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Abstract

We have developed a generalized cubic (GC) EOS for pure fluids, which incorporates non-analytic scaling laws in the critical region
and in the limitp — 0 is transformed into the ideal gas equation EOS. The GC EOS contains 10 adjustable parameters and reproduces
the thermodynamic properties of pure fluids with high accuracy, including the asymptotic scaling behavior of the isochoric heat capacity
in the one- and two-phase regions. Unlike the crossover cubic EOS developed earlier [Fluid Phase. Equilibr. 147 (1998) 7], the GC EOS
is based on the crossover sine model and can be extended into the metastable region for representing analytically connected van der Waal
loops. In addition, using the GC EOS and the decoupled-mode theory (DMT) we have developed a generalizBiAE@odel, which
reproduces the singular behavior of the thermal conductivity of pure fluids in and beyond the critical region. Unlike the DMT model based on
the asymptotic crossover equation of state CREOS-97, the-®BMT model is valid in the entire fluid state regionBt> T, (whereT, is
the binodal temperature), and@t> 0 reproduces the dilute gas contributions for the transport coefficients.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction In this paper we continue a study initiated in our previ-
ous works for the crossover cubic E(Q33,29] and ther-
During the last two decades many efforts have been mal conductivity in sub- and super-critical fluifidg0—34]
made to develop a “global”, or generalized EOS that at Using the crossover sine modg85], we first develop a
low densities reproduces the ideal gas equation and isgeneralized cubic (GC) EOS for methane, ethane, car-
transformed into the non-analytic scaled EOS as the crit- bon dioxide, and water. The new equation of state was
ical point is approached1l-27] The most theoretically  tested against an extensive set of experimental data for
advanced models are probably the hierarchical referencethe volumetric and caloric properties. Unlike the cubic
theory (HRT) developed by Parola et 48-7] and the  crossover EOS developed previoughg], the GC EOS is
“globalized” renormalization-group (RG) procedure pro- hased on the crossover sine-model and can be analytically
posed by White et al[15-19] An advantage of the HRT  extended into the metastable region and reproduces the
[3-7] and “globalized” RG[15-19] models is that they  asymptotic scaling behavior of the isochoric heat capac-
require only few microscopic intermolecular potential pa- ity in the one- and two-phase regions. Then we apply the
rameters as input. However, they are rather complicated andGC EOS for the calculation of the thermal conductivity
require additional spline functions for the practical represen- of methane, ethane, and carbon dioxide with the crossover
tation of the thermodynamic surface of real fluids. Besides, decoupled-mode model developed by Kiselev and Kulikov
so far, first-principle theoretical mode8-7,15-19,23-27]  [30,32]
have been focused only on reproducing of the VLE and  we proceed as follows. IGection 2we develop a gen-
PVT surfaces, but not the singular behavior of the caloric eralized cubic EOS for pure fluids. I8ection 3we ap-
properties, such as the isochoric and isobaric heat capacitiesply this EOS for the thermodynamic properties in methane,
ethane, carbon dioxide, and water. The thermal conductivity
* Corresponding author. Tek:1 303 273 3190; fax:-1 303 273 3730.  calculations are presented $ection 4 and our results are
E-mail address: skiselev@mines.edu (S.B. Kiselev). summarized irSection 5

0378-3812/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
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2. Generalized cubic EOS

In this work, the Patel-Teja (PT) E(S6,37]
RT a(T)

v—>b v(w+b)+c(v—>b)

P=

1)

(whereP is the pressurey = 1/p is molar volume, andR

is the universal gas constant) has been chosen as a refe
ence cubic EOS for one-component fluids. The PT EOS is
a good choice for developing a GC EOS because by setting-

b = ¢ = 0 in the attractive term, it is transformed into the
vdW EOS. Withb # 0 andc = 0 it corresponds to the
Redlich—-Kwong—Soave (RKS) EQS8,39] and choosing

b = ¢ # 0 the PT is transformed into the Peng—Robinson
(PR) EOS[40]. In the original PT EO0336,37]

