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Abstract

Engineering equations of state (EOS) deal with the majority of fluids of interest in process and equipment design in the chemical industries.
Accuracy and universality are two desirable features the engineering EOS require, however, both of them cannot be simultaneously obtained
without some degree of compromise. Therefore a simultaneous optimization algorithm is proposed to develop an accurate but compact
engineering EOS for wide range of fluids with one single functional form. The algorithm is based on a simulated annealing method, and
operates on different fluids at the same time to achieve the best average results. A 14-term EOS is developed based on this algorithm that has
good accuracy for selected non-polar and polar fluids. The resulting equation is compared with two different 12-term EOS developed by Span
and Wagner, one for polar fluids, the other for non-polar fluids. The new 14-term EOS also gives good predictions for some associating fluids
such as alcohols and water.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Engineering equations of state (EOS) generally refer
to those equations used for equipment and process de-
sign. Their accuracy is lower than that achieved with
state-of-the-art reference EOS, which predict thermody-
namic properties to within experimental uncertainty. An
advantage of the engineering EOS is that they typically have
a simpler mathematical structure than found in a reference
quality equation. As pointed out by other researchers[1,2],
highly accurate reference EOS have only been developed
for a few fluids for which extensive and accurate exper-
imental measurements are available. For the majority of
industrially interesting fluids, these reference EOS will not
be developed in the foreseeable future, and in some cases
it is even difficult to develop an engineering quality EOS
for many of these fluids due to the paucity of experimental
data. Even though accuracy is an important requirement for
an EOS, universality, i.e., fixed functional form, is another
desired feature. A universal engineering EOS which is ap-
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plicable to a wide range of fluid systems can easily fit into
current process design and control packages, and can be
easily applied when new fluid data become available.

Cubic EOS like the Redlich–Kwong[3], Soave–Redlich-
Kwong [4], and Peng–Robinson[5], etc., are types of
engineering EOS that are used widely in industry, primarily
due to their simple structure. With three substance-specific
parameters, these equations give qualitatively correct re-
sults. The Benedict–Webb–Rubbin (BWR)-[6], Starling-
[7] or Bender-type[8] EOS have relatively higher accuracy
and are also popular in industry. Polt[9] and Plater[10]
report sets of coefficients for 51 non-polar and polar flu-
ids for the Bender equation of state. Although these gen-
eralized Bender-type equations give reasonably accurate
predictions for thermodynamic properties, they cannot be
extrapolated to regions where experimental data have not
been used in the development of the parameters. Even
within the range where reliablePρT data are available, the
Bender-type equations can give unreasonable predictions
of the isobaric heat capacity in the high temperature re-
gion [11]. The main reason for this behavior is that neither
the Bender nor other BWR-type equations are structure
optimized and there are severe correlations among the
coefficients.
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Modern algorithms for the development of reference EOS
enable the reduction of intercorrelations in an EOS giving
superior accuracy and numerical stability. However the suc-
cess of these algorithms, like the OPTIM proposed by Setz-
mann and Wagner[12], heavily depends on the availability
of data for the fluids of interest. More importantly, these al-
gorithms can only develop one reference EOS for one spec-
ified fluid at a time. In order to cover a broader range of
fluids, the EOS has to be transformed to be applied to other
fluids. Usually when an EOS for substance A is applied to
substance B, it loses its accuracy and numerical stability.

Span and Wagner[11,13] proposed a simultaneous opti-
mization algorithm, the SIMOPT, to develop accurate and
numerically stable engineering equations for multiple fluids
at the same time. The SIMOPT algorithm is based on the
OPTIM algorithm and completely identical to the OPTIM
algorithm with respect to data and constraints. Regression
matrices are setup for each individual fluid with the same
bank of terms. Since the optimization algorithm manipulates
the terms only by their positions in the bank of terms, the
regression matrices are transformed in exactly the same way
for each fluid during regression. The difference between the
SIMOPT and the OPTIM lies in the way the algorithm han-
dles the merit function or the quality criteria[11,13]and the
statistical tests.

Span and Wagner applied the SIMOPT algorithm to a
group of 15 non- and weakly polar fluids and a group of
13 polar fluids, and generated two engineering EOS, one
for each group of fluids[11,14,15]. These two engineering
EOS give surprisingly good accuracy and good numerical
stability with merely 12 functional terms in each of them.

Despite the success of Span and Wagner’s approach, there
are still drawbacks regarding the algorithm and resulting en-
gineering EOS. As mentioned by Span and Wagner[11,13],
reference sums of squares are needed to create the qual-
ity criteria in the SIMOPT algorithm, which are not readily
available and require EOS fitting for individual fluids. The
heart of the SIMOPT is based on a combination of stepwise
regression and the evolutionary optimization method, which
makes the algorithm as complex as the OPTIM algorithm.
In addition, the scope of the fluids studied is still limited to
alkanes, light inorganics and refrigerants; aromatic hydro-
carbons and associating fluids were not included.

As mentioned earlier, universality is another important
feature for an engineering EOS. The two 12-term engineer-
ing EOS obtained by Span and Wagner[11,14,15]are totally
different EOS and cannot be used across groups. Also Bon-
sen et al.[16] report that associating fluids such as alcohols
and water cannot be modeled with these two EOS.

