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Abstract

In this work, we propose a new optimization algorithm for the development of multiparameter crossover equations of state (MC EOS),
which incorporates the asymptotic scaling laws near the critical point. This algorithm is based on stepwise regression, which reduces th
intercorrelations among the functional terms in the equation and enables the incorporation of the universal crossover formulation into the
development of equations of state. The EOS developed is optimized in structure and gives correct prediction of caloric properties in the
immediate vicinity of the critical point. For the determination of the linear, analytical coefficients and the non-linear crossover parameters
in the crossover EOS for a given fluid, both linear and non-linear optimization procedures are used. By applying this algorithm we have
developed a wide-range crossover equation of state (EOS) for carbon dioxide in the form of dimensionless Helmholtz energy. The derivec
MC EOS contains only 26 functional terms, and gives excellent descriptions of experimental data over a wide-range of states. Compared t
the extremely accurate standard reference equation of state of Span and Wagner (SW EOS), the MC EOS yields a very good description
thermodynamic surfaces away from the critical point. In one-phase region, the MC EOS represents the experimental values of density witl
an average absolute deviation (AAD) of about 0.1%, and pressure with an AAD of about 0.3%. However, unlike the SW EOS, the MC EOS
reproduces the well-established scaling laws behavior in the asymptotic critical redien as.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction the development of EQOS structure optimization algorithms,
and has led to a series of new optimization algorithms in the
During the last two decades great progress has beenfollowing years. It was shown in later work that the structure
achieved in the development of highly accurate empiri- optimized equations have higher accuracy compared to the
cal multiparameter equations of state (EOS) for pure flu- equations developed with trial and error methods, and have
ids [1,2]. This became possible not only because of sig- drastically improved the numerical stability. This advantage
nificant improvements in thermodynamic measurment tech- clearly cannot be compensated for by simply increasing the
niques[3], but also because of the evolution of algorithms number of terms in the equati¢@.
for the optimization of the structure of multiparameter ther- Setzmann and Wagngf] proposed an algorithm, OPTIM,
modynamic equations of state. Wagpérin 1974 applieda  based on a combination of stepwise regression and the evo-
stepwise (STW) regression analysis for the development of lutionary optimization method (EOM) in 1948] and pub-
an equation for vapor pressure, and then de Rueck and Arm-ished its application to methane in 19¢d]. This newer
strong[5] adopted this method to develop a wide-range EOS algorithm is relatively easy to start, and enables one to find a
for propylene in 1979. Their work signaled the beginning of global optimum instead of a local optimum. Later, an algo-
rithm combining stepwise regression and simulated anneal-

