predictions for some associating fluids
such as alcohols and water.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction plicable to a wide range of fluid systems can easily fit into
current process design and control packages, and can be
Engineering equations of state (EOS) generally refer easily applied when new fluid data become available.
to those equations used for equipment and process de- Cubic EOS like the Redlich—Kwoni@], Soave—Redlich-
sign. Their accuracy is lower than that achieved with Kwong [4], and Peng—Robinsofb], etc., are types of
state-of-the-art reference EOS, which predict thermody- engineering EOS that are used widely in industry, primarily
namic properties to within experimental uncertainty. An due to their simple structure. With three substance-specific
advantage of the engineering EOS is that they typically have parameters, these equations give qualitatively correct re-
a simpler mathematical structure than found in a referencesults. The Benedict—-Webb—Rubbin (BWHP], Starling-
quality equation. As pointed out by other research#r2], [7] or Bender-typd8] EOS have relatively higher accuracy
highly accurate reference EOS have only been developedand are also popular in industry. P¢&] and Plater{10]
for a few fluids for which extensive and accurate exper- report sets of coefficients for 51 non-polar and polar flu-
imental measurements are available. For the majority of ids for the Bender equation of state. Although these gen-
industrially interesting fluids, these reference EOS will not eralized Bender-type equations give reasonably accurate
be developed in the foreseeable future, and in some casepredictions for thermodynamic properties, they cannot be
it is even difficult to develop an engineering quality EOS extrapolated to regions where experimental data have not
for many of these fluids due to the paucity of experimental been used in the development of the parameters. Even
data. Even though accuracy is an important requirement forwithin the range where reliablepT data are available, the
an EOS, universality, i.e., fixed functional form, is another Bender-type equations can give unreasonable predictions
desired feature. A universal engineering EOS which is ap- of the isobaric heat capacity in the high temperature re-
gion[11]. The main reason for this behavior is that neither
the Bender nor other BWR-type equations are structure
* Corresponding author. Tek:1 303 273 3720; fax:-1 303 2733730.  Optimized and there are severe correlations among the
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Modern algorithms for the development of reference EOS in Section 3We then present the resulting engineering EOS
enable the reduction of intercorrelations in an EOS giving together with comparisons to experimental data and Span
superior accuracy and numerical stability. However the suc- and Wanger's results iBection 4 Conclusions are summa-
cess of these algorithms, like the OPTIM proposed by Setz- rized in Section 5
mann and Wagndt 2], heavily depends on the availability
of data for the fluids of interest. More importantly, these al-
gorithms can only develop one reference EOS for one spec-o. Development of equation of state by smulated
ified fluid at a time. In order to cover a broader range of annealing
fluids, the EOS has to be transformed to be applied to other

fluids. Usually when an EOS for substance A is applied 10 peterministic algorithms like stepwise regression fre-
substance B, it loses its accuracy and numerical stability. quently end up with a local rather than global minimum,
Span and Wagned1,13] proposed a simultaneous opti- ggpecially when the functional form of an EOS can have
mization algorithm, the SIMOPT, to develop accurate and any independent variables. Compared to stepwise regres-
numerically stgble engineering equathns fo.r multiple fluids sion, simulated annealing (SA) is quite simple and has been
at the same time. The SIMOPT algorithm is based on the seq in a variety of applications in combinatorial optimiza-
OPTIM algorithm and completely identical to the OPTIM i Its potential advantage is that it can find global minima
algorithm with respect to data and constraints. Regressiongng it can be easily combined with parallel regressions to
matrices are setup for each individual fluid with the same develop a universal EOS.
bank of terms. Since the opt_imizat@on algorithm manipulates  gjmulated annealing was first developed to optimize cir-
the terms only py their positions in the bank of terms, the it design by Kirkpatrick et a[17], and independently by
regression rnatnges are tran;formed in exactly the same WaYCerny[18]. In their work, Kirkpatrick et al. used the prin-
for each fluid during regression. The difference between the ¢ipjes of statistical mechanics to solve combinatorial opti-
SIMOPT and the OPTIM lies in the way the algorithm han-  ization problems. The method is implemented using the
dles the merit function or the quality critefial, 13]and the  Metropolis algorithm[19], which is widely used in atomic
statistical tests. scale Monte Carlo simulation. In its application a change

Span and Wagner applied the SIMOPT algorithm to & o state (configuration at the atomistic level) is accepted ac-
group of 15 non- and weakly polar fluids and a group of cording to the following rule:

