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Abstract

We have developed a generalized cubic (GC) EOS for pure fluids, which incorporates non-analytic scaling laws in the critical region
and in the limitρ → 0 is transformed into the ideal gas equation EOS. The GC EOS contains 10 adjustable parameters and reproduces
the thermodynamic properties of pure fluids with high accuracy, including the asymptotic scaling behavior of the isochoric heat capacity
in the one- and two-phase regions. Unlike the crossover cubic EOS developed earlier [Fluid Phase. Equilibr. 147 (1998) 7], the GC EOS
is based on the crossover sine model and can be extended into the metastable region for representing analytically connected van der Waals
loops. In addition, using the GC EOS and the decoupled-mode theory (DMT) we have developed a generalized GC+ DMT model, which
reproduces the singular behavior of the thermal conductivity of pure fluids in and beyond the critical region. Unlike the DMT model based on
the asymptotic crossover equation of state CREOS-97, the GC+ DMT model is valid in the entire fluid state region atT ≥ Tb (whereTb is
the binodal temperature), and atρ → 0 reproduces the dilute gas contributions for the transport coefficients.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

During the last two decades many efforts have been
made to develop a “global”, or generalized EOS that at
low densities reproduces the ideal gas equation and is
transformed into the non-analytic scaled EOS as the crit-
ical point is approached[1–27]. The most theoretically
advanced models are probably the hierarchical reference
theory (HRT) developed by Parola et al.[3–7] and the
“globalized” renormalization-group (RG) procedure pro-
posed by White et al.[15–19]. An advantage of the HRT
[3–7] and “globalized” RG[15–19] models is that they
require only few microscopic intermolecular potential pa-
rameters as input. However, they are rather complicated and
require additional spline functions for the practical represen-
tation of the thermodynamic surface of real fluids. Besides,
so far, first-principle theoretical models[3–7,15–19,23–27]
have been focused only on reproducing of the VLE and
PVT surfaces, but not the singular behavior of the caloric
properties, such as the isochoric and isobaric heat capacities.
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In this paper we continue a study initiated in our previ-
ous works for the crossover cubic EOS[28,29] and ther-
mal conductivity in sub- and super-critical fluids[30–34].
Using the crossover sine model[35], we first develop a
generalized cubic (GC) EOS for methane, ethane, car-
bon dioxide, and water. The new equation of state was
tested against an extensive set of experimental data for
the volumetric and caloric properties. Unlike the cubic
crossover EOS developed previously[28], the GC EOS is
based on the crossover sine-model and can be analytically
extended into the metastable region and reproduces the
asymptotic scaling behavior of the isochoric heat capac-
ity in the one- and two-phase regions. Then we apply the
GC EOS for the calculation of the thermal conductivity
of methane, ethane, and carbon dioxide with the crossover
decoupled-mode model developed by Kiselev and Kulikov
[30,32].

We proceed as follows. InSection 2we develop a gen-
eralized cubic EOS for pure fluids. InSection 3we ap-
ply this EOS for the thermodynamic properties in methane,
ethane, carbon dioxide, and water. The thermal conductivity
calculations are presented inSection 4, and our results are
summarized inSection 5.

0378-3812/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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2. Generalized cubic EOS

In this work, the Patel–Teja (PT) EOS[36,37]

P = RT

v− b − a(T)

v(v+ b)+ c(v− b) (1)

(whereP is the pressure,v = 1/ρ is molar volume, andR
is the universal gas constant) has been chosen as a refer-
ence cubic EOS for one-component fluids. The PT EOS is
a good choice for developing a GC EOS because by setting
b = c = 0 in the attractive term, it is transformed into the
vdW EOS. Withb �= 0 and c = 0 it corresponds to the
Redlich–Kwong–Soave (RKS) EOS[38,39], and choosing
b = c �= 0 the PT is transformed into the Peng–Robinson
(PR) EOS[40]. In the original PT EOS[36,37]

a(T) = Ωa
R2T 2

0c

P0c
αa(T) = a0cαa(T),

b = Ωb
R2T0c

P0c
, c = Ωc

RT0c

P0c
, (2)

where

αa(Tr) = 1 + c1(Tr − 1)+ c2(
√
Tr − 1)+ c3(T 0.8

r − 1)