* Corresponding author. Tel.: +1 303 273 3720; fax: +1 303 2733730.  INg (SA) was proposed by Shubert and Ely to develop refer-
E-mail addressjely@mines.edu (J.F. Ely). ence equations of state for R134a and R12311] However,
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these linear regression algorithms could not directly use iso- a highly accurate, while relatively compact multiparameter
baric heat capacity and speed of sound data, because o€rossover equation of state (MC EOS) for carbon dioxide.
their non-linearity respect to the adjustable parameters. Any We proceed as follows. In Sectid?) we consider the
“linearization” of these thermodynamic properties leads to theoretical background for the crossover procedure of incor-
potential loss of important experimental information. Opti- porating the scaling laws into a classical equation of state. In
mization procedures based on the combination of linear andSection3, we describe the GSTW algorithm for developing
non-linear regression analysis, aimed to extend the regres-of a wide-range multiparameter crossover equation of state.
sion to the non-linear properties, were proposed by Ahrendts The new MC EQOS for carbon dioxide and its comparison with
and Baehi12,13] Recently, Tegeler et a]14] proposed a  the state-of-the-art EOS of Span and Waddéi are given
non-linear optimization algorithm based on the OPTIM algo- in Sectiond. Our conclusions are summarized in Secton
rithm, and used a non-linear quality criterion for all relevant
decisions. The algorithm is only a quasi-non-linear algorithm
since it still depends on linear selection as the starting point. 2. Crossover Helmholtz energy model
Using these algorithms, highly accurate reference equations
of state for substances such as meth@hecarbon dioxide Traditionally, engineering equations of state express the
[15], water[16], argon[14], nitrogen[17] and ethyleng18] pressure in terms of the temperature and density. There
have been developed in the last decade. In addition, a largeare, however, functionalities in this pressure explicit form,
number of the moderately accurate, engineering quality, ref- which cannot be integrated analytically to obtain the desired
erence EOS has also been developed (for reviews see Refgshermodynamic properties. Because of this, modern multi-
[1,2,19). parameter equations of state are represented in terms of the
In spite of the advances made in equation of state method-Helmholtz energyt as a function of temperature and density.
ology, the resulting multiparameter equations are typically Using this formulation, all thermodynamic properties can
complicated in their structures; there are usually betweenbe represented by appropriate derivatives of the Helmholtz
30 and 60 functional terms present in these equations. Morefunction.The dimensionless Helmholtz enefs, t) = A(p,
importantly, these analytical—classical equations in principle T)/RT can be described as a linear combination of the ideal
cannot reproduce the non-analytical, singular behavior of the gas,@'9(s, t), and residual@' (s, t) contributions:
thermodynamic surface of pure fluids in the critical region. id ; ;
To overcome this shortcoming, some non-analytical terms ®(8, 1) = ®7(8, 1) + ®(3, 1) = Po(r) + In(3) + P7(5, 1)
have been added into recent state-of-the-art [FIBSL6] to (1)
improve the prediction of the isochoric heat capacity and
speed of sound data in the critical region. Even though the whereA(p, T) isthe Helmholtz energy as a function of density,
modified state-of-the-art EOS describe all measured proper-p, and temperaturd, Rthe gas constant, the reduced density
ties in the critical regioffi2,3], they still do not reproduce the ~ and temperature age= p/pc andt="Tc/T, respectively, and
theoretically well-established asymptotic scaling laws in this @o(t) is the temperature dependent part of the ideal-gas con-
region[20,21] Moreover, they give incorrect behavior of the  tribution. The ideal part of Helmholtz energy is determined
specific heat and the speed of sound in the one-phase regioffom experimental or theoretical knowledge of the ideal gas
and along the coexistence curve in the immediate vicinity of heat capacity. The empirical residual part of the Helmholtz
the critical poin{15,22] This behavior occurs strictly outside ~ energy is usually expressed as a linear combination of dimen-
the range of available experimental data, but these shortcom-sionless density and temperature terms (so-called “functional
ings make the state-of-the-art EOS less attractive as scientifierms”) as shown in Eq2):
formulations for which they were developed. My M
A general procedure for transforming any classical equa- 4r _ im 4jm im 4 jm sk
tion gf state Fi)nto a crossover EOS, which reproduces thecI> 6.0 = Zam(S o Z and™ 1" EXpEn )

scaling laws in the asymptotic critical region and is trans- =t =M

formed into the original classical EOS far away from the Ms o 5
critical point, was proposed by Kisel¢®23]. The procedure + Z a8t expl-am (8 — €m)

is based on renormalization-group theory and has been suc- m=Mp+1

cessfully applied to the cubi@3-25] SAFT [26—29] and — Bt = vm)?] )

semi-empirical square-well EQS0]. A restricted revision

of the state-of-the-art EOS for water was also proposed by whereay, are the coefficients for each terii, jm andkmy
Kiselev and Friend22]. In this paper, we incorporate Kise- exponents ott, § and exponentiad terms, respectivelyym,
lev’s renormalization proceduf23] into the STW regression  Sm, €m andy, the parameters arid1, M2 andM3 are the
algorithm, thereby producing a structure-optimized equation numbers of different type of terms. As can be seen from
that has a crossover form. We refer to this procedure asthis equation, there are three types of terms—polynomial,
the generalized stepwise regression (GSTW). In this work, exponential and Gaussian, vi& = &} + ‘I’Exp + Pe