13 polar fluids, and generated two engineering EOS, one
for each group of fluid§11,14,15] These two engineering p=1, AC <0, p=e2CT AC>0 (1)
EOS give surprisingly good accuracy and good numerical
stability with merely 12 functional terms in each of them.  wherep is the probability that a configuration is accepted,
Despite the success of Span and Wagner’s approach, there\C the change of the function to be minimized (cost
are still drawbacks regarding the algorithm and resulting en- function—originally AU at the atomistic level) and the
gineering EOS. As mentioned by Span and Wadh#&r13], temperature. I is less than one but greater thBna ran-
reference sums of squares are needed to create the quadomly generated number between 0 and 1, the move is also
ity criteria in the SIMOPT algorithm, which are not readily accepted. Ifp is less than the random numbRyrthe move
available and require EOS fitting for individual fluids. The is rejected. Such a probabilistic rule allows uphill steps to
heart of the SIMOPT is based on a combination of stepwise be accepted if the probability is larger than a random num-
regression and the evolutionary optimization method, which ber between (0, 1). Thus the method is able to move out of
makes the algorithm as complex as the OPTIM algorithm. a local minimum at nonzero temperatures. Shubert and Ely
In addition, the scope of the fluids studied is still limited to [20] applied the simulated annealing method to develop ref-
alkanes, light inorganics and refrigerants; aromatic hydro- erence equations of state for refrigerants R134a and R123.
carbons and associating fluids were not included. The equation of state developed in this work is expressed
As mentioned earlier, universality is another important as a Helmholtz free energy function of density and tempera-
feature for an engineering EOS. The two 12-term engineer-ture. The Helmholtz free energy can be described as a linear
ing EOS obtained by Span and Wagfiet,14,15]are totally combination of the ideal gas (id) and residual or real fluid
different EOS and cannot be used across groups. Also Bon-(r) contributions where the latter arise due to intermolecular
sen et al[16] report that associating fluids such as alcohols interactions. Mathematically,
and water cannot be modeled with these two EOS. ,
The objective of this work is to use the simulated an- A(p. T) = A%p. )+ A"(p. 1) 2
nealing to develop a single engineering EOS that yields the _
same accuracy as that obtained by Span and Wagner, buyvhereé A is the Helmholtz free energy, and and T are
covers a broader range of fluids. We proceed as follows. the density and temperature, respectively. Generally the
In Section 2we describe the simulated annealing technique Helmholtz function is formulated in dimensionless form as
and its application in the development of equations of state. A(p, D . ;
The proposed simultaneous optimization algorithm is given ¢ = —pgr— = @7 (6.0 + @3, ®3)
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wheres = p/pr andt = T;/T. The reference densify and is temperature scheduling: to change temperature according
temperaturdl; are usually chosen to be the critical param- to an annealing schedule which is a sequence of effective
eterspc andTe. temperatures that decrease in slow steps until the objective

The ideal part of Helmholtz energy is determined from function reaches a minimum. The annealing schedule has to
experimental or theoretical knowledge of the ideal gas heatbe carefully chosen to ensure that the system moves to its

capacity as follows: minimum slowly. The last step in the algorithm is termina-

id 0 tion. The regression will be terminated if three trials fail to

dl="""" —In|Z )+ [ -Ldr 4) find any improvement in the cost function, or a maximum
RT o T number of temperature steps is exceeded.

The residual part of the Helmholtz equation is assumed to Huber reported the performance of three temperature
be a linear combination of dimensionless density and tem- Schedules in conjunction with simulated annealing when
perature terms (so-called “functional terms”) as shown in developing vapor pressure correlations for R134a in 1994
Eqg. (5) [21]. The three schedules are an exponential, the Aarts and
VanLaarhoven algorithnfi22] and the Lundy and Mees al-

My M> . . .
. B i i . gorithm[23]. As pointed out by Hubef21], the simulated
O'S.0) =Y jandmin 4 Y anden exp( — ) annealing with a Lundy and Mees annealing schedule gave
m=1 m=M1+1 the overall best results. Thus, we have chosen to use the

5) Lundy and Mees schedule in this work. The Lundy and

wherea,, is the coefficient for each term,, j,, andk,, are Mees algorithn{23] is shown as

exponents om, § and exponentiad terms, respectively, and _ Tk
M; andM; are the numbers of different type of terms. Ascan 1= 175 /7y
be seen from this equation, the two types of terms are poly- _ . .
nomial and exponential. A decision algorithm like simulated wheredy is the parameter which controls the annealing
annealing in conjunction with a regression algorithm is used speed,Ty and Tk+1_are the annealing temperature at step
to determine the number of parameters and their values. andk + 1, respectively.

When dealing with the development of an EOS, the
change of cost functiorAC in simulated annealing is i L ,
defined as the variance of the equation of state at eachg' Simultaneous optimization algorithm
regression steg,

(9)

5 As mentioned irSection 1an EOS with optimized struc-

C = s° 6) ture tends to be more numerically stable and more accurate

Nt than the Bender-type equations for a specified fluid. How-
whereN; refers to the degrees of freedom, and can be cal- €V€ when t_he EOS |s transferred to other fluids the accuracy
and numerical stability can be lost. In order to overcome
this problem, we propose an optimization algorithm, MUL-
Nt = Ndata— Nconstr— Nterm (7 TIREG, which considers data sets from different fluids si-
multaneously. The purpose of MULTIREG is to determine
an overall best EOS for multiple fluids. The resulting EOS
does not favor any specific fluid; instead, it will give on av-
erage the best results for all fluids considered (base fluids).
Further, the resulting EOS should be able to give good pre-
dictions when extended to other fluids in the same groups
5 5 as the base fluids. For those fluids with limited data sets, the
§°= Z Wa(Yn = yn) (8) resulting EOS should give at least reasonable predictions in

n=1 the regions which are not covered by available data, but are
whereW, is the total weight of data poim, Y,, the exper- covered by the base fluids.
imental value at that point, ang, is the value calculated The MULTIREG algorithm is based on linear-least
from the regressed equation of state. squares regression and simulated annealing. A flow diagram

The EOS simulated annealing algorithm has four main for the development of a technical EOS using MULTIREG

operations. The first step is initialization; i.e., to arbitrarily algorithm is shown irFig. 1. The procedures to set up the
choose a fixed number of terms as the starting point. The sec+egression matrices are the same as in the development
ond step is replacement; to randomly select a term from the of multiparameter equation of state described in various
existing formulation and replace it with a randomly selected referenceq24-27] Experimental data sets are processed,
term from the collection of possible of terms. The exchange and appropriate weights are generated before the data sets
of terms is accepted if the change in the cost function satis- are put into separate matrices for each individual substance
fies the acceptance criteria described above. The third stepusing the same bank of terms. Critical constraints for each

culated as

whereNgata is the total number of data points used in the
regressionNconstr the number of constraints aldern the
number of function terms in the formulation at regression
stepk. The weighted sum of squared residual from the linear
regressionS?, is given as

Ndata
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Substance 1 Substancei,i=2, N
Collect and process data Collect and process data
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Generate the weights Generate the weights
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Fig. 1. Flow diagram about the development of engineering equation of state from the MULTIREG algorithm.