The objective of this work is to use the simulated an-
nealing to develop a single engineering EOS that yields the
same accuracy as that obtained by Span and Wagner, but
covers a broader range of fluids. We proceed as follows.
In Section 2we describe the simulated annealing technique
and its application in the development of equations of state.
The proposed simultaneous optimization algorithm is given

in Section 3. We then present the resulting engineering EOS
together with comparisons to experimental data and Span
and Wanger’s results inSection 4. Conclusions are summa-
rized inSection 5.

2. Development of equation of state by simulated
annealing

Deterministic algorithms like stepwise regression fre-
quently end up with a local rather than global minimum,
especially when the functional form of an EOS can have
many independent variables. Compared to stepwise regres-
sion, simulated annealing (SA) is quite simple and has been
used in a variety of applications in combinatorial optimiza-
tion. Its potential advantage is that it can find global minima
and it can be easily combined with parallel regressions to
develop a universal EOS.

Simulated annealing was first developed to optimize cir-
cuit design by Kirkpatrick et al.[17], and independently by
Cerny[18]. In their work, Kirkpatrick et al. used the prin-
ciples of statistical mechanics to solve combinatorial opti-
mization problems. The method is implemented using the
Metropolis algorithm[19], which is widely used in atomic
scale Monte Carlo simulation. In its application a change
of state (configuration at the atomistic level) is accepted ac-
cording to the following rule:

p = 1, �C ≤ 0, p = e−�C/T , �C > 0 (1)

wherep is the probability that a configuration is accepted,
�C the change of the function to be minimized (cost
function—originally�U at the atomistic level) andT the
temperature. Ifp is less than one but greater thanR, a ran-
domly generated number between 0 and 1, the move is also
accepted. Ifp is less than the random numberR, the move
is rejected. Such a probabilistic rule allows uphill steps to
be accepted if the probability is larger than a random num-
ber between (0, 1). Thus the method is able to move out of
a local minimum at nonzero temperatures. Shubert and Ely
[20] applied the simulated annealing method to develop ref-
erence equations of state for refrigerants R134a and R123.

The equation of state developed in this work is expressed
as a Helmholtz free energy function of density and tempera-
ture. The Helmholtz free energy can be described as a linear
combination of the ideal gas (id) and residual or real fluid
(r) contributions where the latter arise due to intermolecular
interactions. Mathematically,

A(ρ, T) = Aid(ρ, T) + Ar(ρ, T) (2)

where A is the Helmholtz free energy, andρ and T are
the density and temperature, respectively. Generally the
Helmholtz function is formulated in dimensionless form as

Φ ≡ A(ρ, T)

RT
= Φid(δ, t) + Φr(δ, t) (3)
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whereδ = ρ/ρr andt = Tr/T . The reference densityρr and
temperatureTr are usually chosen to be the critical param-
etersρc andTc.

The ideal part of Helmholtz energy is determined from
experimental or theoretical knowledge of the ideal gas heat
capacity as follows:

Φid = Aid(ρ, T)

RT
= ln

(
ρ

ρ0

)
+

∫
C0
p

T
dT (4)

The residual part of the Helmholtz equation is assumed to
be a linear combination of dimensionless density and tem-
perature terms (so-called “functional terms”) as shown in
Eq. (5),

Φr(δ, t) =
M1∑
m=1

amδ
imtjm +

M2∑
m=M1+1

amδ
imtjm exp( − δkm)

(5)

wheream is the coefficient for each term,im, jm andkm are
exponents ont, δ and exponentialδ terms, respectively, and
M1 andM2 are the numbers of different type of terms. As can
be seen from this equation, the two types of terms are poly-
nomial and exponential. A decision algorithm like simulated
annealing in conjunction with a regression algorithm is used
to determine the number of parameters and their values.

When dealing with the development of an EOS, the
change of cost function�C in simulated annealing is
defined as the variance of the equation of state at each
regression stepk,

C = S2

Nf
(6)

whereNf refers to the degrees of freedom, and can be cal-
culated as

Nf = Ndata− Nconstr− Nterm (7)

whereNdata is the total number of data points used in the
regression,Nconstr the number of constraints andNterm the
number of function terms in the formulation at regression
stepk. The weighted sum of squared residual from the linear
regression,S2, is given as

S2 =
Ndata∑
n=1

Wn(Yn − yn)
2 (8)

whereWn is the total weight of data pointn, Yn the exper-
imental value at that point, andyn is the value calculated
from the regressed equation of state.

The EOS simulated annealing algorithm has four main
operations. The first step is initialization; i.e., to arbitrarily
choose a fixed number of terms as the starting point. The sec-
ond step is replacement: to randomly select a term from the
existing formulation and replace it with a randomly selected
term from the collection of possible of terms. The exchange
of terms is accepted if the change in the cost function satis-
fies the acceptance criteria described above. The third step

is temperature scheduling: to change temperature according
to an annealing schedule which is a sequence of effective
temperatures that decrease in slow steps until the objective
function reaches a minimum. The annealing schedule has to
be carefully chosen to ensure that the system moves to its
minimum slowly. The last step in the algorithm is termina-
tion. The regression will be terminated if three trials fail to
find any improvement in the cost function, or a maximum
number of temperature steps is exceeded.