we have applied the GSTW regression algorithm to develop Expressions for the thermodynamic properties interms of Eq.
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(2) are given in Table A.1 ilAppendix Aand the required

derivatives for the polynomial, exponential and Gaussian

terms are given in Tables A.2 and A.3Appendix A The
parameterdli, M2, M3, im, jm andky, for an analytical EOS

result from the STW structure optimization, and the coeffi-

cientsay, in Eq.(2) for the residual part of the dimensionless
Helmholtz energyl) result from a linear, or non-linear, fit to
experimental data. The critical paramet&&ndoc, and the
compressibility factoZ. = P¢/ ocR T of the Helmholtz model
can be found from the conditions:

oD 920 0
=\w) ). ="
T=T¢ T=T¢

REL)
(W)T:Tc =0 ®)

which are usually used as the critical-point constraints in the

optimization algorithm.
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of state, the critical parameters can always be set equal to the
experimental values, E¢{) does not contain the critical shift
terms introduced by Kiselev et al. for simpler cubic equations
[23—-25] This simplification makes the crossover functién
formally independent of the analytical residual paftand
allows us to use the linear regression for the optimization of
P

In order to complete transformation, one needs to add in
Eq. (4) the so-called kernel term:

©)

which provides the correct scaling behavior of the specific
isochoric heat capacity along the critical isochore asymptot-
ically close to the critical point. The crossover functibin
Egs.(7) and(9) can be written in parametric forf80]:

1
K(z) = Sagor*(y~/49 — 1)

(10)

Az
. q
@)= [1+ @A+ q»}

A general procedure based on the fundamental results of _ -
the renormalization-group theory for transforming any clas- where the parametric variakigs related to the order param-
sical equation of state into the crossover form was developedéetern and the dimensionless temperatarghough equation

by Kiselev[23]. Following this procedure, one needs first
to rewrite the classical expression H@) for the reduced
Helmholtz energy in the form:

P8, 1) = A®(n, ) — npo(t) + Po(t) + Po(r) 4)

where the critical, or singular part of the Helmholtz energy,

A®(n, 1), is a function of the order parameige= §1 — 1 =
pc/p — 1 and the dimensionless temperature deviatiea
7 —1=T/Tc — 1. po(t) = p(T. pc)/pcRT and @4(r) =

®"(1, 1) = A"(pc, T)/RT are the dimensionless pressure and
residual part of the Helmholtz energy along the critical

isochore, p = pc. The critical part of the dimensionless
Helmholtz energy can be derived from E{k) and(4) as:

A®(n, 7) = @'(n, ) — Pp(r) — In(n + 1)+ npo(zr)  (5)
thereby satisfying the critical point conditiofl]:
0AD
AdP(n=0,7=0)=0, (—) =0,
an 7=0,7=0
PAD
() e
m* /J,=0,r=0

Secondly, one needs to replacandy in the critical part of
the classical Helmholtz energy@(n,t), by the renormalized
values[32]:

T = gy (@/241) n= ny—(y—zﬁ)/4A1 (7)
where

a=0.110 B=0325 y=2—a—28=124
A1 =051 (8)

are the universal critical exponents and a crossover func-

tion to be specified below. Since in multiparameter equations Afexs ~ +Bol 7|’ (1+ Bilt|

[30]:

# a3 ()

2

_ [n+ vin® exp(=81n) + dit(1 — 1) ¥ (g)1-28)/A1

= = (@)
moGi

(11)

where Gi is the Ginzburg number of fluid of interest,
b?=1.359 a universal linear-model parameter, the parame-
ter§y, =8.5[24], andny, d1 andvs are the system-dependent
parameters. E11) must be solved at every thermodynamic
state point since the model is continuous and smooth over
the entire surface. Finally, the crossover expression for the
Helmholtz energy can be rewritten in the form:

(5, 1) = D98, 1) + D'(8, 1) = In(S) + Po(t) + ' (S, 1)

12)
where the renormalized residual part is given by:
P'(3. 1) = '(n, 7) — D7) + D7) + npo(7)
—npo(t) —In(h+ 1) +In(n + 1) - K(z)  (13)