fluid are also included in the Corresponding normal matri- the relative percentagl;% of each sum of Squarﬁz is
ces to ensure the resulting EOS predicts the correct critical calculated according to

points. The critical temperaturg. and densityp; are used )

to reduce the temperature and density of the corresponding, .o — S « 100% (11)
fluid. l 157
3.1 Weighting Then the extra weighting factap; for each substance is

obtained from

In the development of reference quality EOS, appropriate | = _ MAX (A;%)
weights must be generated to ensure the best linear unbi- ' A%

ased (BLUE) results from the_ Imeqr-least squares rggressmnand is used in the calculation of the cost function as described
[26]. In order to develop engineering EOS for multiple flu-

ids, weights should also be generated for data sets of eac below. In such a way, those fluids with high value§§)i/vill
: g g q)e assigned a smaller valuewf so that during optimization

individual fluid as well. In this work a modified Gaussian they will not receive extra weight in the algorithm and the
error propagation rule was applied, and the total weight for fluids with smaller values Qﬁ,.z will be considered equally.

each data point is

x 100% (12)

- i 3.2. MULTIREG algorithm
=02 = 2 K 5 (10)
ar" U}'n + Zk:l[(a)’/axnk)axnk]

When applying simulated annealing to the development
whereo)z,n is the variance of the dependent variag)e dxnk of an EOS for a single fluid, the cost functionC is the
the variance of the independent varialblg andK the num- variance of the equation of state at each regressionkstep
ber of independent variables. A simplex methad] is used as shown irEgs. (6) and (7)However, when dealing with
to find the weighting factor&; to account for the relative ~ multiple fluids, the cost functio©® should have following
importance of individual data set for each fluid. form:

As mentioned by Span and Wagri&d,13], the reduced Z'I (S2/N 1 yw;
form of the quality criteria®® needs to be used to offset ¢ = &i=L2i/ /70
any exaggerated influence from the well-measured fluids. To 1
accomplish this extra weighting factarg are introduced as  wherel is the total number of fluids considered, andthe
follows. After initialization of regression matrix(i = 1, 1), extra weighting factor discussed above.

(13)
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The change of cost functiohC from stepk to step k+1) terms and no special critical region terms were included.
is then calculated from The resulting equation has the following form for the di-
ZI 1((Slzk+1 lzk)/Nf,»)wi menspnless Helmholtz energy:
AC = 7 14 o=, 1+ 6,0 (15)

by using this algorithm the general structure of the MUL- l l .
TIREG algorithm corresponds exactly to the structure of ®'(8, ) = Za gimin 4 Za §ime/m exp( — 8)  (16)
the simulated annealing algorithm for single fluid. As de- m=1

scribed previously, regression matrices are built using the where a,, are the coefficients in the residual part of
processed data sets and weights for each fluid with the sameqelmholtz energy, and,,, j,» and k,, are exponents of

bank of terms. At initialization, the pre-selected terms are density and temperature terms which are presented in
added to each matrix and the matrices are transformed ac-Taple 1

cordingly. During the initialization, the critical constraints Coefficients forEq. (16)for non- and weakly polar flu-
are also added. MULTIREG then randomly chooses a termids such as methane, ethane, ethylene, propane, isobutane,
A from the bank of terms and second random term B in the n-butane n-pentanen-hexanen-octane, cyclohexane, ben-

current formulation, and carries out exchange on each regreszene, toluene and nitrogen are giverTable 2 Coefficients
sion matrix. At this stage the exchange is a mock-exchange,for Eq. (16)for polar and associating fluids such as carbon
which means only the sum of squares of each matrix is actu- dioxide, R32, R125, R134a, ammonia, methanol, ethanol,
ally calculated and the matrices are left intact. The Metropo- 1-propnaol, and water are listed Table 3

lis algorithm is then applied to determine whether the change  Two simultaneously optimized EOS of Span and Wagner
(the new formulation) is accepted or not based on the change[11,14]were used to compare the accuracfqf (16) Each

of cost function and the current effective temperature. This is of their equations, namely the SW-NP and SW-PL, con-
different from the SIMOPT algorithm in that there is no need tains 12-terms and was developed solely for non-polar and
to carry out the studenttest and FisheF-test for each ma-  polar fluids, respectivelyfable 4summarizes the values of
trix after any move in MULTIREG. If the move is accepted, average absolute deviation (AAD) obtained when applying
then the MULTIREG will delete term B from the formula-  Eq. (16)and the SW-NP to selected experimental data sets
tion and add in term A. The matrices are then transformed for the 13 non- and weakly polar fluids. Aromatic hydrocar-
using stepwise regression methods to reflect this change. Ifbons such as benzene and toluene were not included in Span
the move is not accepted, the MULTIREG will choose an- and Wagner’s work published to date, therefore only calcu-
other pair of terms, one from the bank of terms and the other |ations fromEq. (16)are givenTable 5Spresents the values
from the current formulation, and repeat the attempted ex- of AAD obtained by applyinggq. (16)and the SW-PL to
changes. The MULTIREG algorithm stops after satisfying the nine polar and associating fluids. Only calculations from
the termination conditions listed Bection 2and the form of Eq. (16)for associating fluids such as alcohols and water

the engineering EOS is then determined. Nonlinear regres-are given since they are not included in Span and Wagner’s

sions are then performed for each individual fluid to find the work.

coefficients that optimize its representation of experimental  The databases of the fluids studied vary grefa8]. For

data. fluids such as methane, ethane, propane and nitrogen, there
It is interesting to note that only a small amount of data are extensive accurate experimental measurements which

for each fluid is sufficient to generate good results using the cover ranges from the gas phase to the critical regions and
MULTIREG algorithm. These data should be representative

for certain thermodynamic states, such as the vapor—liquid tapje 1
equilibrium (VLE) boundary, the gas and liquid phase den- Exponents of the simultaneously optimized engineering equation of state
sities, etc. In this work, the typical number of data selected

m |m m m

was between 150 and 200 for each fluid, much smaller than J k'
the amount of data required to develop a reference quallty 1 3-25 g
EOS. 3 1 1.25 0
4 3 0.25 0