272
— Oc _
a(T) = $2a aa(T) = aoca(T),
Poc
R%Tyc RToc
b=y , c=0 ) 5
POC € POC ( )
where
aa(T) =1+c1(Tr — 1) + cz(\/Tr -1+ C3(Tr0'8 —1
3)

is a function of the dimensionless temperatilife= T/Tqc,
the coefficientss2,, 2p, 2c are functions of the critical
compressibilityZoc, and the classical critical parametdg,
Poc andvgc that can be found from the condition

P 32p
(5),-o (3F), -
ov Toe v Toe

Pocvoe
RToc

In order to develop a generalized—"global” crossover EOS,

which reproduces the ideal gas equation in the limit of low

densities, we will follow the crossover approach developed

by Kiselev[28]. Following this approach, we first represent

the dimensionless Helmholtz free enerdy= A(T, v)/RT

in the form

(4)

Wl

Zoc <

A(T, v) = AA(AT, Av) + Apg(T, v), (5)
where the critical part of the Helmholtz free energy
AA(AT, Av) = A™(AT, Av) — A™S(AT, 0)

—In(Av+ 1) + AvPy(AT), (6)
and the background contribution is given by
Abg(T, v) = —AvPo(T) + AF(T) + AU(D). (7)

In Egs. (5)-(7) AT = T/Toc — 1 and Av = v/vgc — 1
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temperature Topc and molar volumevg, respectively,
Po(T) = P(T, voo)voc/RT is the dimensionless pressure,
AFS(T) = A™X(T, voo) is the dimensionless residual part of
the Helmholtz energy along the critical isochare= woc,
and A'Y(7) is the dimensionless temperature-dependent
ideal-gas Helmholtz free energy.

In the next step, we replace the classical valueAdand

Av in the critical partAA(AT, Av) with the renormalized

values
I = TT_a/ZAl

P = (pT(V*25)/4A1 + 1+ gD)AUCT(Zia)/ZAl, (8)

wheree = 011, 8 =0325y =2—-28—«a = 1.24, and

A1 = 0.51 are universal non-classical critical exponents
[41,42), t = T/Tc — 1 is a dimensionless deviation of the
temperature from the real critical temperatiliggy = v/vc—

1 is a dimensionless deviation of the molar volume form
the real critical molar volumec, Ave = (vc — voc)/voc K

1 is a dimensionless shift of the critical volume, anfr,

@) denotes a crossover function. In this work, 6z, )

we use a simple phenomenological expression obtained by
Kiselev et al.[28,29,43]

q 2A1
T(g) = (m) ,

whereq = (r/Gi)¥/? is a renormalized distance to the criti-
cal point andr(z, ¢) is a parametric variable. The crossover
function T given byEg. (9)coincides with the correspond-
ing crossover function in the CR Leung-Giriffiths model ob-
tained in the first order of-expansion by Belyakov et al.
[44]. In our previous work28,43] the renormalized dis-
tanceq was found from a solution of the crossover linear
model (LM) [29]. In this study, following our recent work
[45] we find q from a solution of the crossover sine model

(SM)
(1 - qeri >]

2 T p?
(- 3|4

2 { @[l + vy exp(—10p)] + d1t

mgo Gi#

wheremy, v1, d1, andGi are the system-dependent param-
eters, while the universal parametg@fsandb? can be set
equal to the linear model (LM) parametel = bh? =
bEM = 1.359[35]. The crossover SM as given IBq. (10)
is physically equivalent to the crossover sine model devel-
oped earlier35,46,47] but with different empirical term
o vy exp(—10p). The coefficientv1, which is supposed to
be positive and small (& v1 <« 1), provides at the triple
point of liquids a physically obvious conditiolf = 1. In
the asymptotic critical and low-density regions this term is
negligibly small and the linear-model crossover equation for
the parametric variablg employed earlier by Kiselev et al.
[48-51]is recaptured fronkq. (10)when parametep? —

(9)