Eqgs.(7)+13)completely determine the crossover Helmholtz
energy for an arbitrary classical formulatié(s, t). Asymp-
totically close to the critical poin <« 1 (or |t] < Gi at the
coexistence curve and along the critical isochereo) the
crossover functioi (¢) &~ ¢41, the renormalized parameters
T .L.q—(a/Z) (or T~ (2-a)/2 at p=pc) andn = nq(l’_4ﬁ)/4

(or |7] = |n|@ 9/ at T=T.) and the residual Helmholtz
function®'(s, ) becomes a non-analytic functionoénds,
which after differentiation reproduces the theoretical scaling
laws for the coexistence cury20,21}

) (14)
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from the bank of terms final EOS?
A4 T
Optimize the structure of Nonlinear Regression to
4 Equation through Step 6 | find the crossover
Wise Regression parameters
Applying the

i
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Fig. 1. Flowchart of the GSTW algorithm to develop multiparameter crossover equation of state.

where signs+’ correspond to the liquid (+) and vapor] parametersny, vy anddj in Eq. (11). All these parameters
phases, respectively. For the isothermal compressibility andand the final structure of the crossover Helmholtz energy can
the isochoric heat capacity we find: be found from the GSTW optimization algorithm shown in
Fig. 1
7= }(8_9) ~ poi|f|—y(1+ el (15) According to.this .algorithm, we first ggngrate the weight
p\dp/r for each data point with aknown EOS, whichis used as a start-

ing input EOS for regression. We then build the regression
Cy = T(ﬁ) ~ AT 7L + Aqlt]*1) + Co (16) matrix pased onthe Ii.near least squares regre;sion methoq, by
or / , converting the experimental data sets to their corresponding
formsin the Helmholtz model with all the potential functional
terms included into the term-bank. In the third step, we set the
Ginzburg numbeGi=0 in Eq.(11), which is equivalent the
condition®" = @" in Eq. (12), and use the STW regression

where superscripts’ in Eqgs. (15) and (16) correspond
to the supercritical T>T¢) and subcritical T<T) tem-
perature regions, respectively. Far away from the critical

pointq_>> 1.(or |T| > Gi at the coexistence cur_ve and along procedure proposed by de Reuck and Armstri&ido opti-
the critical |sqchore) = pc) the crossover functiol(q) =1, mize the structure of the classical Helmholtz free-energy and
the renormalized temperature and order parameter tend tQq inear coefficientam and exponentsy, jm andke in Eq
their classical values — 7 and 7 — », and the renor- 1y e critical constraints) are added into the STW by the
malized residual part is transformed into its classical ana- method of Lagrangian multiplief83] to ensure the resulting

r r H H
log #'(8,7) — @'(4, ), and all thermodynamic properties  £ng hagthe correct critical parameters. In these steps, we use
exhibit an analytical-classical behavior as determined by Eq. only linear dataPT, Cy(p, T), (3p/dp)T, Second virial coef-
(2). ficient and the coexistence curve) where the coexistence data

Since Eq(12)is a fundamental thermodynamic equation, \yere included into the STW regression through the Maxwell
all thermodynamic properties can be directly calculated from rules:

it by differentiation. The differential property relationships » A
and the required derivatives d@f (8, r) with respect t& and = =145 DL, 7) a7

t are given in Tables A.4 and A.5 ilsppendix A PLRT
pS ar
——— =148y Py(s 18
WRT + Sv@s(dv, 7) (18)
3. Optimization algorithm 1 1 - .
L (— - —) ~In (&) = (50 7) — B(ov. 1)
. RT \pv pL oV
The multiparameter crossover Helmholtz energy model (19)
defined by Eqs(12)and(13) contains the following system-
dependent parameters: classical parameggig, jm, Km, ¢m, After the structure and coefficients of the classical