Huber reported the performance of three temperature
schedules in conjunction with simulated annealing when
developing vapor pressure correlations for R134a in 1994
[21]. The three schedules are an exponential, the Aarts and
VanLaarhoven algorithm[22] and the Lundy and Mees al-
gorithm [23]. As pointed out by Huber[21], the simulated
annealing with a Lundy and Mees annealing schedule gave
the overall best results. Thus, we have chosen to use the
Lundy and Mees schedule in this work. The Lundy and
Mees algorithm[23] is shown as

Tk+1 = Tk

1 + δLMTk
(9)

whereδLM is the parameter which controls the annealing
speed,Tk andTk+1 are the annealing temperature at stepk
andk + 1, respectively.

3. Simultaneous optimization algorithm

As mentioned inSection 1, an EOS with optimized struc-
ture tends to be more numerically stable and more accurate
than the Bender-type equations for a specified fluid. How-
ever when the EOS is transferred to other fluids the accuracy
and numerical stability can be lost. In order to overcome
this problem, we propose an optimization algorithm, MUL-
TIREG, which considers data sets from different fluids si-
multaneously. The purpose of MULTIREG is to determine
an overall best EOS for multiple fluids. The resulting EOS
does not favor any specific fluid; instead, it will give on av-
erage the best results for all fluids considered (base fluids).
Further, the resulting EOS should be able to give good pre-
dictions when extended to other fluids in the same groups
as the base fluids. For those fluids with limited data sets, the
resulting EOS should give at least reasonable predictions in
the regions which are not covered by available data, but are
covered by the base fluids.

The MULTIREG algorithm is based on linear-least
squares regression and simulated annealing. A flow diagram
for the development of a technical EOS using MULTIREG
algorithm is shown inFig. 1. The procedures to set up the
regression matrices are the same as in the development
of multiparameter equation of state described in various
references[24–27]. Experimental data sets are processed,
and appropriate weights are generated before the data sets
are put into separate matrices for each individual substance
using the same bank of terms. Critical constraints for each
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Fig. 1. Flow diagram about the development of engineering equation of state from the MULTIREG algorithm.

fluid are also included in the corresponding normal matri-
ces to ensure the resulting EOS predicts the correct critical
points. The critical temperatureTc and densityρc are used
to reduce the temperature and density of the corresponding
fluid.

3.1. Weighting

In the development of reference quality EOS, appropriate
weights must be generated to ensure the best linear unbi-
ased (BLUE) results from the linear-least squares regression
[26]. In order to develop engineering EOS for multiple flu-
ids, weights should also be generated for data sets of each
individual fluid as well. In this work a modified Gaussian
error propagation rule was applied, and the total weight for
each data point is

Wn = FT

σ2
rn

= FT

σ2
yn

+ ∑K
k=1[(∂y/∂xnk)σxnk ]

2
(10)

whereσ2
yn

is the variance of the dependent variableyn, ∂xnk
the variance of the independent variablexnk andK the num-
ber of independent variables. A simplex method[28] is used
to find the weighting factorsFT to account for the relative
importance of individual data set for each fluid.

As mentioned by Span and Wagner[11,13], the reduced
form of the quality criteriaS2 needs to be used to offset
any exaggerated influence from the well-measured fluids. To
accomplish this extra weighting factorswi are introduced as
follows. After initialization of regression matrixi (i = 1, I),

the relative percentage�i% of each sum of squaresS2
i is

calculated according to

�i% = S2
i∑I

i=1S
2
i

× 100% (11)

Then the extra weighting factorwi for each substance is
obtained from

wi = MAX (�i%)

�i%
× 100% (12)

and is used in the calculation of the cost function as described
below. In such a way, those fluids with high values ofS2

i will
be assigned a smaller value ofwi so that during optimization
they will not receive extra weight in the algorithm and the
fluids with smaller values ofS2

i will be considered equally.

3.2. MULTIREG algorithm

When applying simulated annealing to the development
of an EOS for a single fluidi, the cost functionC is the
variance of the equation of state at each regression stepk,
as shown inEqs. (6) and (7). However, when dealing with
multiple fluids, the cost functionC should have following
form:

C =
∑I

i=1(S
2
i /Nfi)wi

I
(13)

whereI is the total number of fluids considered, andwi the
extra weighting factor discussed above.
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The change of cost function�C from stepk to step (k+1)
is then calculated from