2
} T(1*25)/A17 (10)

are dimensionless distances from the classical critical 0. At p? # 0 and aty < 1, Eq. (10)is transformed into the
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symmetric trigonometric model developed by Fisher et al. practice, however, the number of the adjustable parameters
[52]. The difference between the trigonometric model de- is less. Since the real critical paramet@gs Pc, andZ; for
veloped by Fisher et aJ52] and the crossover SM as given a one-component fluids are usually known, the critical shift
by Eq. (10)in the asymptotic regimg — 0 is only in the Ave = ve/voe — 1 is known too. Thus using the conditions

definition of the order parameter. Toc = T¢ andPgc = P¢, one can reduce the number of ad-
Finally, the crossover expression for the Helmholtz free justable parameters to ten: the classical compressibility fac-
energy can be written in the form tor Zyc, the coefficients:; (i = 1-3), the Ginzburg number
_ _ _ Gi, the coefficientang, v1, di, and the critical amplitudes
A(T, v) = AA(T, ) — K(T, 9) — AvPo(T) axp andayi.
+ AR + Aig(D (11) In this work, we tested the GC EOS against experimen-
tal data for methane, ethane, carbon dioxide, and water. The
with the kernel term classical compressibility factafoc, the Ginzburg number
1 PR Gi, and the coefficients; (i = 1-3), mp, v1, anddi were
K(t, ¢) = 5a20t [T 74 (5, 9) — 1] found from a fit ofEqgs. (11)—(13)o experimental VLE- and
+ %azﬂz[r—(a—Al)/Al(f, @) —1], (12) PVT-data in one and two-phase regions, while the ampli-

tudesayg anday; for all substances have been found from a
where the coefficientazo andazi correspond to the asymp-  fit of the GC EOS to th€y-data along the critical isochore
totic and first Wegner-correction terms, respectively. Asymp- generated asymptotically closed to the critical poinT at
totically close to the critical point (af < 1, or|z| < Gi at T, with the parametric crossover model developed by Kise-
p = pc andlp| < Gif at T = T¢), the crossover function ey [49] for methane and ethane, by Kiselev and Kulikov
T o 21, and the critical parth A becomes a non-analytical [32] for carbon dioxide, and by Kiselev and Frieft] for

scaling function ofr andg, while far away from the criti-  water. The system-dependent parameters for the GC EOS
cal point (atg > 1, or | > Gi at p = pc and|g| > Gi’ for methane, ethane, carbon dioxide and water are listed in
atT = T¢) the crossover function™ — 1 andEq. (11)is Table 1 and comparisons of the predictions of the model
transformed into the classical Helmholtz free energy (5).  with experimental data are shown figs. 1-6
The GC EOS can be obtained by differentiatioqf (11) In Fig. 1we show a comparison of the GC EOS with ex-
with respect to volume perimental PVT and VLE data for methane and ethane, and
- for carbon dioxide and water iRig. 2 The filled squares in
P(v, T) = —RT (%) Fig. 2 indicate the VLE data generated for water with the
dv IAPWS-95 Formulatiorf55]. As one can see, the GC EOS
RT [ wvoc[[/dAA 0K - yields a very good representation of the thermodynamic sur-
= voc {_U_c [(W)T - (@)j + PO(D} : face of pure fluids in a wide range of state variables, includ-

(13) ing the critical region. In the region bounded bybg: <
p < 15p; andT; < T < 1.5T; an average absolute devia-
It is easily to show that in the GC EOS with the kernel tion (AAD) for pressure is less then 1%, andeat 2o the

term as given byeq. (12)the isochoric heat capacityy = GC EOS reproduces the liquid densities for all substances
—T(82A/8T2)p along the critical isochore = p. diverges with AAD of about 1-2%. For all substances in the tem-
att — 0 as perature region 87, < T < T, the GC EOS reproduces
Cy (1) T _— N the saturated pressure data with an AAD of about 0.5-1%,
7 = Aol A+ arlel™) + By (9) (14) the liquid density data with an AAD of about 1%, and the