Bm, emandym in Eq.(1), the amplitudeyg of the kernel term Helmholtz function were initially optimized, we found the
K(z) in Eq. (9), the Ginzburg numbeGi and the crossover  Ginzburg numbefGi, the amplitudeayg in the kernel term,
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and the crossover parameteng, v1 andd; in Eq. (11) from data type taken from different sources must be used. The final

a non-linear regression analysis (NRA). For this purpose, we expression for the total weight of a single data-point is given

used the algorithm proposed by Levenberg and Marquardtby:

[13]. In the NRA, in addition to the linear experimental data

mentioned above, we also use the non-line@, T), Cy(T, W, = i; = fi (21)

p), w(T, p) experimental data, as well as tlg(p, T) data of, 02 + i1 ((9yn/dxk)0,)?

generated in the asymptotic critical region for £@ith the

CREOS-97 progran34]. After the NRA procedure, using ~ WhereW, is the weight applied to a given data pomto?

the fixed values of the non-linear crossover parame®érs  the variance of that data point afys a relative weight of the

ago, My andd; we repeat the STW regression for the opti- Selected data type given with respect to different data sources

mization of the structure of the crossover EOS and linear whichis applied uniformly to all data points from the selected

coefficientsan,. If the resulting structure-optimized crossover data source. For determination of the optimal valuefs \we

EOS satisfies the defined statistical criteria, the optimiza- used the simplex method proposed by Nelder and Nié&id

tion is terminated; otherwise another cycle of the NRA with

the following STW regression is repeated till the statisti-

cal criteria are fully satisfied. In every optimization cycle, 4. Results and discussion

each term in the crossover EOS is tested for its statistical

significance and intercorrelations; the least significant or sta-  Inthis work, we have chosen carbon dioxide as an example

tistically irrelevant terms are deleted or replaced by other to demonstrate the utility of the proposed GSTW algorithm.

more representative terms selected from the term-bank. InCarbon dioxide is one of the most commonly used solvents

addition to the polynomial and exponential terms shown in in supercritical extraction because its critical point temper-

Eq.(2), the term-bank also includes specially designed Guas- ature is close to normal atmospheric temperature. The low

sian terms. These terms were added into the term-bank tocritical temperature of carbon dioxide makes it possible for

improve the representation of different thermodynamic prop- various chemical processes to be carried out in the critical

erties along the saturation curve, as discussed by Span andr extended critical region. This in turn requires accurate

Wagner[15]. Because of the crossover formulation of the thermodynamic descriptions in the region around the criti-

GSTW algorithm, the non-analytical functional terms intro- cal point. Since the Cgxritical point is easily reached in the

duced by Span and WagnEr5] were not included in the  laboratory, extensive experimental measurements have been

term-bank. For carbon dioxide, which was chosen in this made in the critical region for carbon dioxide and the data sit-

paper as an example, the term-bank contains 169 functionaluation is exceptionally good. From this point of view, carbon

terms, a bank that is much smaller than that used in the Spardioxide serves as a reference substance for theoretical stud-

and Wagnefl15] algorithm. However, as we will show below, ies dealing with the critical region of pure fluids. Span and

even with this restricted term-bank the GSTW algorithm Wagner have published an international standard reference

allows us to develop a more compact and more physically EOS for carbon dioxide in 19985]; therefore, we can also

correct (in the critical region) EOS than the state-of-the-art compare our results to this international standard equation.

EOS developed by Span and Wagfies]. It is important to note that our objective in this study is not
An essential part of the GSTW regression algorithm to replace the current international standard; rather we are

described above is a calculation of the statistical weights for trying to develop a more compact, yet accurate equation of

the experimental data-points, which are used in the optimiza- state that is also valid in the critical region.

tion procedure. The overall combination of the optimized The selected experimental data set cont&p3, sec-

weights and careful selection of data points used in the regres-ond virial coefficient, isochoric heat capacity and speed of

sion determine the optimal EOS to be developed with the sound data. Speed of sound data were included into the linear