5 7 0.875 0

4. Simultaneously optimized engineering equation of 6 2 1375 0
sate 7 1 0.0 1
8 1 2.375 1

) , ) ) 9 2 2.0 1

A 14-term engineering equation of state has been obtained; 5 2.125 1
by using the simultaneous optimization algorithm MULTI- 11 1 35 2
REG for a total of 13 non- and weakly polar fluids, five polar 12 1 6.5 2
fluids and four associating fluids. There were 184 polyno- 13 g 13';5 g

mial and exponential terms present in the bank of possible




Table 2
Coefficients of the simultaneously optimized equation of state for non- and weakly polar fluids
m an
Methane Ethane Ethylene Propane Isobutane n-Butane n-Pentane
1 1.25595787x 10° 1.32031629x 1P 8.42278605x 1071 9.70439249x 1071 1.18083775x 1(Q° 1.18936994x 1(° 2.20261753x 10°
2 8.48007435x 107t 9.47177394x 1071 8.65139678x 101 9.73671323x 1071 9.46903331x 1071 1.05407451x 10° 1.07797592x 10°
3 —3.00939285x 10° —3.21919278x 1(° —2.79801027x 1(° —2.96661981x 1Q° —2.90618044x 10° —3.24964532x 1(° —3.82130221x 1(°
4 5.99544996x 102 7.47287278x 102 6.74520156x 102 7.84340496x 102 8.51346220x 102 8.25263908x 102 1.06627357x 1071
5 2.57003062x 10~* 2.74919584x 104 2.42445468x 104 2.78440866x 10~4 2.79868503x 10~4 2.76467405x 10~4 3.07513215x 104
6 —2.85914246x 102 —6.33952115x 102 —2.74767618x 1073 —6.77622221x 1072 —1.68266335x 1071 —8.09869214x 102 —2.84309667x 1071
7 —6.83210861x 102 —5.17685674x 102 —1.48602227x 1072 —8.56371936x 1072 —2.01202825x 1071 —9.38097492x 1072 —7.28441220x 1072
8 —3.47523515x 1072 3.65838926x 102 1.29307481x 1071 1.77467443x 1071 —3.32570120x 102 1.46213532x 1071 —4.60943732x 1071
9 1.04637008x 1071 2.57753669x 1071 3.74759088x 1071 3.91636018x 1071 2.42967225x 1071 4.01168502x 1071 8.39360011x 1072
10 —1.09884198x 102 —1.34856586x 102 —1.25336440x 102 —8.03312946x 1073 —4.20931100x 1073 —1.28716120x 102 —1.50650444x 102
11 —1.25124331x 101 —2.21551776x 1071 —2.33507187x 101 —2.60385851x 1071 —2.24528572x 1071 —2.75191070x 1071 —2.03771872x 1071
12 —5.53450960x 103 —6.89219870x 104 1.38862785x 102 —1.91104746x 102 —1.41307663x 102 —1.62708971x 102 —7.90244277x 1073
13 —1.51182884x 102 —4.47904791x 102 —4.88033330x 102 —6.31331470x 1072 —5.93401702x 1072 —7.04082962x 102 —5.68993564x 102
14 —2.04800000x 102 —2.15665728x 102 —2.38141707x 102 —2.27769095x 102 —2.27862942x 102 —2.32871995x 102 —2.99387974x 1072
n-Hexane Benzene Toluene Nitrogen Cyclohexane n-Octane
1 2.43433265x 10° 1.76284970x 1P 1.34060172x 1P 9.57664698x 1071 1.27436292x 10° 1.57750154x 10°
2 1.18137185x 10° 1.02610647x 10° 1.01624262x 10° 8.68692283x 1071 1.15372124x 10° 1.15745614x 10°
3 —4.24411947x 10° —3.74263321x 10° —3.27810202x 1° —2.88536117x 1° —3.86726473x 10° —3.54867092x 1C°
4 1.08655334x 1071 9.57682041x 102 9.69209624x 102 6.12953165x 102 8.84627298x 102 1.18030671x 1071
5 2.87828538x 10~ 2.59179321x 104 2.61950176x 104 2.55919463x 104 2.76478090x 104 3.02753897x 104
6 —2.51781047x 1071 —1.03082188x 1071 —1.58891991x 1071 1.69423647x 1072 7.26682313x 102 —2.63074957x 1071
7 2.16096570x 102 1.07359246x 1071 6.28559812x 102 —4.43639900x 102 7.10849914x 1072 2.55299486x 102
8 —4.58052979x 1071 —1.12562310x 1071 —8.42364946x 1072 1.37987734x 1071 4.46376742x 1071 —1.26632996x 101
9 1.63940974x 1071 3.18737987x 1071 4.49701117x 1071 2.77148365x 1071 7.64476190x 1071 4.48343319x 1071
10 —2.55034034x 1072 —3.07549016x 102 —1.08658876x 102 —1.44381707x 1072 —4.23520282x 102 —9.46702997x 1073
11 —2.47418231x 1071 —3.25082386x 1071 —3.83733669x 1071 —1.69955805x 101 —3.96468623x 1071 —4.43927529x 1071
12 —8.05544799x 1073 2.28099159x 102 2.21127543x 1072 5.46894457x 1073 —1.41250071x 102 —1.68224827x 102
13 —7.78926202x 102 —7.07431076x 102 —9.54658223x 102 —2.87747274x 1072 —1.08371284x 1071 —1.15864640x 101
14 —2.69044742x 102 —1.96809158x 102 —1.77905259x 102 —2.38630424x 1072 —2.50082884x 1072 —1.32417591x 1072