vapor density with about 2—3%. For carbon dioxide and wa-
where A7, is the asymptotic amplitudes;” is the first  ter these AAD are approximately the same as in the CR PT
Wegner-correction ternjs3], and Bat(r) is a background  EOS developed earlier by Kiselg28] on the basis of the
contribution above-{) and bellow ¢) critical temperature.  linear-model (LM) EOS. Although the LM EOS has a the-
oretical foundation in the renormalization-group theory and
was confirmed in the second order @fxpansion and in
3. Thermodynamic properties high-temperature expansidi6], it cannot be analytically
extended deep into the metastable region. This in turn re-
For one-component fluids the GC EOS contains six clas- stricts its applications to interface modeling and makes VLE
sical system-dependent parameters, namely, the critical pa-calculations in fluid mixtures extremely unstahg9]. As

rametersloc, voe, Zoc, and coefficients; (i = 1-3). In addi- one can see frorhigs. 1 and 2the GC EOS, unlike the CR
tion to the classical parameters, the GC EOS also containsEOS based on the LM equation fit, can be extended into
the Ginzburg numbe@i, the critical shiftAvc, the coeffi- the metastable region and at temperatites 7. represents
cientsmy, v1, di, and the kernel term amplitudagy anday;. analytically connected van der Waals loops. The dashed lines

Thus, the crossover Helmholtz free energy for the GC EOS in Figs. 1 and 2represent the values calculated with de-
as given byEqg. (11)contains 13 adjustable parameters. In veloped recently the generalized corresponding state (GCS)
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Table 1
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System-dependent constants for the GC EOS

CHy

CzoHe

COo,

H>O

Classical critical parameters

Zoc
Toc (K)
poc (moll~1)

Critical shift
Ave

3.333333E-01
1.905640E-02
8.708152E-00

—1.39681E-01

Classical PT EOS parameters

C1
C2
C3

Crossover parameters

Gi
Mo
v1
dy
azo
agy

—1.783195E-01
—3.255994E-01
3.590565H-01

1.365464E-01
1.197025B-00
5.920748E-02
—4.087222E-01
1.590924B-01
4.779291E-00

3.290717E01
3.0532208-02
5.830862E8-00

—1.50037E-01

—7.735786E-00
—1.020609E-01
1.516193E-01

5.534679E02
1.145878E-00
3.008093E02
9.930443E01
1.631399E-01

3.333333E01
3.041282E8-02
8.7523638-00

—1.76237E-01

—8.329461E-01
—1.654726E-00
9.417602E01

6.399020E02
1.4444108-00
3.138710E02
2.6297538-00
1.585024E-01

3.030889E01
6.470960E-02
1.353034E-01

—2.44831E-01

5.896251E-00
2.767574800
—1.015037E-01

5.897337E02
1.4392078-00
2.988727E03
4.325967E-00
1.020517E-01

6.462911E01 —5.333093E-01 —5.252759E-00

model[45], which requires only the critical parametdrg

not used in optimization procedure, this is a good test of

Pc, oc, and the accentric factes as input. As one can see, the consistency of the GC EOS. The dotted-dashed curves

in the one-phase region &t > 0.67; and p < 1.9p. the

in Figs. 3 and 4represent the values calculated with the

GCS model reproduces the experimental PVT-data practi- CREOS-97[32,49,54] As one can see, in the asymptotic
cally with the same accuracy as the GC EOS. However, thecritical region the CREOS-97 yields a better representation
GCS model, unlike the GC EQS, does not contain the ker- of experimentalCp data than the GC EOS, which predicts
nel term and is unable to reproduce the correct asymptotic systematically lower values than ones calculated with the
behavior of the isochoric heat capacity in the critical region. CREOS-97. This is not surprising, because the parametric
In Figs. 3 and 4ve compare experimental values of the crossover model CREOS-97 was specially developed for
isobaric heat capacitie€p, with the values calculated with  reproducing of the thermodynamic surface of pure fluids and

the GC EOS. Since the data shownHigs. 3 and 4were

P, MPa

binary mixtures in the critical region with a high accuracy.
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Fig. 1. PpT data for methan§68-70] (left) and ethand71] (right) with predictions of the GC EOS (solid curves) and the GCS model (dashed curves).
The empty symbols correspond to the one-phase region and the filled symbols indicate the VLE data.
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Fig. 2. PpT data for carbon dioxid¢72,73] (left) and water{74—77] (right) with predictions of the GC EOS (solid curves) and the GCS model (dashed
curves). The empty symbols correspond to the one-phase region, and the filled symbols indicate the VLE data.