GSTW algorithm. In order to eliminate the random scatter in regression procedure only through their corresponding linear

terms of the dependent experimental varialjleve use here  forms @P/3p)t. In addition, data have been calculated from

the Guassian error prorogation formula in the form auxiliary equations (independent correlations of saturation
2 properties) in order to be able to apply the Maxwell condi-
5 5 K v tions for vapor—liquid equilibrium (VLE) boundary (e.g., so
Oy, =0y, T P <3_xk"xk) (20) that we have both saturated densities and the vapor pressure at

a given temperature). Span and Wagfi&] give complete
wheredy, /dx; has the effect of transferring the random scat- lists and critical evaluations of experimental data available
terinthe independent variabtgto the dependent variabyg. for carbon dioxide; thus, for more information, the reader
For the calculation oy, /dx; an EOS obtained in the previ- is referred to that paper. The critical point parameters used
ous step, or any other accurate EOS developed previously cann this work for carbon dioxide were identical to those used
be used. The varianor;?kis estimated from the experimen- by Span and Wagner, viZlg = 304.1282 KP. =7.3773 MPa

tal uncertainties associated with the property measurementsand p. = 467.6 kg/ni. The universal gas constant was taken
For multi-property regression, relative weighting for a given to be 8.31451 J/mol K.
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A 26-term, structure optimized multiparameter crossover

Table 1
Coefficients and exponents of the MCEOS equation of state (MC EOS) has been developed using the
m am im  jm km om  Bm  ym  €m GSTW algorithm. The structure of MC EOS is given by:
1 0.38161073x% 10° 1 0 D5, 1) = (5, 1) + DS, 1 29
2  -0.33628078% 10! 1 2 (6.1) 6.1) (6.1) (22)
3 0.20082931% 10" 1 25
4  0.45429873%10°' 2 -5 7 o 21 o
5 0.22813335%10° 2 3 (S, 1) =Y aw&mtin+ )" a, 8™ exp(s)
6 0119698464101 4 0 i P
7 0.35910987&10* 8 O
8 -0.222364636<10° 1 4 1 26 o ) )
9 -019323791%10° 2 5 1 + ) apsmein e omCmEm =l (23)
10 -0.82328816%10° 4 3 1 =22
11  0.64631423& 101 4 5 1
_ 1 . . . .
g _8';252332; igl i g ; The ideal part of the dimensionless Helmholtz energy is
14  _058841313%10-1 2 5 2 taken from Span and Wagner's wdd&]. The values of the
15  0.52187098& 104 12 3 2 exponents and coefficients in Eg3)are given inTable 1 In
16 0.51923147% 10° 4 25 1 addition, the MC EOS also contains five crossover parame-
17 —0.20659051% (}J(rl 3 16 3 ters, which are listed ifiable 2 In Table 3 we give the overall
ig 23-5153%]%2718;3]; 1o g 2421 j statistical comparison between the MC EOS and the state-of-
20 0246391224 101 6 16 4 the-art EOS by Span and Wag&¥]. [?etalled comparisons
21 0111040145101 7 24 4 of the MC EOS and the SW E($5] with experimental data
22 -0.73095293% 10°% 2 1 25.62 3242 1.03 1 can be found in Refl36]; here, we show only comparisons
24 —0.1338819341 2 1 24.94 3326 118 1 The deviations between the experimental saturation prop-
25 —0.80150539% 10° 3 3 16.74 308.9 1.23 1 . dth di | lculated f
26 0.81327990% 10P 3 3 1675 3091 123 1 erties and the corresponding values calculate rorj(B).
by using the phase equilibrium condition are essentially iden-
tical to those obtained with the SW EQ$5]. Vapor pres-
;ab'te 2 denendent e of the MC EOS sure data are represented to withifl.01%. Saturated liquid
yslem-cependent crossover parameters of the and vapor densities are represented witti®.02% up to
Parameter Value ~303.6 K (T, =0.998). Approaching the critical point from
a0 0.1715145¢ 1¢° this value, deviations in density increase for both the SW and
1Gi 0.2237161x 10° MC EOS, but these deviations are still within the experimen-
d —0.1759147 tal uncertaint
v 0.1204884 _ Y- .
Mo 0.7012238 ngh.quallt_y PoT dat_a sets for carbon dioxid87-40]
bo 1.0 are available in the region with pressures up to 13 MPa and
temperatures up to 360 kigs. 2 and Fhow that the rep-
Table 3
Statistical comparison between the MC EOS and Span and Wagner's EOS
Property Number of data MC EOS, % Span and Wagner, %
AAD? BIASP RMS® AAD BIAS RMS
P(T)¢ 88 0.001 0.000 0.002 0.012 —0.004 0.012
oL(T) 88 0.003 —.002 0.006 0.005 —0.004 0.005
ov(T)¢ 88 0.006 0.001 0.013 0.014 —0.007 0.018
B(T) 32 0.375 0.212 0.492 0.491 —0.089 0.552
o, T 3901 0.103 -.023 0.328 0.069 -0.019 0.266
P(p, T) 3901 0.335 0.059 3.079 0.278 0.072 3.059
Cv(T, p) 751 3.864 -1.67 4.903 3.360 —0.668 4.418
Cu(T) 77 0.513 0.002 0.842 0.556 —-0.109 0.891
Co(T, p)© 359 1.571 —.348 3.154 1.356 —0.029 2.749
W(T, p)f 406 0.590 0.120 1.180 0.460 -0.070 0.860
Wy(T)f 41 0.840 0.270 1.370 0.680 0.190 1.210