A%
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Table 3

Coefficients of the simultaneously optimized equation of state for polar and associating fluids

m a,
Carbon dioxide R32 R125 R134a Ammonia Methanol Ethanol 1-Propanol Water

1 —4.71122371x 101! 2.75866232x 107! 7.41057508x 1071 1.08605179x 10° 3.29159441x 107! —2.4578394x 10° —2.95455387x 10° —6.48466690x 10° 3.46821920x 10!
2 9.13375599x 10t 9.26526641x 1071 1.13555445x 10° 1.03772416x 10 8.48237019x 107! 1.39060027x 10° 1.95055493x 10° 6.34812260x 107! 5.03423025x 107!
3 —1.96793707x 10° —2.44296579x 10° —3.12563760x 10° —2.92069735x 10° —2.30706412x 10° 8.56114069x 10! —1.31612955x 1(° 5.34271316x 10° —3.51059570x 107t
4 6.89687161x 102 5.34289357x 1072 9.32031442x 1072 9.15573346x 1072 4.08625188x 102 —4.20843418x 102 —1.47547651x 1072 3.59156552x 102 5.07004866x 102
5 2.15658922x 104 1.06739638x 104 2.76844975x 1074 2.40541430x 1074 6.79597481x 10°° 3.63682442x 107° 1.39251945x 1074 3.91173758x 1074 1.99939129x 10°4
6 9.51876380x 102 3.46487335x 102 —5.64403707x 102 —2.00239570x 10! 4.99412149x 1072 7.05598662x 1071 5.04178939x 10! —4.42778070x 10! —5.69888763x 107!
7 —4.91366518x 1072 9.07435007x 102 9.63969526x 103 —1.61424796x 1072 1.23624654x 1071 3.70573369x 1071 2.52310166x 10! —1.33146361x 10° —1.96198912x 107t
8 7.32487713x 1071  —1.93104843x 107! 4.30480259x 107! —2.15499979x 10! —3.02129187x 107! 2.46303468x 10° 1.97074652x 10° 1.71475104x 10° —2.02509554x 10°
9 8.70918629x 10t 5.11370826x 107! 7.65668079x 1071 3.11819936x 10! 3.31747586x 10! 1.50253790x 10° 8.73146115x 10! —1.20634979x 102 —1.09353609x 10°
10 -5.35917679x 1073 3.09453923x 103 —1.13913859x 102 1.12867938x 103 —2.97121254x 102 7.47553687x 102 4.27767205x 1072 2.02582101x 107! 7.25785202x 102
11 —4.03818537x 107! —1.53328967x 107! —4.41468178x 107! —2.83454532x 10! —1.30202073x 10! —3.06417876x 107! 9.68966545x 1072 4.49595310x 1072 2.16072642x 1071
12 —2.40820897x 102 —1.03816916x 10! —2.00943884x 102 —4.21157950x 102 —7.45181207x 102 —7.48402758x 10! —8.39632113x 10! —8.06185866x 10°* —1.01542630x 10t
13 —1.04239403x 10°* —3.8066998x 1072 —1.26041587x 101 —8.08314045x 102 —4.73506171x 102 —1.01432849x 101 —7.71828521x 102 —1.97404896x 102 7.46926106x 102
14 -2.16335828x 102 —1.16075825x 1072 —2.32331768x 1072 —1.59762784x 1072 —9.70095484x 1073 8.06830693x 102 1.63430744x 102 4.98309152x 1072 2.18830463x 103
Table 4

Comparisons oEq. (16)and Span and Wagner's EOS (SW-NP) with selected experimental data of non- and weakly polar fluids

Substance Average absolute deviation (AAD) (%)

Vapor pressure Saturated liquid Saturated vapor Single-phase Single-phase Isochoric heat Saturated heat Isobaric heat Speed of sound

density density density pressure capacity capacity capacity

This work SW-NP  This work SW-NP  This work SW-NP  This work SW-NP  This work SW-NP  This work SW-NP  This work SW-NP  This work SW-NP  This work
Methane 0.062 0.073 0.079 0.04 0.424 0.103 0.179 0.152 0.296 0.388 0.90 0.716 1.624 0.901 1.062 0.92 1.28
Ethane 0.424 0.18 0.089 0.049 0.141 0.389 0.524 0.647 0.622 0.471 1.108 0.929 1.498 1.982 3.055 2.884 1.99
Ethylene 0.058 0.065 0.06 0.042 0.16 0.6 0.709 0.691 6.962 6.985 2.327 1.779 n/a n/a 2.161 2.083 0.8
Propane 0.361 0.667 0.214 0.125 0.526 0.554 0.456 0.545 4.831 3.669 6.154 8.36 1.279 3.864 1.185 1.008 1.74
Isobutane 0.132 0.81 0.155 0.193 0.365 1.154 0.502 0.411 3.09 9.47 n/a n/a 0.30 1.763 4.963 4.56 0.02
n-Butane 0.098 0.608 0.111 0.103 0.071 0.69 0.487 0.41 1.728 1.424 1.656 0.898 0.372 0.644 3.781 3.697 15
n-Pentane 0.799 0.886 0.177 0.1 0.929 1.136 0.893 0.689 3.679 5.087 n/a n/a 0.107 0.586 1.049 0.875 1.42
n-Hexane 0.204 0.594 0.158 0.204 0.357 0.931 1.114 0.999 3.80 6.764 n/a n/a 1.834 2.02 0.785 0.706 1.03
Cyclohexane 0.096 0.711 0.177 2.639 2.638 3.231 0.205 0.545 1.757 3.455 1.892 0.809 2.612 2.019 2.247 6.366 0.19
n-Octane 0.176 0.578 0.196 0.116 0.259 0.87 0.18 0.25 3.41 4.617 0.953 1.003 n/a n/a 0.341 0.254 0.44
Benzene 0.116 0.196 0.237 0.853 5.73 n/a 1.494 1.846 1.64
Toluene 0.265 0.227 0.748 0.286 3.192 n/a 2.526 2.495 1.04
Nitrogen 0.018 0.112 0.132 0.052 0.265 0.13 0.616 0.711 2.052 2.371 9.11 8.443 0.521 0.35 6.18 6.223 2.6
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Table 5
Comparisons oEg. (16)and Span and Wagner's EOS (SW-PL) with selected experimental data of polar and associating fluids
Substance Average absolute deviation (AAD) (%)
Vapor pressure Saturated liquid density Saturated vapor density Single-phase density
This work SW-PL This work SW-PL This work SW-PL This work SW-PL
Carbon dioxide 0.037 0.065 0.039 0.067 0.191 0.133 0.19 0.146
R32 0.099 0.323 0.189 0.164 0.235 0.383 0.122 0.103
R125 0.017 0.044 0.072 0.091 0.175 0.21 0.096 0.085
R134a 0.10 0.333 0.147 0.163 0.247 0.363 0.108 0.101
Ammonia 0.353 0.143 0.432 0.498 0.552 0.69 0.452 0.451
Methanol 0.61 0.439 2.705 2.552
Ethanol 0.87 0.581 1.925 0.443
1-Propanol 0.685 0.287 2.521 1.085
Water 0.257 0.119 0.879 0.573
Single-phase pressure Isochoric heat capacity Isobaric heat capacity Speed of sound
This work SW-PL This work SW-PL This work SW-PL This work SW-PL
Carbon dioxide 0.434 0.444 11.44 12.92 1.304 1.35 0.69 0.73
R32 1.018 2.091 0.512 0.692 n/a n/a 1.12 0.66
R125 0.423 0.534 0.657 0.463 n/a n/a 0.05 0.05
R134a 2.074 2.278 0.342 0.36 0.36 0.384 0.32 0.33
Ammonia 1.60 0.94 n/a n/a 2.87 2.665 8.29 7.45
Methanol 3.513 n/a n/a n/a
Ethanol 2.25 6.015 1.59 4.25
1-Propanol 8.622 3.982 12.61 0.48
Water 3.296 3.902 1.132 3.52