(3)

is a function of the dimensionless temperatureTr = T/T0c,
the coefficientsΩa, Ωb, Ωc are functions of the critical
compressibilityZ0c, and the classical critical parametersT0c,
P0c andv0c that can be found from the condition

(
∂P

∂v

)
T0c

= 0,

(
∂2P

∂v2

)
T0c

= 0,

P0cv0c

RT0c
= Z0c ≤ 1

3
. (4)

In order to develop a generalized—“global” crossover EOS,
which reproduces the ideal gas equation in the limit of low
densities, we will follow the crossover approach developed
by Kiselev[28]. Following this approach, we first represent
the dimensionless Helmholtz free energyĀ = A(T, v)/RT
in the form

Ā(T, v) = �Ā(�T,�v)+ Ābg(T, v), (5)

where the critical part of the Helmholtz free energy

�Ā(�T,�v)= Āres(�T,�v)− Āres(�T,0)

− ln(�v+ 1)+�vP̄0(�T), (6)

and the background contribution is given by

Ābg(T, v) = −�vP̄0(T)+ Āres
0 (T)+ Āid(T). (7)

In Eqs. (5)–(7), �T = T/T0c − 1 and�v = v/v0c − 1
are dimensionless distances from the classical critical

temperature T0c and molar volume v0c, respectively,
P̄0(T) = P(T, v0c)v0c/RT is the dimensionless pressure,
Āres

0 (T) = Āres(T, v0c) is the dimensionless residual part of
the Helmholtz energy along the critical isochorev = v0c,
and Āid(T) is the dimensionless temperature-dependent
ideal-gas Helmholtz free energy.

In the next step, we replace the classical values of�T and
�v in the critical part�Ā(�T,�v) with the renormalized
values

τ̄ = τΥ−α/2∆1,

ϕ̄ = ϕΥ (γ−2β)/4∆1 + (1 + ϕ)�vcΥ
(2−α)/2∆1, (8)

whereα = 0.11, β = 0.325, γ = 2 − 2β − α = 1.24, and
∆1 = 0.51 are universal non-classical critical exponents
[41,42], τ = T/Tc − 1 is a dimensionless deviation of the
temperature from the real critical temperatureTc,ϕ = v/vc−
1 is a dimensionless deviation of the molar volume form
the real critical molar volumevc, �vc = (vc − v0c)/v0c 

1 is a dimensionless shift of the critical volume, andΥ (τ,
ϕ) denotes a crossover function. In this work, forΥ (τ, η)
we use a simple phenomenological expression obtained by
Kiselev et al.[28,29,43]

Υ(q) =
(

q

1 + q
)2∆1

, (9)

whereq = (r/Gi)1/2 is a renormalized distance to the criti-
cal point andr(τ, ϕ) is a parametric variable. The crossover
functionΥ given byEq. (9)coincides with the correspond-
ing crossover function in the CR Leung–Griffiths model ob-
tained in the first order ofε-expansion by Belyakov et al.
[44]. In our previous work[28,43], the renormalized dis-
tanceq was found from a solution of the crossover linear
model (LM) [29]. In this study, following our recent work
[45] we find q from a solution of the crossover sine model
(SM)

(
q2 − τ

Gi

) [
1 − p2

4b2

(
1 − τ

q2Gi

)]

= b2
{
ϕ[1 + v1 exp(−10ϕ)] + d1τ

m0 Giβ

}2

Υ(1−2β)/∆1, (10)

wherem0, v1, d1, andGi are the system-dependent param-
eters, while the universal parametersp2 and b2 can be set
equal to the linear model (LM) parameterp2 = b2 =
b2

LM = 1.359 [35]. The crossover SM as given byEq. (10)
is physically equivalent to the crossover sine model devel-
oped earlier[35,46,47], but with different empirical term
∝ v1 exp(−10ϕ). The coefficientv1, which is supposed to
be positive and small (0≤ v1 
 1), provides at the triple
point of liquids a physically obvious conditionΥ = 1. In
the asymptotic critical and low-density regions this term is
negligibly small and the linear-model crossover equation for
the parametric variableq employed earlier by Kiselev et al.
[48–51] is recaptured fromEq. (10)when parameterp2 →
0. At p2 �= 0 and atq 
 1, Eq. (10)is transformed into the
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symmetric trigonometric model developed by Fisher et al.
[52]. The difference between the trigonometric model de-
veloped by Fisher et al.[52] and the crossover SM as given
by Eq. (10)in the asymptotic regimeq → 0 is only in the
definition of the order parameter.