2 AAD: average absolute deviation.

b BIAS: average deviation.

¢ RMS: reduced mean square.

d Calculated from auxiliary equations in Span and Wagner's ik
€ Used only in non-linear fit.

f Linearized data used in linear regression.
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the reference SW are plotted as comparison (upward triangles).

resentations of these data by the MC EOS and SW EOS
are within their experimental uncertainties. In the extended
region where pressures are up to 30 MPa and temperatures
are up to 523K[41,42] the representation of the data by
MC EOS is similar to SW EOS except in the region of
337K<T=<344K, as shown irrig. 4. However, the maxi-
mum observed deviation is less th&0.15% in density.

The deviations between values of the specific isobaric heat
capacity calculated from the MC EOS and reliable measure-
ments ofC, [43—-46]are given inFig. 5 The comparison of
these data in the gas phase and supercritical regions shows
the MC EOS predicts the isobaric heat capacity to within
+0.15%, slightly higher than the experimental uncertainty.
Except in the regiom =363K andP>10 MPa, the predic-
tions of the MC EOS agree well with those of the SW EOS.
As mentioned in the previous section, the caloric behavior
of MC EOS is not based on isobaric heat capacity since it
is difficult to linearize and include in the linear-least squares
regression. The SW EOS is, however, based on precise iso-
baric heat capacity and speed of sound data. Despite this
difference, the MC EOS produces the same accuracy as the
SW EOS does for the selected data. Deviations of the spe-
cific isochoric heat capacity in gas and liquid phggé548]
are presented iRig. 6. As one can see frorig. 6, the MC
EOS shows accuracy similar to the SW EOS along different

Fig. 3. Relative deviation of accurate data in extended critical region from isochoric curves. As Span and Wagner have pointed out, the
values calculated from the MC EOS (solid diamonds). Values calculated |arge deviations seen in the gas phase are probably due to the

from the reference SW are plotted as comparison (upward triangles).

uncertainty in the data. At high densities, the data by Magee
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Fig. 5. Relative deviation of selected isobaric heat capacity data from values calculated from the MC EOS (solid diamonds). Values calculatexidrenci
SW are plotted as comparison (upward triangles).