the supercritical regions. However forpentanen-hexane, with pressures up to 72 MPa. R32 was studied in the 1990s
n-octane and toluene, the experimental measurements ar@s an alternative refrigerant and therefore the data sets are
only available in limited regions and the quality of the data small but with higher accuracy and consistency. An exten-
are not consistent. The data situation for the polar and asso-sive review of the data was published by Tillner-Roth and
ciating fluids is not as good as for the non-polar fluids except Yokozeki in 1997[34]. The deviations between the specific
for carbon dioxide and water. For alcohols like methanol, heat capacity along the saturation boundary by Luddecke
ethanol and 1-propanol, the experimental measurementsand Mageg35] and the values calculated frog. (16)are
are only available in limited regions and have questionable plotted in Fig. 3. Overall the deviations are less than 1%
quality. except close to the critical point.

To elaborate the accuracy and universalitfqgf (16) we
have chosen ethylene as an example of non- and weakly po-

lar fluids, R32 (trifluoromethane) an example of polar fluids 0.3 :
and ethanol an example of associating fluids, to demonstrate 2
the success of the proposed simultaneous optimization al- i . 2
i i ; i g 00F—2—= 2
gorithm. Detailed comparison on other fluids can be found s NPT
in referencg29]. For water,Eq. (16)is compared to an in- %\Q T=28235K (=T)
ternational standard EOS by Wagner and HR0} instead CLES 0.3 ‘
of experimental data. o
For ethylene, the available experimental data cover the Qg L P
range from the triple point up t& ~ 473 K with pressures ey sa & & & & % 9 PN
up to 100 MPa. A detailed review of the data sets was given S 00¢ese s = i ry A
by Jacobsen et a[31] and a recent review can be found “
in Smukala et al[32]. The deviations between selected ex- 0.3 ‘ : : ‘
perimental data by Nowak et gI33] and the values cal- 100 140 180 220 260 300
culated fromEq. (16)are shown inFig. 2 In general the Density p (kg/m?)
deviations given byeq. (16)and the SW-NP EOS are less o , _
than 0.1%. Fig. 2. Percentage deviations between the experimehtél data in the

} . critical region of ethylene and values calculated in this work. Values from
The available data sets of refrigerant R32 cover the re- the span and Wagner EOS for non-polar fluids (SW-NP) are plotted for

gions from the triple point temperature up To~ 420K comparison.
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Fig. 3. Per‘centage deviations between the specific heat ca‘paci‘ty anngFig' 4. Percentage deviations between the experimeptdl data of
the saturation boundary data of R32 and values calcul_ated in this work. ethanol and values calculated in this work.
Values from the Span and Wagner EOS for polar fluids (SW-PL) are

plotted for comparison.

phase density data was given by Cibulka and Zik{3&].

For ethanol, a common solvent and renewable bio-fuel, Only recently have there been independent attempts to de-
experimental data sets are available in the region of 213 Vvelop a multiparameter EOS by Dillon and Penonc§3io]
T < 613K with pressures up to 250 MPa. Most of the and Sun and EIY38] for ethanol. The deviations between
available data sets are in the liquid state and at room tem-experimentalPoT data[39-44]and values calculated from
perature and pressure. Saturation liquid density data areEq. (16)are plotted irFig. 4
available with good accuracy; however vapor pressure and In concluding this sectiorfrigs. 5-7are given as exam-
vapor density data are not available in the low temperature ples to show the overall quality dig. (16)in predicting
region. There are no accepted values for the triple point pa-thermodynamic properties as compared to the two sepa-
rameters for ethanol. A detailed review of available liquid rate equations by Span and Wagner, i.e., the SW-NP and

1.0
Vapor pressure

057

0.0
10 2.64 :
Saturated liquid density ’ HEEl This Work
A Span and Wagner
05

wm_l

AAD (Average Absolute Deviation), %

0.0
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Fig. 5. Comparisons of average absolute deviations on saturation boundary calculat&fr@f)and the equations by Span and Wagner for considered
18 non- and weakly polar fluids and polar fluids.
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Fig. 6. Comparisons of average absolute deviations on single-phase density calculated fid®)and the equations by Span and Wagner for considered
18 non- and weakly polar fluids and polar fluids.