�C =
∑I

i=1((S
2
i,k+1 − S2

i,k)/Nfi)wi

I
(14)

by using this algorithm the general structure of the MUL-
TIREG algorithm corresponds exactly to the structure of
the simulated annealing algorithm for single fluid. As de-
scribed previously, regression matrices are built using the
processed data sets and weights for each fluid with the same
bank of terms. At initialization, the pre-selected terms are
added to each matrix and the matrices are transformed ac-
cordingly. During the initialization, the critical constraints
are also added. MULTIREG then randomly chooses a term
A from the bank of terms and second random term B in the
current formulation, and carries out exchange on each regres-
sion matrix. At this stage the exchange is a mock-exchange,
which means only the sum of squares of each matrix is actu-
ally calculated and the matrices are left intact. The Metropo-
lis algorithm is then applied to determine whether the change
(the new formulation) is accepted or not based on the change
of cost function and the current effective temperature. This is
different from the SIMOPT algorithm in that there is no need
to carry out the student-t test and FisherF-test for each ma-
trix after any move in MULTIREG. If the move is accepted,
then the MULTIREG will delete term B from the formula-
tion and add in term A. The matrices are then transformed
using stepwise regression methods to reflect this change. If
the move is not accepted, the MULTIREG will choose an-
other pair of terms, one from the bank of terms and the other
from the current formulation, and repeat the attempted ex-
changes. The MULTIREG algorithm stops after satisfying
the termination conditions listed inSection 2and the form of
the engineering EOS is then determined. Nonlinear regres-
sions are then performed for each individual fluid to find the
coefficients that optimize its representation of experimental
data.

It is interesting to note that only a small amount of data
for each fluid is sufficient to generate good results using the
MULTIREG algorithm. These data should be representative
for certain thermodynamic states, such as the vapor–liquid
equilibrium (VLE) boundary, the gas and liquid phase den-
sities, etc. In this work, the typical number of data selected
was between 150 and 200 for each fluid, much smaller than
the amount of data required to develop a reference quality
EOS.

4. Simultaneously optimized engineering equation of
state

A 14-term engineering equation of state has been obtained
by using the simultaneous optimization algorithm MULTI-
REG for a total of 13 non- and weakly polar fluids, five polar
fluids and four associating fluids. There were 184 polyno-
mial and exponential terms present in the bank of possible

terms and no special critical region terms were included.
The resulting equation has the following form for the di-
mensionless Helmholtz energy:

Φ = Φid(δ, t) + Φr(δ, t) (15)

Φr(δ, τ) =
6∑

m=1

amδ
imτjm +

14∑
m=7

amδ
imτjm exp( − δkm) (16)

where am are the coefficients in the residual part of
Helmholtz energy, andim, jm and km are exponents of
density and temperature terms which are presented in
Table 1.

Coefficients forEq. (16) for non- and weakly polar flu-
ids such as methane, ethane, ethylene, propane, isobutane,
n-butane,n-pentane,n-hexane,n-octane, cyclohexane, ben-
zene, toluene and nitrogen are given inTable 2. Coefficients
for Eq. (16)for polar and associating fluids such as carbon
dioxide, R32, R125, R134a, ammonia, methanol, ethanol,
1-propnaol, and water are listed inTable 3.

Two simultaneously optimized EOS of Span and Wagner
[11,14]were used to compare the accuracy ofEq. (16). Each
of their equations, namely the SW-NP and SW-PL, con-
tains 12-terms and was developed solely for non-polar and
polar fluids, respectively.Table 4summarizes the values of
average absolute deviation (AAD) obtained when applying
Eq. (16)and the SW-NP to selected experimental data sets
for the 13 non- and weakly polar fluids. Aromatic hydrocar-
bons such as benzene and toluene were not included in Span
and Wagner’s work published to date, therefore only calcu-
lations fromEq. (16)are given.Table 5presents the values
of AAD obtained by applyingEq. (16)and the SW-PL to
the nine polar and associating fluids. Only calculations from
Eq. (16) for associating fluids such as alcohols and water
are given since they are not included in Span and Wagner’s
work.

The databases of the fluids studied vary greatly[29]. For
fluids such as methane, ethane, propane and nitrogen, there
are extensive accurate experimental measurements which
cover ranges from the gas phase to the critical regions and

Table 1
Exponents of the simultaneously optimized engineering equation of state

m im jm km

1 1 1.5 0
2 1 0.25 0
3 1 1.25 0
4 3 0.25 0
5 7 0.875 0
6 2 1.375 0
7 1 0.0 1
8 1 2.375 1
9 2 2.0 1

10 5 2.125 1
11 1 3.5 2
12 1 6.5 2
13 4 4.75 2
14 2 12.5 3
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Table 2
Coefficients of the simultaneously optimized equation of state for non- and weakly polar fluids

m am

Methane Ethane Ethylene Propane Isobutane n-Butane n-Pentane

1 1.25595787× 100 1.32031629× 100 8.42278605× 10−1 9.70439249× 10−1 1.18083775× 100 1.18936994× 100 2.20261753× 100

2 8.48007435× 10−1 9.47177394× 10−1 8.65139678× 10−1 9.73671323× 10−1 9.46903331× 10−1 1.05407451× 100 1.07797592× 100

3 −3.00939285× 100 −3.21919278× 100 −2.79801027× 100 −2.96661981× 100 −2.90618044× 100 −3.24964532× 100 −3.82130221× 100

4 5.99544996× 10−2 7.47287278× 10−2 6.74520156× 10−2 7.84340496× 10−2 8.51346220× 10−2 8.25263908× 10−2 1.06627357× 10−1

5 2.57003062× 10−4 2.74919584× 10−4 2.42445468× 10−4 2.78440866× 10−4 2.79868503× 10−4 2.76467405× 10−4 3.07513215× 10−4