It is obvious that a simple cubic EOS, even in the crossover In Figs. 5 and 6ve show the isochoric heat capacity data
formulation, is unable to reproduce the heat capacity data inalong the critical isochore in the two- and one-phase regions
the critical region with the same accuracy. However, the big in comparison with the predictions of the GC EOS (solid
deviations of the GC EOS from the CREOS-97 are observedlines) and the CREOS-97 (dotted-dashed lines). As one can
only in the nearest vicinity to the critical point. Outside see, in the asymptotic critical region the predictions of the
the asymptotic critical region, the GC EOS describes the GC EOS qualitatively and quantitatively are in a good agree-
experimentalCp-data practically with the same accuracy ment with experimental data. There are two experimental
as the CREOS-97. Except for data-points very close to the Cy-data sets for ethane, which are inconsistent with each
critical point, for which deviations increase to 30—40%, the other in the value of the background contribution to @e

GC EOS reproduces the isobaric heat capacity data showrfar from the critical point, where the singular contributions
in Figs. 3 and 4vith AAD of about 2-5% in the low-density  to theCy are extremely sma[b7,58] As one can see from
region, and with AAD of about 1-2% for liquids. Fig. 5, the experimental data obtained by Shmalex,58]

methane ethane
1000 35000 WP 3000 (916 MPa
a — GCEOS — GCEOS
O Jones etal., 1963 A Furtado, 1973
® Kasteren et al., 1979 A Miyazaki et al., 1992
= CREOS-97 25001 0 |=- CREOS-97
. 800 7
2 15167 MPa
i 2000 :
g 600 :
= ‘
a !i5516 MPa 1500
i
© 400 ' )
1000 5514 MPa
£
200

=
e

e R

pa
034 N\ﬁjg wea

500

300 310 320 330 340
T, K

Fig. 3. The isobaric heat capacity data for meth@re 79] (left) and ethang80,81] (right) with predictions of the GC EOS (solid curves) and the

CREOS-97[49] (dashed curves).



154 SB. Kisdlev, J.F. Ely/Fluid Phase Equilibria 222—-223 (2004) 149-159
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'\: | —— CrREOS-97 8000 [ — ggEEc?ss-w
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¥ 500 ' .
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Fig. 4. The isobaric heat capacity dg&2] for carbon dioxide (left) and wateB3] (right) with predictions of the GC EOS (solid curves) and the
CREOS-97[49] (short dashed curves).

in this region lie systematically lower than experimental val- capacity in the one- and two-phase regions in ethane looks
ues reported by Abdulagatov et f37,58] The CREOS-97  rather impressive. For methane and water the GC EOS pre-
was optimized to the Shmakov's dq&v,58] therefore, a  dicts in the two-phase region systematically higher values
good agreement between calculated values and experimentabf Cy than experimental data. We need to note that unlike
data in the two- and one-phase regions is observed for thisthe CREOS-9732,49,54] where the reduced densityp =
model, while the GC EOS is in excellent agreement with ex- p/pc — 1 is used as the order parameterfgs. (10)—(12)
perimental data by Abdulagatov et f8.7,58] Since no ex- the reduced molar volume = v/v; — 1 has been chosen
perimental data shown iRig. 5have been used for the opti- as the order parameter. In this case, as it is discussed else-
mization of the GC EOS for ethane, this agreement betweenwhere[45,59] in the GC EOS the derivative)’ P/dT?),
experimental data and predicted values of the isochoric heatremains finite at the critical point and the divergenc&of

methane ethane
16 14 i
—— GCEOS ;| ——— GCEOS
------ — CREOS-97 '| ~=wem— CREO0S-97
14 o Anisimov et al., 1987 4 A Shmakov, 1973
A Voronov, 2002 1 2 4 o Abdulagatov et al., 1996
v, 12
X
© 10
-
>
O 8

o

T

c

I
180 1910 200 210 220 290 300 310 320
T, K T,K

Fig. 5. The isochoric heat capacity data along the critical isochore for mefB4r&5] (left) and ethand57,58] (right) with predictions of the GC EOS

(solid curves) and the CREOS-§49] (dashed curves). The empty symbols correspond to the one-phase region, and the filled symbols indicate the VLE
data.