SW-PL. The comparisons on the vapor—liquid equilibrium equations proposed by Span and Wagner for the 18 fluids.
boundary between the values predicted freop (16)and The comparisons for the isobaric heat capacity are shown
the equations by Span and Wagner are showfiq 5. in Fig. 7. As seen inFig. 7, Eq. (16) gives much better
The saturated liquid densities are described with similar predictions for cyclohexane, and comparable accuracies for
accuracies except for cyclohexane which is predicted with other fluids. The equation by Span and Wagner, the SW-NP,
larger deviations from the SW-NP equatidfg. (16)gives does not give predictions for benzene and toluene.

a better prediction of vapor pressure and saturated vapor Since the equations by Span and Wagner cannot be applied
density for fluids with higher values of the acentric factor, to alcohols or water, other models for associating fluids are
however the overall deviations for 18 fluids considered in used for comparison in this work. As an example, the com-
this study are similar to those obtained by Span and Wagnerparisons ofEq. (16)with two SAFT equations for the pre-
[11,14,15] Comparisons of single-phase density between dictions for various thermodynamic properties of ethanol are
the values predicted fronkqg. (16) and the equations by  shown inFig. 8 SAFT refers to Statistical Associating Flu-
Span and Wagner are presentedrig. 6. Eq. (16)predicts ids Theory originally developed by Chapman et[4b] by
overall deviations similar to those values obtained with applying thermodynamic perturbation theory to associating

EE This work
I Span and Wagner
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Fig. 7. Comparisons of average absolute deviations on the isobaric heat capacity calculatédyfrdi) and the equations by Span and Wagner for
considered 18 non- and weakly polar fluids and polar fluids.
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Fig. 8. Comparisons of average absolute deviations on thermodynamic properties of ethanol calculated. ftb&) the crossover SAFT equation by
Kiselev et al., and the classical SAFT equation by Huang and Radosz.
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fluids. The SAFT EOS successfully predicts the saturation same accuracy as the SW-NP for the 13 non- and weakly

boundary as well as liquid phase density for associating flu- polar fluids in the entire range of available data. We also

ids. Huang and Rado446] proposed a very similar SAFT  note Eq. (16)is applicable to aromatic hydrocarbons such

EOS which considers a polynomial expression based onas benzene and toluene for which the SW-NP does not give

molecular dynamic simulation data for the square-well po- predictions. SimilarlyEq. (16)gives the same or better ac-

tential as the dispersion force between molecule segmentscuracy as the SW-PL for the five weakly polar fluids in the

Kiselev et al.[47] included the crossover formulations to entire range of available datkq. (16)also gives accurate

the SAFT equation by Huang and Radosz (CR SAFT) in predictions for associating fluids such as alcohols and water.

order to improve its description in the critical region. The SW-PL cannot be applied to such fluids, as reported by

As shown inFig. 8 Eq. (16)shows superior accuracy for Bonsen et al. in 2008L6].

all of the thermodynamic properties of ethanol when com-

pared to the crossover SAFT and the classical SAFT equa-

tions. The saturation boundary can be predicted with almost Acknowledgements

the same accuracy witkg. (16)and to CR SAFT. How-

ever for single-phase density, the average absolute deviation The authors are indebted to Prof. Dr. Wolfgang Wagner

given byEq. (16)is three times smaller as compared to CR of Ruhr-Universitat Bochum, and Prof. Dr. Roland Span

SAFT. of Universitat Paderborn, Germany, for providing their re-
sults and lectures prior to publication. The authors would
like to thank Prof. Steven Penoncello, Dr. Daniel Friend

5. Conclusion and Dr. Eric Lemmon for providing us some of the exper-
imental data for comparisons during the course of this re-

In this paper we develop a simultaneous optimization al- search. This r_esearch was supportegl by the U.S. Department
gorithm aimed at developing a universal engineering EOS of Energy, Office of Basic Energy Sciences, under Grant No.
with moderate accuracy. Unlike the algorithm proposed by DE-FGO03-95ER14568.

Span and Wagndi.1,13], our approach is based on simu-

lated annealing, a stochastic algorithm. The use of simulated

annealing method simplifies the optimization algorithm and References

requires less computing effort. Also it offers the flexibility

to easily apply the algorithm to a wide range of fluids. [1] W. Wagner, Invited Lecture: Multiparameter Equations of State in

A structure optimized 14-term engineering EOS was ob- AIChE Annual Meeting, Reno, 2001.
tained by applying the optimization algorithm to a total of 2] Fé' S'Ipbanis\é\/. l\gv:grzwgglE.;N. Lemmon, R.T. Jacobson, Fluid Phase
22 non-'and weakly polar, polar fluids as 'Well as associ- (3] O.qlljila:ad-lich,S.N.S.( Kwoilg" Chem. Rev. 44 (1949) 233.
ating fluids. Based on the overall comparisons, it can be [4] G.s. Soave, Chem. Eng. Sci. 27 (1972) 1197.
concluded that the resulting equatideg. (16) yields the [5] D.-Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fund. 15 (1976) 59.



118 L. Sun, J.F. Ely/Fluid Phase Equilibria 222—223 (2004) 107-118

[6] M. Benedict, G.B. Webb, L.C. Rubin, J. Chem. Phys. 8 (1940) 334. [27] K.M. De Reuck, B. Armstrong, Cryogenics 19 (1979) 505.
[7] K.E. Starling, Fluid Thermodynamic Properties for Light Petroleum [28] J.A. Nelder, R. Mead, Comput. J. 7 (1965) 308.