Finally, the crossover expression for the Helmholtz free
energy can be written in the form

Ā(T, v)=�Ā(τ̄, ϕ̄)−K(τ, ϕ)−�vP̄0(T)

+ Āres
0 (T)+ Āid(T) (11)

with the kernel term

K(τ, ϕ)= 1
2a20τ

2[Υ−α/∆1(τ, ϕ)− 1]

+ 1
2a21τ

2[Υ−(α−∆1)/∆1(τ, ϕ)− 1], (12)

where the coefficientsa20 anda21 correspond to the asymp-
totic and first Wegner-correction terms, respectively. Asymp-
totically close to the critical point (atq 
 1, or |τ| 
 Gi at
ρ = ρc and |ϕ| 
 Giβ at T = Tc), the crossover function
Υ ∝ r∆1, and the critical part�Ā becomes a non-analytical
scaling function ofτ andϕ, while far away from the criti-
cal point (atq 
 1, or |τ| 
 Gi at ρ = ρc and |ϕ| 
 Giβ

at T = Tc) the crossover functionΥ → 1 andEq. (11) is
transformed into the classical Helmholtz free energy (5).

The GC EOS can be obtained by differentiation ofEq. (11)
with respect to volume

P(v, T)= −RT

(
∂Ā

∂v

)

= RT

v0c

{
−v0c

vc

[(
∂�Ā

∂ϕ

)
T

−
(
∂K

∂ϕ

)
τ

]
+ P̄0(T)

}
.

(13)

It is easily to show that in the GC EOS with the kernel
term as given byEq. (12)the isochoric heat capacityCV =
−T(∂2A/∂T 2)ρ along the critical isochoreρ = ρc diverges
at τ → 0 as

CV (τ)

R
= A±

0 |τ|−α(1 + a±1 |τ|∆1)+ B±
0 (τ) (14)

where A±
0 , is the asymptotic amplitude,a±1 is the first

Wegner-correction term[53], andB±
0 (τ) is a background

contribution above (+) and bellow (−) critical temperature.

3. Thermodynamic properties

For one-component fluids the GC EOS contains six clas-
sical system-dependent parameters, namely, the critical pa-
rametersT0c, v0c, Z0c, and coefficientsci (i = 1–3). In addi-
tion to the classical parameters, the GC EOS also contains
the Ginzburg numberGi, the critical shift�vc, the coeffi-
cientsm0, v1, d1, and the kernel term amplitudesa20 anda21.
Thus, the crossover Helmholtz free energy for the GC EOS
as given byEq. (11)contains 13 adjustable parameters. In

practice, however, the number of the adjustable parameters
is less. Since the real critical parametersTc, Pc, andZc for
a one-component fluids are usually known, the critical shift
�vc = vc/v0c − 1 is known too. Thus using the conditions
T0c = Tc andP0c = Pc, one can reduce the number of ad-
justable parameters to ten: the classical compressibility fac-
tor Z0c, the coefficientsci (i = 1–3), the Ginzburg number
Gi, the coefficientsm0, v1, d1, and the critical amplitudes
a20 anda21.

In this work, we tested the GC EOS against experimen-
tal data for methane, ethane, carbon dioxide, and water. The
classical compressibility factorZ0c, the Ginzburg number
Gi, and the coefficientsci (i = 1–3), m0, v1, andd1 were
found from a fit ofEqs. (11)–(13)to experimental VLE- and
PVT-data in one and two-phase regions, while the ampli-
tudesa20 anda21 for all substances have been found from a
fit of the GC EOS to theCV -data along the critical isochore
generated asymptotically closed to the critical point atT ≥
Tc with the parametric crossover model developed by Kise-
lev [49] for methane and ethane, by Kiselev and Kulikov
[32] for carbon dioxide, and by Kiselev and Friend[54] for
water. The system-dependent parameters for the GC EOS
for methane, ethane, carbon dioxide and water are listed in
Table 1, and comparisons of the predictions of the model
with experimental data are shown inFigs. 1–6.