SB. Kisglev, J.F. Ely/Fluid Phase Equilibria 222—-223 (2004) 149-159 155

CO, H,0
8 GC EOS 22 GC EOS
e crReos97 | | |l=—— CREOS-97
7 [ ) Abdulagatov et al., 1991 A Abdulagatov et. al., 2000

C, Jgtk?

[

% 2
280 300 320 340 360 640
T, K

Fig. 6. The isochoric heat capacity data along the critical isochore for carbon di@@fiéleft) and water{87] (right) with predictions of the GC EOS
(solid curves) and the CREOS-97 for €82] and HO [54] (dashed curves). The empty symbols correspond to the one-phase region, and the filled
symbols indicate the VLE data.

along the critical isochore related to the divergence of the |y Egs. (15)—(17)qp is a cutoff wave numbep; = ¢ (k1pé)
second derivative of the chemical potential with respect to s the dynamical scaling functiof83,34]

the temperature(d?u/dT2) 5.(—0) o T%. In spite of this , s ) .

difference in definition of the order parameters, the GC EOS b(2) = 3[1+2z°+ (z° —z ) tan *(2)] (18)
yields a sufficiently accurate representation of the isochoric 472(1+ 72)

and isobaric heat capacities in pure fluids that allows us to
use the GC EOS for thermal conductivity calculations in the
critical region.

calculated at the constant value of the wave nunihgr=
0.1¢gp, and the renormalized correlation length is given by
(33]

A 1 XT
4. Thermal conductivity § = Soz exp(— qD?;oz> ’ s0z.= é0\/ o (19)

In Eq. (19) &0z corresponds to the Onrstein—Zernike ap-
proximation for the correlation length, arfd and Iy are
the amplitudes of the asymptotic power laws for the corre-

In this work, for the calculation of the thermal conductiv-
ity in the critical region we use a crossover decoupled-mode
theory (DMT) model for the transport coefficients in pure ; ) o
fluids and fluid mixtures developed by Kiselev and Kulikov lation length arlozl r?‘}uceo' |sot_hermal compreg&bphiy:
[30,32] In the limit of pure components, the crossover ex- pT(0p/OP)7 Pepe "I, respectively. Asymptotically close

pression for the thermal conductivity takes the fB88,34] to the critical point (agpé > 1) the singular part of the ther-
mal conductivity is much larger than the background part

A= kBTp?‘” 202) + 2o (15) (y1> 1, y1p ~ 1), the crossover functiof2(2) approaches
6rrné unity, and the thermal conductivity along the critical iso-

chore atT’ > T diverges as. « r—"/2. Far away from the
critical point atqpé <« 1 the crossover functiof(z) — 0,
and the thermal conductivity becomes equal to its back-
ground partip.

In this work, following Kiselev and HubgB3] we repre-
z >] sent the shear viscosity and background pavt, as sums

—————tan — of two terms
1+ yipz 14 yipz

wherekg is the Boltzmann’s constani,the shear viscosity,

Ap is a background part of the thermal conductivity which
is an analytic function of the temperature and density. The
crossover function2(z) = .Q(qDé) is given by

2 1
2(z) = p [tan (2) —

(16) n(T, p) = no(T) + nex(T, p), (20)
with Ao(T, p) = *o(T) + ex(T. p), (21)
6mn? _ ksTpCp (17) where the subscripts “0” and “ex” denote the temperature-