Systems, Houston, Gulf Publishing, 1973. [29] L. Sun, Ph.D. Dissertation, Department of Chemical Engineering,
[8] E. Bender, Equations of state exactly representing the phase behavior Colorado School of Mines, Golden, 2003.

of pure substances, in: Proceedings of the Fifth Symposium on [30] W. Wagner, A. Prul3, J. Phys. Chem. Ref. Data 31 (2002) 387.

Thermophys. Prop., ASME, New York, 1970. [31] R.T. Jacobsen, M. Jahangiri, R.B. Stewart, R.D. Mccarty, J.M.H.
[9] A. Polt, Zur Beschreibung thermodynamischer Eigenschaften reiner Levelt Sengers, J. White Jr., J.V. Senger, G.A. Olchowsky, K.M. De
Fluide mit Erweiteren BWR-Gleichungen, Ph.D. Thesis, Univ. Reuck, S. Angus, R.J. Cole, B. Craven, W.A. Wakeham, Interna-
Kaiserslautern, Kaiserslautern, 1987. tional Thermodynamic Tables of the Fluid State, vol. 10: Ethylene,
[10] B. Platzer, Eine generalisierung der Zustandsgleichung von Bender Blackwell, Oxford, 1988.
Zur Berechnung von Stoffeigenschaften unpolarer und polarer Flu- [32] J. Smukala, R. Span, W. Wagner, J. Phys. Chem. Ref. Data 29 (2000)
ide und deren gemische, Ph.D. Thesis, Univ. Kaiserslautern, Kaiser- 1053.
slautern, 1990. [33] P. Nowak, R. Kleinrahm, W. Wagner, J. Chem. Thermodyn. 28 (1996)
[11] R. Span, Multiparameter Equations of State—An Accurate Source 1423.
of Thermodynamic Property Data, Springer-Verlag, Berlin, 2000, [34] R. Tillner-Roth, A. Yokozeki, J. Phys. Chem. Ref. Data 26 (1997)
p. 367. 1273.
[12] U. Setzmann, W. Wagner, Int. J. Thermophys. 10 (1989) 1103. [35] T.O. Luddecke, J.W. Magee, Int. J. Thermophys. 17 (1996) 823.
[13] R. Span, W. Wagner, Int. J. Thermophys. 24 (2003) 1. [36] I. Cibulka, M. Zikova, J. Chem. Eng. Data 39 (1994) 876.
[14] R. Span, W. Wagner, Int. J. Thermophys. 24 (2003) 41. [37] H.E. Dillon, S.G. Penoncello, A fundamental equation for the
[15] R. Span, W. Wagner, Int. J. Thermophys. 24 (2003) 111. calculation of the thermodynamic properties of ethanol, in: Pro-
[16] C. Bonsen, R. Span, W. Wagner, AUTOFIT: a program for fully ceedings of the 15th Symposium on Thermophys. Prop., Boulder,
automated fitting of Helmholtz equations of state, in: Proceedings 2003.
of 15th Symposium on Thermophys. Prop., Boulder, 2003. [38] L. Sun, J.F. Ely, Int. J. Thermophys., 2004, in review.
[17] S. Kirkpatrick, J.C.D. Gelatt, M.P. Vecchi, Science 220 (1983) 671. [39] T.F. Sun, J.A. Schouten, S.N. Biswas, Int. J. Thermophys. 12 (1991)
[18] V. Cerny, J. Opt. Theory Appl. 45 (1985) 41. 381.
[19] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, [40] S. Ozawa, N. Ooyatsu, M. Yamabe, S. Honmo, Y. Ogino, Int. J.
J. Chem. Phys. 21 (1953) 1087. Thermophys. 12 (1980) 229.
[20] K.B. Shubert, J.F. Ely, Int. J. Thermophys. 16 (1995) 101. [41] Y. Tanaka, T. Yamamoto, Y. Satomi, H. Kubota, T. Makita, Rev.
[21] M.L. Huber, Comput. Chem. Eng. 18 (1994) 929. Phys. Chem. Jpn. 47 (1977) 12.
[22] E.H.L. Aarts, P.J.M. Van Laarhoven, Philips J. Res. 40 (1985) 193. [42] T.F. Sun, C.A. Ten Seldam, P.J. Kortbeek, N.J. Trappeniers, S.N.
[23] M. Lundy, A. Mees, Math. Prog. 34 (1986) 111. Biswas, Phys. Chem. Lig. 18 (1988) 107.
[24] J. Ahrendts, H.D. Baehr, Int. Chem. Eng. 21 (1981) 557. [43] Y. Takiguchi, M. Uematsu, Int. J. Thermophys. 16 (1995) 295.
[25] J. Ahrendts, H.D. Baehr, Int. Chem. Eng. 21 (1981) 572. [44] Y. Takiguchi, M. Uematsu, J. Chem. Thermodyn. 28 (1996) 7.
[26] R.D. Mccarty, in: B.L. Neindre, B. Vodar (Eds.), Determination of [45] W.G. Chapman, K.E. Gubbins, G. Jackson, M. Radosz, Ind. Eng.
thermodynamic properties from experimenBdV-T relationships, Chem. Res. 29 (1990) 1709.

in: Experimental Thermodynamics, Experimental Thermodynamics [46] S.H. Huang, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 2284.
of Non-Reacting Fluids, vol. I, Butterworth and Co. Ltd., London, [47] S.B. Kiselev, J.F. Ely, H. Adidharma, M. Radosz, Fluid Phase Equilib.
1975, Chapter 10. 183-184 (2001) 53.



	Universal equation of state for engineering application: algorithm and application to non-polar and polar fluids
	Introduction
	Development of equation of state by simulated annealing
	Simultaneous optimization algorithm
	Weighting
	MULTIREG algorithm

	Simultaneously optimized engineering equation of state
	Conclusion
	Acknowledgements
	References