In Fig. 1 we show a comparison of the GC EOS with ex-
perimental PVT and VLE data for methane and ethane, and
for carbon dioxide and water inFig. 2. The filled squares in
Fig. 2 indicate the VLE data generated for water with the
IAPWS-95 Formulation[55]. As one can see, the GC EOS
yields a very good representation of the thermodynamic sur-
face of pure fluids in a wide range of state variables, includ-
ing the critical region. In the region bounded by 0.5ρc ≤
ρ ≤ 1.5ρc andTc ≤ T ≤ 1.5Tc an average absolute devia-
tion (AAD) for pressure is less then 1%, and atρ ≥ 2ρc the
GC EOS reproduces the liquid densities for all substances
with AAD of about 1–2%. For all substances in the tem-
perature region 0.3Tc ≤ T ≤ Tc, the GC EOS reproduces
the saturated pressure data with an AAD of about 0.5–1%,
the liquid density data with an AAD of about 1%, and the
vapor density with about 2–3%. For carbon dioxide and wa-
ter these AAD are approximately the same as in the CR PT
EOS developed earlier by Kiselev[28] on the basis of the
linear-model (LM) EOS. Although the LM EOS has a the-
oretical foundation in the renormalization-group theory and
was confirmed in the second order ofε-expansion and in
high-temperature expansion[56], it cannot be analytically
extended deep into the metastable region. This in turn re-
stricts its applications to interface modeling and makes VLE
calculations in fluid mixtures extremely unstable[29]. As
one can see fromFigs. 1 and 2, the GC EOS, unlike the CR
EOS based on the LM equation forΥ , can be extended into
the metastable region and at temperaturesT < Tc represents
analytically connected van der Waals loops. The dashed lines
in Figs. 1 and 2represent the values calculated with de-
veloped recently the generalized corresponding state (GCS)
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Table 1
System-dependent constants for the GC EOS

CH4 C2H6 CO2 H2O

Classical critical parameters
Z0c 3.333333E−01 3.290717E−01 3.333333E−01 3.030889E−01
T0c (K) 1.905640E+02 3.053220E+02 3.041282E+02 6.470960E+02
ρ0c (mol l−1) 8.708152E+00 5.830862E+00 8.752363E+00 1.353034E+01

Critical shift
�vc −1.39681E−01 −1.50037E−01 −1.76237E−01 −2.44831E−01

Classical PT EOS parameters
c1 −1.783195E+01 −7.735786E+00 −8.329461E−01 5.896251E+00
c2 −3.255994E+01 −1.020609E+01 −1.654726E+00 2.767574E+00
c3 3.590565E+01 1.516193E+01 9.417602E−01 −1.015037E+01

Crossover parameters
Gi 1.365464E−01 5.534679E−02 6.399020E−02 5.897337E−02
m0 1.197025E+00 1.145878E+00 1.444410E+00 1.439207E+00
v1 5.920748E−02 3.008093E−02 3.138710E−02 2.988727E−03
d1 −4.087222E−01 9.930443E−01 2.629753E+00 4.325967E+00
a20 1.590924E+01 1.631399E+01 1.585024E+01 1.020517E+01
a21 4.779291E+00 6.462911E−01 −5.333093E−01 −5.252759E+00

model[45], which requires only the critical parametersTc,
Pc, ρc, and the accentric factorω as input. As one can see,
in the one-phase region atT > 0.6Tc and ρ ≤ 1.9ρc the
GCS model reproduces the experimental PVT-data practi-
cally with the same accuracy as the GC EOS. However, the
GCS model, unlike the GC EOS, does not contain the ker-
nel term and is unable to reproduce the correct asymptotic
behavior of the isochoric heat capacity in the critical region.