D= , 1= = . . . .
ks Togp (¢p1 + yl‘l) Y 6mnElp dependent dilute gas contributions and the temperature and
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Fig. 7. The thermal conductivity data along the isochores for metf&@ie(symbols) with predictions of the G& DMT model (solid curves) and the
CREOS-97[33] (dashed curves). The dotted-dashed curves correspond to the background contributions calculated at the same isochores.

density dependent excess contributions, respectively. In this In Fig. 7, we show the GG+ DMT model predictions
work, for no(7), ro(D), nex(T, p), rex(T, p) and we use the  for the thermal conductivity along the near critical isochores
same correlations as described by Kiselev and H{®&f in methane compared with experimental data by Sakonidou
(see EQs. (48)—(54) in Re3]). For the parameteis and [60]. The dashed curves Fig. 7 represents the values cal-
dp for methane, ethane, and carbon dioxide we also adoptedculated with the asymptotic crossover model, CREOS-97,
the same values as employed earlier by Kiselev and Huberby Kiselev and Hubef33], and the dotted-dashed curves
[33] (see Table 1 in Ref33]), while for the calculation of  correspond to the background contributions calculated along
the thermodynamic properties lgs. (15)—(19)instead the  the same isochores withq. (21) As one can see, in agree-
CREOS-97 model employed in R483], we use here the  ment with experimental data both, the GEDMT and

GC EOS developed in this work. A comparison of the cal- CREOS-97 models yield an anomalous increase in the ther-
culated values of the thermal conductivity with experimen- mal conductivity in the critical region, while far away from
tal data for methane, ethane, and carbon dioxide is shownthe critical point they reduce to the background contribution

in Figs. 7-9 given byEq. (21) A comparison of the thermal conductivity
ethane CO,
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Fig. 8. The thermal conductivity data along the isotherms for etifighle

(symbols) with predictions of the G& DMT model (solid curves). The Fig. 9. The thermal conductivity data along the isotherms for carbon
dashed curves represent the values calculated at the first three isothermslioxide [62] with predictions of the GC+ DMT model (solid curves)