6 −2.85914246× 10−2 −6.33952115× 10−2 −2.74767618× 10−3 −6.77622221× 10−2 −1.68266335× 10−1 −8.09869214× 10−2 −2.84309667× 10−1

7 −6.83210861× 10−2 −5.17685674× 10−2 −1.48602227× 10−2 −8.56371936× 10−2 −2.01202825× 10−1 −9.38097492× 10−2 −7.28441220× 10−2

8 −3.47523515× 10−2 3.65838926× 10−2 1.29307481× 10−1 1.77467443× 10−1 −3.32570120× 10−2 1.46213532× 10−1 −4.60943732× 10−1

9 1.04637008× 10−1 2.57753669× 10−1 3.74759088× 10−1 3.91636018× 10−1 2.42967225× 10−1 4.01168502× 10−1 8.39360011× 10−2

10 −1.09884198× 10−2 −1.34856586× 10−2 −1.25336440× 10−2 −8.03312946× 10−3 −4.20931100× 10−3 −1.28716120× 10−2 −1.50650444× 10−2

11 −1.25124331× 10−1 −2.21551776× 10−1 −2.33507187× 10−1 −2.60385851× 10−1 −2.24528572× 10−1 −2.75191070× 10−1 −2.03771872× 10−1

12 −5.53450960× 10−3 −6.89219870× 10−4 1.38862785× 10−2 −1.91104746× 10−2 −1.41307663× 10−2 −1.62708971× 10−2 −7.90244277× 10−3

13 −1.51182884× 10−2 −4.47904791× 10−2 −4.88033330× 10−2 −6.31331470× 10−2 −5.93401702× 10−2 −7.04082962× 10−2 −5.68993564× 10−2

14 −2.04800000× 10−2 −2.15665728× 10−2 −2.38141707× 10−2 −2.27769095× 10−2 −2.27862942× 10−2 −2.32871995× 10−2 −2.99387974× 10−2

n-Hexane Benzene Toluene Nitrogen Cyclohexane n-Octane

1 2.43433265× 100 1.76284970× 100 1.34060172× 100 9.57664698× 10−1 1.27436292× 100 1.57750154× 100

2 1.18137185× 100 1.02610647× 100 1.01624262× 100 8.68692283× 10−1 1.15372124× 100 1.15745614× 100

3 −4.24411947× 100 −3.74263321× 100 −3.27810202× 100 −2.88536117× 100 −3.86726473× 100 −3.54867092× 100

4 1.08655334× 10−1 9.57682041× 10−2 9.69209624× 10−2 6.12953165× 10−2 8.84627298× 10−2 1.18030671× 10−1

5 2.87828538× 10−4 2.59179321× 10−4 2.61950176× 10−4 2.55919463× 10−4 2.76478090× 10−4 3.02753897× 10−4

6 −2.51781047× 10−1 −1.03082188× 10−1 −1.58891991× 10−1 1.69423647× 10−2 7.26682313× 10−2 −2.63074957× 10−1

7 2.16096570× 10−2 1.07359246× 10−1 6.28559812× 10−2 −4.43639900× 10−2 7.10849914× 10−2 2.55299486× 10−2

8 −4.58052979× 10−1 −1.12562310× 10−1 −8.42364946× 10−2 1.37987734× 10−1 4.46376742× 10−1 −1.26632996× 10−1

9 1.63940974× 10−1 3.18737987× 10−1 4.49701117× 10−1 2.77148365× 10−1 7.64476190× 10−1 4.48343319× 10−1

10 −2.55034034× 10−2 −3.07549016× 10−2 −1.08658876× 10−2 −1.44381707× 10−2 −4.23520282× 10−2 −9.46702997× 10−3

11 −2.47418231× 10−1 −3.25082386× 10−1 −3.83733669× 10−1 −1.69955805× 10−1 −3.96468623× 10−1 −4.43927529× 10−1

12 −8.05544799× 10−3 2.28099159× 10−2 2.21127543× 10−2 5.46894457× 10−3 −1.41250071× 10−2 −1.68224827× 10−2

13 −7.78926202× 10−2 −7.07431076× 10−2 −9.54658223× 10−2 −2.87747274× 10−2 −1.08371284× 10−1 −1.15864640× 10−1

14 −2.69044742× 10−2 −1.96809158× 10−2 −1.77905259× 10−2 −2.38630424× 10−2 −2.50082884× 10−2 −1.32417591× 10−2
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Table 3
Coefficients of the simultaneously optimized equation of state for polar and associating fluids

m am

Carbon dioxide R32 R125 R134a Ammonia Methanol Ethanol 1-Propanol Water

1 −4.71122371× 10−1 2.75866232× 10−1 7.41057508× 10−1 1.08605179× 100 3.29159441× 10−1 −2.4578394× 100 −2.95455387× 100 −6.48466690× 100 3.46821920× 10−1

2 9.13375599× 10−1 9.26526641× 10−1 1.13555445× 100 1.03772416× 100 8.48237019× 10−1 1.39060027× 100 1.95055493× 100 6.34812260× 10−1 5.03423025× 10−1