In Figs. 3 and 4we compare experimental values of the
isobaric heat capacities,CP , with the values calculated with
the GC EOS. Since the data shown inFigs. 3 and 4were

Fig. 1. PρT data for methane[68–70] (left) and ethane[71] (right) with predictions of the GC EOS (solid curves) and the GCS model (dashed curves).
The empty symbols correspond to the one-phase region and the filled symbols indicate the VLE data.

not used in optimization procedure, this is a good test of
the consistency of the GC EOS. The dotted-dashed curves
in Figs. 3 and 4represent the values calculated with the
CREOS-97[32,49,54]. As one can see, in the asymptotic
critical region the CREOS-97 yields a better representation
of experimentalCP data than the GC EOS, which predicts
systematically lower values than ones calculated with the
CREOS-97. This is not surprising, because the parametric
crossover model CREOS-97 was specially developed for
reproducing of the thermodynamic surface of pure fluids and
binary mixtures in the critical region with a high accuracy.
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Fig. 2. PρT data for carbon dioxide[72,73] (left) and water[74–77] (right) with predictions of the GC EOS (solid curves) and the GCS model (dashed
curves). The empty symbols correspond to the one-phase region, and the filled symbols indicate the VLE data.

It is obvious that a simple cubic EOS, even in the crossover
formulation, is unable to reproduce the heat capacity data in
the critical region with the same accuracy. However, the big
deviations of the GC EOS from the CREOS-97 are observed
only in the nearest vicinity to the critical point. Outside
the asymptotic critical region, the GC EOS describes the
experimentalCP -data practically with the same accuracy
as the CREOS-97. Except for data-points very close to the
critical point, for which deviations increase to 30–40%, the
GC EOS reproduces the isobaric heat capacity data shown
in Figs. 3 and 4with AAD of about 2–5% in the low-density
region, and with AAD of about 1–2% for liquids.
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Fig. 3. The isobaric heat capacity data for methane[78,79] (left) and ethane[80,81] (right) with predictions of the GC EOS (solid curves) and the
CREOS-97[49] (dashed curves).

In Figs. 5 and 6we show the isochoric heat capacity data
along the critical isochore in the two- and one-phase regions
in comparison with the predictions of the GC EOS (solid
lines) and the CREOS-97 (dotted-dashed lines). As one can
see, in the asymptotic critical region the predictions of the
GC EOS qualitatively and quantitatively are in a good agree-
ment with experimental data. There are two experimental
CV -data sets for ethane, which are inconsistent with each
other in the value of the background contribution to theCV
far from the critical point, where the singular contributions
to theCV are extremely small[57,58]. As one can see from
Fig. 5, the experimental data obtained by Shmakov[57,58]
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Fig. 4. The isobaric heat capacity data[82] for carbon dioxide (left) and water[83] (right) with predictions of the GC EOS (solid curves) and the
CREOS-97[49] (short dashed curves).

in this region lie systematically lower than experimental val-
ues reported by Abdulagatov et al.[57,58]. The CREOS-97
was optimized to the Shmakov’s data[57,58], therefore, a
good agreement between calculated values and experimental
data in the two- and one-phase regions is observed for this
model, while the GC EOS is in excellent agreement with ex-
perimental data by Abdulagatov et al.[57,58]. Since no ex-
perimental data shown inFig. 5have been used for the opti-
mization of the GC EOS for ethane, this agreement between
experimental data and predicted values of the isochoric heat
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Fig. 5. The isochoric heat capacity data along the critical isochore for methane[84,85] (left) and ethane[57,58] (right) with predictions of the GC EOS
(solid curves) and the CREOS-97[49] (dashed curves). The empty symbols correspond to the one-phase region, and the filled symbols indicate the VLE
data.

capacity in the one- and two-phase regions in ethane looks
rather impressive. For methane and water the GC EOS pre-
dicts in the two-phase region systematically higher values
of CV than experimental data. We need to note that unlike
the CREOS-97[32,49,54], where the reduced density�ρ =
ρ/ρc − 1 is used as the order parameter, inEqs. (10)–(12)
the reduced molar volumeϕ = v/vc − 1 has been chosen
as the order parameter. In this case, as it is discussed else-
where [45,59], in the GC EOS the derivative(∂2P/∂T 2)ρ
remains finite at the critical point and the divergence ofCV
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along the critical isochore related to the divergence of the
second derivative of the chemical potential with respect to
the temperature,(∂2µ/∂T 2)ρc(τ→0) ∝ τ−α. In spite of this
difference in definition of the order parameters, the GC EOS
yields a sufficiently accurate representation of the isochoric
and isobaric heat capacities in pure fluids that allows us to
use the GC EOS for thermal conductivity calculations in the
critical region.