(T = 3054, 305.5, and 305.9K, respectively) with the CREOSE33)]. and the CREOS-9133] (dashed curves).
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data obtained along the near critical isotherms by Mostert the critical fluctuations into the equation of state, the more
[61] for ethane and by Michels et §62] for carbon diox- rigorous theoretical approaches should be considered.
ide with the predictions of the G& DMT and CREOS-97 A general approach for developing a generalized
[33] models is shown iffrigs. 8 and 9As mentioned above  crossover EOS, which in the critical region reproduces
(seeFigs. 3 and % asymptotically close to critical point theoretically well-established scaling laws, and in the limit
the GC EOS gives systematically lower values of the iso- of low densities is transformed into the ideal gas equation
baric heat capacity than the CREOS-97. As a consequencewas proposed by Kiselej28]. In our previous work45],
in this region the GG+ DMT model also predicts slightly ~ we used this approach for developing a generalized corre-
smaller values of the thermal conductivity than ones calcu- sponding states model (GCSM), which contains the critical
lated with the CREOS-97 modg3]. However, we notethat  point parameters and accentric factor as input, but repro-
the CREOS-97 is an asymptotic crossover model, which is duces the PVT- and VLE-surface and the surface tension
valid only for p > 0.25[33]. Since the CREOS-97 does not of one-component fluids (polar and non-polar) with high
reproduce the ideal gas limit, it may even give unphysical accuracy. However, since the kernel term in the GCSM was
behavior ap — 0. The GC+ DMT model not only qualita- set equal to zero, the singular behavior of the isochoric
tively, but also quantitatively reproduces the singular behav- heat capacity was not considered in Hé8]. In this work,
ior of the thermal conductivity of pure fluids in the critical using the Patel-Teja (PT) EOB6] as a reference EOS
region, and ap — 0 gives the dilute gas contributiop (7). for one-component fluids, we developed a generalized cu-
bic EOS for methane, ethane, carbon dioxide, and water.
The GC EOS contains 10 adjustable parameters and at
5. Conclusion T > T; and reproduces the pressures with an average abso-
lute deviation (AAD) less then 1%, and liquid densities at
The advantage of the van der Waals (vd83] and other p > 2pc with AAD of about 1-2%. In the temperature re-
cubic equations of stat¢é4] is that they contain a restricted gionT < Tg, the GC EOS reproduces the saturated pressure
number of the molecular parameters, which have a real phys-data with AAD of about 0.5-1%, the liquid density data
ical meaning and do not depend on the thermodynamic con-with AAD of about 1%, and the vapor density with about
ditions. However, it is well known that an accuracy of rep- 2-3%. Unlike the cubic crossover EOS developed before
resentation of the thermodynamic surface in real fluids with [28], the new sine-model based GC EOS can be analytically
these vdW-type analytical EOS is rather pure, especially extended into the metastable and unstable regions and is
in the critical region, where the thermodynamic properties capable of reproducing the asymptotic scaling behavior of
of fluids exhibit the non-analytic, singular behavior. An ex- the isochoric heat capacity in the one- and two-phase re-
ample of the empirical attempt to improve the representa- gions. This allowed us to develop a generalized- GOMT
tion of the VLE and PVT surface of one-component fluids model for the transport coefficients in pure fluids based
in the critical region with the simple cubic and non-cubic on the GC EOS and the decoupled-mode theory by Kise-
EOS was presented recently in R§85,66] The authors of  lev and Kulikov [30,32] Unlike the asymptotic crossover
this work, instead following a theoretically well-established model CREOS-97 developed earlier by Kiselev and Huber
procedure, try to achieve their goal by incorporating addi- [33], the GC+ DMT model is valid in the entire fluid state
tional empirical correction terms to a reference EOS. Of regionT > Ty, whereTy is the temperature along the bin-
course, incorporation of the additional terms will make the odal and ato — O reproduces the dilute gas contributions
resulted EOS more accurate, but certainly not physically for the transport coefficients.
self-consistent. As a consequence of the unphysical nature of We are not aware of any other empirically “improved”
the correction terms, its number becomes too big (nineteencubic or non-cubic EOS, which is able of reproducing
in Eq. (1) in Ref[66]), they are loosing their physical mean- the thermodynamic and transport properties of pure fluids
ing, and a rather complicated structure of the “improved” in and beyond the critical region with the same accuracy
EOS becomes its disadvantage over other short, but moreand physical self-consistency. Therefore, we consider the
accurate structure optimized empirical EQ]. Besides, results presented in this work as an additional proof of
even with additional empirical near-critical correction terms a general statement that improvements of the description
the “improved” EOS fails to reproduce the singular behav- of the critical region with a statistical fluid theory-based
ior of the isochoric heat capacity in the vicinity of the crit- EOS can be achieved not by adding empirical analytical
ical point. In the critical region fluids exhibit a universal and non-analytical terms in these equations, but rather ap-
singular behavior, which is determined by the interaction plying to them the more rigorous, renormalization group
of the enormously big fluctuations of the order parameter, theory-based methods.
or the density for one-component fluids. All analytical and

non-analytical terms introduced in Ref65,66] have noth- List of symbols
ing to do with the critical fluctuations and, therefore, cannot a temperature-dependent parameteEq (1)
result in the non-analytic singular behavior of the isochoric ay; system-dependent parameterdq. (12)(i =0, 1)

heat capacity in the critical region. In order to incorporate A Helmholtz free energy
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A dimensionless Helmholtz free energy Subscripts
Ao dimensionless ideal gas part of free energy bg, b background
AFs  dimensionless ideal residual part along the c critical
critical isochore ex excess
b temperature-independent parameteEm (1) 0z Onrstein—Zernike
by universal linear-model parameter k. (10) 0 classical
c temperature-independent parameteEq (1)
Ci system-dependent coefficientski. (3) Superscripts
(i =1-3) id ideal gas part
Cp isobaric heat capacity res residual
Cy isochoric heat capacity
ds system-dependent coefficientig. (10)
g inverse Ginzburg number Acknowledgements
Gi Ginzburg number
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