3 −1.96793707× 100 −2.44296579× 100 −3.12563760× 100 −2.92069735× 100 −2.30706412× 100 8.56114069× 10−1 −1.31612955× 100 5.34271316× 100 −3.51059570× 10−1

4 6.89687161× 10−2 5.34289357× 10−2 9.32031442× 10−2 9.15573346× 10−2 4.08625188× 10−2 −4.20843418× 10−2 −1.47547651× 10−2 3.59156552× 10−2 5.07004866× 10−2

5 2.15658922× 10−4 1.06739638× 10−4 2.76844975× 10−4 2.40541430× 10−4 6.79597481× 10−5 3.63682442× 10−5 1.39251945× 10−4 3.91173758× 10−4 1.99939129× 10−4

6 9.51876380× 10−2 3.46487335× 10−2 −5.64403707× 10−2 −2.00239570× 10−1 4.99412149× 10−2 7.05598662× 10−1 5.04178939× 10−1 −4.42778070× 10−1 −5.69888763× 10−1

7 −4.91366518× 10−3 9.07435007× 10−2 9.63969526× 10−3 −1.61424796× 10−2 1.23624654× 10−1 3.70573369× 10−1 2.52310166× 10−1 −1.33146361× 100 −1.96198912× 10−1

8 7.32487713× 10−1 −1.93104843× 10−1 4.30480259× 10−1 −2.15499979× 10−1 −3.02129187× 10−1 2.46303468× 100 1.97074652× 100 1.71475104× 100 −2.02509554× 100

9 8.70918629× 10−1 5.11370826× 10−1 7.65668079× 10−1 3.11819936× 10−1 3.31747586× 10−1 1.50253790× 100 8.73146115× 10−1 −1.20634979× 10−2 −1.09353609× 100

10 −5.35917679× 10−3 3.09453923× 10−3 −1.13913859× 10−2 1.12867938× 10−3 −2.97121254× 10−3 7.47553687× 10−2 4.27767205× 10−2 2.02582101× 10−1 7.25785202× 10−2

11 −4.03818537× 10−1 −1.53328967× 10−1 −4.41468178× 10−1 −2.83454532× 10−1 −1.30202073× 10−1 −3.06417876× 10−1 9.68966545× 10−2 4.49595310× 10−2 2.16072642× 10−1

12 −2.40820897× 10−2 −1.03816916× 10−1 −2.00943884× 10−2 −4.21157950× 10−2 −7.45181207× 10−2 −7.48402758× 10−1 −8.39632113× 10−1 −8.06185866× 10−1 −1.01542630× 10−1

13 −1.04239403× 10−1 −3.8066998× 10−2 −1.26041587× 10−1 −8.08314045× 10−2 −4.73506171× 10−2 −1.01432849× 10−1 −7.71828521× 10−2 −1.97404896× 10−2 7.46926106× 10−2

14 −2.16335828× 10−2 −1.16075825× 10−2 −2.32331768× 10−2 −1.59762784× 10−2 −9.70095484× 10−3 8.06830693× 10−2 1.63430744× 10−2 4.98309152× 10−2 2.18830463× 10−3

Table 4
Comparisons ofEq. (16)and Span and Wagner’s EOS (SW-NP) with selected experimental data of non- and weakly polar fluids

Substance Average absolute deviation (AAD) (%)

Vapor pressure Saturated liquid
density

Saturated vapor
density

Single-phase
density

Single-phase
pressure

Isochoric heat
capacity

Saturated heat
capacity

Isobaric heat
capacity

Speed of sound

This work SW-NP This work SW-NP This work SW-NP This work SW-NP This work SW-NP This work SW-NP This work SW-NP This work SW-NP This work SW-NP

Methane 0.062 0.073 0.079 0.04 0.424 0.103 0.179 0.152 0.296 0.388 0.90 0.716 1.624 0.901 1.062 0.92 1.28 1.14
Ethane 0.424 0.18 0.089 0.049 0.141 0.389 0.524 0.647 0.622 0.471 1.108 0.929 1.498 1.982 3.055 2.884 1.99 2.13
Ethylene 0.058 0.065 0.06 0.042 0.16 0.6 0.709 0.691 6.962 6.985 2.327 1.779 n/a n/a 2.161 2.083 0.8 0.32
Propane 0.361 0.667 0.214 0.125 0.526 0.554 0.456 0.545 4.831 3.669 6.154 8.36 1.279 3.864 1.185 1.008 1.74 0.63
Isobutane 0.132 0.81 0.155 0.193 0.365 1.154 0.502 0.411 3.09 9.47 n/a n/a 0.30 1.763 4.963 4.56 0.02 0.01
n-Butane 0.098 0.608 0.111 0.103 0.071 0.69 0.487 0.41 1.728 1.424 1.656 0.898 0.372 0.644 3.781 3.697 1.5 0.49
n-Pentane 0.799 0.886 0.177 0.1 0.929 1.136 0.893 0.689 3.679 5.087 n/a n/a 0.107 0.586 1.049 0.875 1.42 1.12
n-Hexane 0.204 0.594 0.158 0.204 0.357 0.931 1.114 0.999 3.80 6.764 n/a n/a 1.834 2.02 0.785 0.706 1.03 1.26
Cyclohexane 0.096 0.711 0.177 2.639 2.638 3.231 0.205 0.545 1.757 3.455 1.892 0.809 2.612 2.019 2.247 6.366 0.19 0.34
n-Octane 0.176 0.578 0.196 0.116 0.259 0.87 0.18 0.25 3.41 4.617 0.953 1.003 n/a n/a 0.341 0.254 0.44 1.25
Benzene 0.116 0.196 0.237 0.853 5.73 n/a 1.494 1.846 1.64
Toluene 0.265 0.227 0.748 0.286 3.192 n/a 2.526 2.495 1.04
Nitrogen 0.018 0.112 0.132 0.052 0.265 0.13 0.616 0.711 2.052 2.371 9.11 8.443 0.521 0.35 6.18 6.223 2.6 2.99
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Table 5
Comparisons ofEq. (16)and Span and Wagner’s EOS (SW-PL) with selected experimental data of polar and associating fluids