4. Thermal conductivity

In this work, for the calculation of the thermal conductiv-
ity in the critical region we use a crossover decoupled-mode
theory (DMT) model for the transport coefficients in pure
fluids and fluid mixtures developed by Kiselev and Kulikov
[30,32]. In the limit of pure components, the crossover ex-
pression for the thermal conductivity takes the form[33,34]

λ = kBTρCP

6πηξ̂
Ω(z)+ λb, (15)

wherekB is the Boltzmann’s constant,η the shear viscosity,
λb is a background part of the thermal conductivity which
is an analytic function of the temperature and density. The
crossover functionΩ(z) = Ω(qDξ̂) is given by

Ω(z) = 2

π

[
tan−1(z)− 1√

1 + y1Dz
tan−1

(
z√

1 + y1Dz

)]

(16)

with

y1D = 6πη2

kBTρqD(φ1 + y−1
1 )
, y1 = kBTρCP

6πηξ̂λb
. (17)

In Eqs. (15)–(17), qD is a cutoff wave number,φ1 = φ(k1Dξ̂)

is the dynamical scaling function[33,34]

φ(z) = 3[1 + z2 + (z3 − z−1) tan−1(z)]

4z2(1 + z2) (18)

calculated at the constant value of the wave numberk1D =
0.1qD, and the renormalized correlation length is given by
[33]

ξ̂ = ξOZ exp

(
− 1

qDξOZ

)
, ξOZ = ξ0

√
χT

Γ0
. (19)

In Eq. (19), ξOZ corresponds to the Onrstein–Zernike ap-
proximation for the correlation length, andξ0 andΓ0 are
the amplitudes of the asymptotic power laws for the corre-
lation length and reduced isothermal compressibilityχT =
ρT(∂ρ/∂P)T Pcρ

−2
c T−1

c , respectively. Asymptotically close
to the critical point (atqDξ̂ 
 1) the singular part of the ther-
mal conductivity is much larger than the background part
(y1 
 1, y1D ≈ 1), the crossover functionΩ(z) approaches
unity, and the thermal conductivity along the critical iso-
chore atT ≥ Tc diverges asλ ∝ τ−γ/2. Far away from the
critical point atqDξ̂ 
 1 the crossover functionΩ(z)→ 0,
and the thermal conductivityλ becomes equal to its back-
ground partλb.

In this work, following Kiselev and Huber[33] we repre-
sent the shear viscosityη and background partλb as sums
of two terms

η(T, ρ) = η0(T)+ ηex(T, ρ), (20)

λb(T, ρ) = λ0(T)+ λex(T, ρ), (21)

where the subscripts “0” and “ex” denote the temperature-
dependent dilute gas contributions and the temperature and
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Fig. 7. The thermal conductivity data along the isochores for methane[60] (symbols) with predictions of the GC+ DMT model (solid curves) and the
CREOS-97[33] (dashed curves). The dotted-dashed curves correspond to the background contributions calculated at the same isochores.

density dependent excess contributions, respectively. In this
work, for η0(T), λ0(T), ηex(T, ρ), λex(T, ρ) and we use the
same correlations as described by Kiselev and Huber[33]
(see Eqs. (48)–(54) in Ref.[33]). For the parametersξ0 and
qD for methane, ethane, and carbon dioxide we also adopted
the same values as employed earlier by Kiselev and Huber
[33] (see Table 1 in Ref.[33]), while for the calculation of
the thermodynamic properties inEqs. (15)–(19), instead the
CREOS-97 model employed in Ref.[33], we use here the
GC EOS developed in this work. A comparison of the cal-
culated values of the thermal conductivity with experimen-
tal data for methane, ethane, and carbon dioxide is shown
in Figs. 7–9.

Fig. 8. The thermal conductivity data along the isotherms for ethane[61]
(symbols) with predictions of the GC+ DMT model (solid curves). The
dashed curves represent the values calculated at the first three isotherms
(T = 305.4, 305.5, and 305.9 K, respectively) with the CREOS-97[33].