Substance Average absolute deviation (AAD) (%)

Vapor pressure Saturated liquid density Saturated vapor density Single-phase density

This work SW-PL This work SW-PL This work SW-PL This work SW-PL

Carbon dioxide 0.037 0.065 0.039 0.067 0.191 0.133 0.19 0.146
R32 0.099 0.323 0.189 0.164 0.235 0.383 0.122 0.103
R125 0.017 0.044 0.072 0.091 0.175 0.21 0.096 0.085
R134a 0.10 0.333 0.147 0.163 0.247 0.363 0.108 0.101
Ammonia 0.353 0.143 0.432 0.498 0.552 0.69 0.452 0.451
Methanol 0.61 0.439 2.705 2.552
Ethanol 0.87 0.581 1.925 0.443
1-Propanol 0.685 0.287 2.521 1.085
Water 0.257 0.119 0.879 0.573

Single-phase pressure Isochoric heat capacity Isobaric heat capacity Speed of sound

This work SW-PL This work SW-PL This work SW-PL This work SW-PL

Carbon dioxide 0.434 0.444 11.44 12.92 1.304 1.35 0.69 0.73
R32 1.018 2.091 0.512 0.692 n/a n/a 1.12 0.66
R125 0.423 0.534 0.657 0.463 n/a n/a 0.05 0.05
R134a 2.074 2.278 0.342 0.36 0.36 0.384 0.32 0.33
Ammonia 1.60 0.94 n/a n/a 2.87 2.665 8.29 7.45
Methanol 3.513 n/a n/a n/a
Ethanol 2.25 6.015 1.59 4.25
1-Propanol 8.622 3.982 12.61 0.48
Water 3.296 3.902 1.132 3.52

the supercritical regions. However forn-pentane,n-hexane,
n-octane and toluene, the experimental measurements are
only available in limited regions and the quality of the data
are not consistent. The data situation for the polar and asso-
ciating fluids is not as good as for the non-polar fluids except
for carbon dioxide and water. For alcohols like methanol,
ethanol and 1-propanol, the experimental measurements
are only available in limited regions and have questionable
quality.

To elaborate the accuracy and universality ofEq. (16), we
have chosen ethylene as an example of non- and weakly po-
lar fluids, R32 (trifluoromethane) an example of polar fluids
and ethanol an example of associating fluids, to demonstrate
the success of the proposed simultaneous optimization al-
gorithm. Detailed comparison on other fluids can be found
in reference[29]. For water,Eq. (16)is compared to an in-
ternational standard EOS by Wagner and Pruß[30] instead
of experimental data.

For ethylene, the available experimental data cover the
range from the triple point up toT ≈ 473 K with pressures
up to 100 MPa. A detailed review of the data sets was given
by Jacobsen et al.[31] and a recent review can be found
in Smukala et al.[32]. The deviations between selected ex-
perimental data by Nowak et al.[33] and the values cal-
culated fromEq. (16)are shown inFig. 2. In general the
deviations given byEq. (16)and the SW-NP EOS are less
than 0.1%.

The available data sets of refrigerant R32 cover the re-
gions from the triple point temperature up toT ≈ 420 K

with pressures up to 72 MPa. R32 was studied in the 1990s
as an alternative refrigerant and therefore the data sets are
small but with higher accuracy and consistency. An exten-
sive review of the data was published by Tillner-Roth and
Yokozeki in 1997[34]. The deviations between the specific
heat capacity along the saturation boundary by Luddecke
and Magee[35] and the values calculated fromEq. (16)are
plotted in Fig. 3. Overall the deviations are less than 1%
except close to the critical point.
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Fig. 2. Percentage deviations between the experimentalPρT data in the
critical region of ethylene and values calculated in this work. Values from
the Span and Wagner EOS for non-polar fluids (SW-NP) are plotted for
comparison.
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Fig. 3. Percentage deviations between the specific heat capacity along
the saturation boundary data of R32 and values calculated in this work.
Values from the Span and Wagner EOS for polar fluids (SW-PL) are
plotted for comparison.