In Fig. 7, we show the GC+ DMT model predictions
for the thermal conductivity along the near critical isochores
in methane compared with experimental data by Sakonidou
[60]. The dashed curves inFig. 7 represents the values cal-
culated with the asymptotic crossover model, CREOS-97,
by Kiselev and Huber[33], and the dotted-dashed curves
correspond to the background contributions calculated along
the same isochores withEq. (21). As one can see, in agree-
ment with experimental data both, the GC+ DMT and
CREOS-97 models yield an anomalous increase in the ther-
mal conductivity in the critical region, while far away from
the critical point they reduce to the background contribution
given byEq. (21). A comparison of the thermal conductivity

Fig. 9. The thermal conductivity data along the isotherms for carbon
dioxide [62] with predictions of the GC+ DMT model (solid curves)
and the CREOS-97[33] (dashed curves).
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data obtained along the near critical isotherms by Mostert
[61] for ethane and by Michels et al.[62] for carbon diox-
ide with the predictions of the GC+ DMT and CREOS-97
[33] models is shown inFigs. 8 and 9. As mentioned above
(seeFigs. 3 and 4), asymptotically close to critical point
the GC EOS gives systematically lower values of the iso-
baric heat capacity than the CREOS-97. As a consequence,
in this region the GC+ DMT model also predicts slightly
smaller values of the thermal conductivity than ones calcu-
lated with the CREOS-97 model[33]. However, we note that
the CREOS-97 is an asymptotic crossover model, which is
valid only forρ ≥ 0.25 [33]. Since the CREOS-97 does not
reproduce the ideal gas limit, it may even give unphysical
behavior asρ → 0. The GC+ DMT model not only qualita-
tively, but also quantitatively reproduces the singular behav-
ior of the thermal conductivity of pure fluids in the critical
region, and asρ → 0 gives the dilute gas contributionλ0(T).

5. Conclusion

The advantage of the van der Waals (vdW)[63] and other
cubic equations of states[64] is that they contain a restricted
number of the molecular parameters, which have a real phys-
ical meaning and do not depend on the thermodynamic con-
ditions. However, it is well known that an accuracy of rep-
resentation of the thermodynamic surface in real fluids with
these vdW-type analytical EOS is rather pure, especially
in the critical region, where the thermodynamic properties
of fluids exhibit the non-analytic, singular behavior. An ex-
ample of the empirical attempt to improve the representa-
tion of the VLE and PVT surface of one-component fluids
in the critical region with the simple cubic and non-cubic
EOS was presented recently in Refs.[65,66]. The authors of
this work, instead following a theoretically well-established
procedure, try to achieve their goal by incorporating addi-
tional empirical correction terms to a reference EOS. Of
course, incorporation of the additional terms will make the
resulted EOS more accurate, but certainly not physically
self-consistent. As a consequence of the unphysical nature of
the correction terms, its number becomes too big (nineteen
in Eq. (1) in Ref.[66]), they are loosing their physical mean-
ing, and a rather complicated structure of the “improved”
EOS becomes its disadvantage over other short, but more
accurate structure optimized empirical EOS[67]. Besides,
even with additional empirical near-critical correction terms
the “improved” EOS fails to reproduce the singular behav-
ior of the isochoric heat capacity in the vicinity of the crit-
ical point. In the critical region fluids exhibit a universal
singular behavior, which is determined by the interaction
of the enormously big fluctuations of the order parameter,
or the density for one-component fluids. All analytical and
non-analytical terms introduced in Refs.[65,66] have noth-
ing to do with the critical fluctuations and, therefore, cannot
result in the non-analytic singular behavior of the isochoric
heat capacity in the critical region. In order to incorporate

the critical fluctuations into the equation of state, the more
rigorous theoretical approaches should be considered.