For ethanol, a common solvent and renewable bio-fuel,
experimental data sets are available in the region of 213≤
T ≤ 613 K with pressures up to 250 MPa. Most of the
available data sets are in the liquid state and at room tem-
perature and pressure. Saturation liquid density data are
available with good accuracy; however vapor pressure and
vapor density data are not available in the low temperature
region. There are no accepted values for the triple point pa-
rameters for ethanol. A detailed review of available liquid
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Fig. 5. Comparisons of average absolute deviations on saturation boundary calculated fromEq. (16)and the equations by Span and Wagner for considered
18 non- and weakly polar fluids and polar fluids.

Fig. 4. Percentage deviations between the experimentalPρT data of
ethanol and values calculated in this work.

phase density data was given by Cibulka and Zikova[36].
Only recently have there been independent attempts to de-
velop a multiparameter EOS by Dillon and Penoncello[37]
and Sun and Ely[38] for ethanol. The deviations between
experimentalPρT data[39–44] and values calculated from
Eq. (16)are plotted inFig. 4.

In concluding this section,Figs. 5–7are given as exam-
ples to show the overall quality ofEq. (16) in predicting
thermodynamic properties as compared to the two sepa-
rate equations by Span and Wagner, i.e., the SW-NP and
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Fig. 6. Comparisons of average absolute deviations on single-phase density calculated fromEq. (16)and the equations by Span and Wagner for considered
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SW-PL. The comparisons on the vapor–liquid equilibrium
boundary between the values predicted fromEq. (16)and
the equations by Span and Wagner are shown inFig. 5.
The saturated liquid densities are described with similar
accuracies except for cyclohexane which is predicted with
larger deviations from the SW-NP equation.Eq. (16)gives
a better prediction of vapor pressure and saturated vapor
density for fluids with higher values of the acentric factor,
however the overall deviations for 18 fluids considered in
this study are similar to those obtained by Span and Wagner
[11,14,15]. Comparisons of single-phase density between
the values predicted fromEq. (16) and the equations by
Span and Wagner are presented inFig. 6. Eq. (16)predicts
overall deviations similar to those values obtained with
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Fig. 7. Comparisons of average absolute deviations on the isobaric heat capacity calculated fromEq. (16) and the equations by Span and Wagner for
considered 18 non- and weakly polar fluids and polar fluids.

equations proposed by Span and Wagner for the 18 fluids.
The comparisons for the isobaric heat capacity are shown
in Fig. 7. As seen inFig. 7, Eq. (16) gives much better
predictions for cyclohexane, and comparable accuracies for
other fluids. The equation by Span and Wagner, the SW-NP,
does not give predictions for benzene and toluene.

Since the equations by Span and Wagner cannot be applied
to alcohols or water, other models for associating fluids are
used for comparison in this work. As an example, the com-
parisons ofEq. (16)with two SAFT equations for the pre-
dictions for various thermodynamic properties of ethanol are
shown inFig. 8. SAFT refers to Statistical Associating Flu-
ids Theory originally developed by Chapman et al.[45] by
applying thermodynamic perturbation theory to associating
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Fig. 8. Comparisons of average absolute deviations on thermodynamic properties of ethanol calculated fromEq. (16), the crossover SAFT equation by
Kiselev et al., and the classical SAFT equation by Huang and Radosz.

fluids. The SAFT EOS successfully predicts the saturation
boundary as well as liquid phase density for associating flu-
ids. Huang and Radosz[46] proposed a very similar SAFT
EOS which considers a polynomial expression based on
molecular dynamic simulation data for the square-well po-
tential as the dispersion force between molecule segments.
Kiselev et al.[47] included the crossover formulations to
the SAFT equation by Huang and Radosz (CR SAFT) in
order to improve its description in the critical region.

As shown inFig. 8, Eq. (16)shows superior accuracy for
all of the thermodynamic properties of ethanol when com-
pared to the crossover SAFT and the classical SAFT equa-
tions. The saturation boundary can be predicted with almost
the same accuracy withEq. (16) and to CR SAFT. How-
ever for single-phase density, the average absolute deviation
given byEq. (16)is three times smaller as compared to CR
SAFT.

5. Conclusion

In this paper we develop a simultaneous optimization al-
gorithm aimed at developing a universal engineering EOS
with moderate accuracy. Unlike the algorithm proposed by
Span and Wagner[11,13], our approach is based on simu-
lated annealing, a stochastic algorithm. The use of simulated
annealing method simplifies the optimization algorithm and
requires less computing effort. Also it offers the flexibility
to easily apply the algorithm to a wide range of fluids.

A structure optimized 14-term engineering EOS was ob-
tained by applying the optimization algorithm to a total of
22 non- and weakly polar, polar fluids as well as associ-
ating fluids. Based on the overall comparisons, it can be
concluded that the resulting equation,Eq. (16), yields the

same accuracy as the SW-NP for the 13 non- and weakly
polar fluids in the entire range of available data. We also
note Eq. (16) is applicable to aromatic hydrocarbons such
as benzene and toluene for which the SW-NP does not give
predictions. Similarly,Eq. (16)gives the same or better ac-
curacy as the SW-PL for the five weakly polar fluids in the
entire range of available data.Eq. (16)also gives accurate
predictions for associating fluids such as alcohols and water.
The SW-PL cannot be applied to such fluids, as reported by
Bonsen et al. in 2003[16].
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