A general approach for developing a generalized
crossover EOS, which in the critical region reproduces
theoretically well-established scaling laws, and in the limit
of low densities is transformed into the ideal gas equation
was proposed by Kiselev[28]. In our previous work[45],
we used this approach for developing a generalized corre-
sponding states model (GCSM), which contains the critical
point parameters and accentric factor as input, but repro-
duces the PVT- and VLE-surface and the surface tension
of one-component fluids (polar and non-polar) with high
accuracy. However, since the kernel term in the GCSM was
set equal to zero, the singular behavior of the isochoric
heat capacity was not considered in Ref.[45]. In this work,
using the Patel–Teja (PT) EOS[36] as a reference EOS
for one-component fluids, we developed a generalized cu-
bic EOS for methane, ethane, carbon dioxide, and water.
The GC EOS contains 10 adjustable parameters and at
T ≥ Tc and reproduces the pressures with an average abso-
lute deviation (AAD) less then 1%, and liquid densities at
ρ ≥ 2ρc with AAD of about 1–2%. In the temperature re-
gionT ≤ Tc, the GC EOS reproduces the saturated pressure
data with AAD of about 0.5–1%, the liquid density data
with AAD of about 1%, and the vapor density with about
2–3%. Unlike the cubic crossover EOS developed before
[28], the new sine-model based GC EOS can be analytically
extended into the metastable and unstable regions and is
capable of reproducing the asymptotic scaling behavior of
the isochoric heat capacity in the one- and two-phase re-
gions. This allowed us to develop a generalized GC+ DMT
model for the transport coefficients in pure fluids based
on the GC EOS and the decoupled-mode theory by Kise-
lev and Kulikov [30,32]. Unlike the asymptotic crossover
model CREOS-97 developed earlier by Kiselev and Huber
[33], the GC+ DMT model is valid in the entire fluid state
regionT ≥ Tb, whereTb is the temperature along the bin-
odal and atρ → 0 reproduces the dilute gas contributions
for the transport coefficients.

We are not aware of any other empirically “improved”
cubic or non-cubic EOS, which is able of reproducing
the thermodynamic and transport properties of pure fluids
in and beyond the critical region with the same accuracy
and physical self-consistency. Therefore, we consider the
results presented in this work as an additional proof of
a general statement that improvements of the description
of the critical region with a statistical fluid theory-based
EOS can be achieved not by adding empirical analytical
and non-analytical terms in these equations, but rather ap-
plying to them the more rigorous, renormalization group
theory-based methods.

List of symbols
a temperature-dependent parameter inEq. (1)
a2i system-dependent parameter inEq. (12)(i = 0,1)
A Helmholtz free energy
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Ā dimensionless Helmholtz free energy
Ā0 dimensionless ideal gas part of free energy
Āres

0 dimensionless ideal residual part along the
critical isochore

b temperature-independent parameter inEq. (1)
b2 universal linear-model parameter inEq. (10)
c temperature-independent parameter inEq. (1)
ci system-dependent coefficients inEq. (3)

(i = 1–3)
CP isobaric heat capacity
CV isochoric heat capacity
d1 system-dependent coefficient inEq. (10)
g inverse Ginzburg number
Gi Ginzburg number
kB Boltzmann’s constant
K kernel term
m0 system-dependent coefficients inEq. (10)
Mw molecular weight
p2 universal sine-model parameter inEq. (10)
P pressure (MPa)
Pc critical pressure (MPa)
P̄0 dimensionless pressure along the critical isochore
q argument of the crossover function
qD cutoff wave number
R gas constant
T temperature (K)
Tc critical temperature (K)
v molar volume (l mol−1)
vc critical volume (l mol−1)
v1 system-dependent coefficient inEq. (10)
z argument of the dynamical crossover function
Zc critical compressibility factor

Greek letters
α universal critical exponent
αa temperature-dependent function inEq. (2)
β universal critical exponent
γ universal critical exponent
Γ 0 critical amplitude
� difference
∆1 universal critical exponents
η shear viscosity
λ thermal conductivity
ξ correlation length
ξ0 critical amplitude
ρ molar density (mol l−1)
τ reduced temperature difference
τ̄ renormalized temperature difference
Υ crossover function
φ1 dynamical scaling function
ϕ order parameter
ϕ̄ renormalized order parameter
Ω dynamical crossover function inEq. (15)
Ωx dimensionless parameters inEq. (2)

(x ∈ a, b, c)

Subscripts
bg,b background
c critical
ex excess
OZ Onrstein–Zernike
0 classical

Superscripts
id ideal gas part
res residual
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