and Ely[47] are considered as the most reliable results in the as the SW EOS. Prior to this work, the SW EOS was the only
liquid state and the MC EOS predicts these data well. EOS, which was capable of reproducing the measurements
The representation of speed of sound data is a sensitiveat 373 K. Not shown in this figure are comparisons with the
test of the quality of an EOS for carbon dioxide, especially in newer data of Trusler and Estrada-Alexandb6§ that were
the supercritical region and the high-pressure regibis.7 not available in the development of the SW EOS and were
illustrates the representation of speed of sound data on twonot used in the development of the MC EOS. Comparisons
representative isotherms from the data set of Novikov and to these data with the MC EOS show an AAD of 0.1% with
Trelin [49]. The MC EOS gives almost identical predictions an RMS deviation of 0.11% for the 61 data points reported.
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Fig. 6. Relative deviation of selected isochoric heat capacity data from values calculated from the MC EOS (solid diamonds). Values calculaed from t
reference SW are plotted as comparison (upward triangles).
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. . . T/T
In order to detail the representation of thermodynamic ¢

properties in the immediate vicinity of the critical point with - rig 9. The isochoric heat capacity of carbon dioxide along the critical iso-
the MC and SW EOS, values calculated from a theoretically chores as a function of reduced density. The solid curve represents values
based crossover model (CREOS$34] are included in our calculated from the crossover model, the dashed curve corresponds to values
comparisons. These data are needed due to the lack of eXpe|4r;alculated from the MC EOS, and the dotted-dgshed curve indicates values
. - L from the SW EOS. The circles represent experimental values by Abdulaga-
imental measurements asymptotically close to the critical ov etal [51],

point. Comparisons between the MC EOS and SW EOS for

the isochoric heat capacity and speed of sound along the near-

critical isotherm versus reduced density are showkign 8. close to the critical point (down to dimensionless temperature
As is seen in this figure the SW EOS is unable to describe departurer =107 ). However, the MC EOS predicts asymp-
the divergence of the specific isochoric heat capacity and thetotic behavior similarto CREOQS97. In the regions away from
speed of sound along the isothermal curve asymptotically the critical point, all three equations agree in their predictions.

Critical Isotherm T = 304.12821 K
400 200
------ MC EOS
== SW EOS
—— CREOS97

300

200

C,( mol" K™
Speed of Sound (ms™")

100

0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 11 1.2
Phe plpe

Fig. 8. The isochoric heat capacity and speed of sound of carbon dioxide along near-critical isotherms as a function of reduced density. The solid curv
represents values calculated from the crossover model, the dashed curve corresponds to values from the MC EOS, and the dotted-dashed satueindicates

from the SW EOS.
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not available when SW EOS and CREOS97 were developed.
Therefore, the MC EOS follows the data trend of these exper-
imental measurements while the other two models do not.

In Fig. 11 the asymptotic behavior of speed of sound
in the vicinity of the critical point is shown. The MC EOS
gives the same asymptotic behavior (infinitely small) of the
speed of sound as CREOS97, while SW EOS shows some
deviations asymptotically close to the critical point. The
departure of MC EOS from CREOS97 and SW EOS away
from the critical point can also be explained by the addi-
tion of experimental measurements by Abdulagatov et al.
[51] that were not available when the first two EOS models
were fit.

isochore as a function of reduced density. The solid curve represents values5, Conclusions
calculated from the crossover model, the dashed curve corresponds to values

calculated from the MC EOS, and the dotted-dashed curve indicates values
from SW EOS. The circles represent experimental values by Abdulagatov

etal.[51].

Empirical multiparameter equations of state obtained from
experimental data sets by the means of linear or non-linear
regression allow accurate description for the thermodynamic
properties over a wide-range of states. However, these equa-

We also have compared the MC EOS and SW EOS alongtions cannot predict the correct asymptotic behavior in the

the critical isochore below and above the critical point with vicinity of the critical point. Therefore, non-analytical terms
the results being shown igs. 9 and 10Clearly, the three  need to be added to the EOS during the regression to over-
equations give identical results along the critical isochore come this shortcoming_ Several examp|es of this type of EOS
below the critical pOint. However, the situation is different have a|ready been deve|0ped for carbon dioxide, nitrogen and
when comparisons are made along the critical isochore aboveyater, etc. Even though these equations improve the descrip-
the critical point as shown in the right half Bfgs. 9 and 10 tjon of the thermal and caloric properties close to the critical
Asymptotically close to the critical point (in the region point, they fail to describe the asymptotic behaviors for the
1.0005=< T/T¢ < 1.003), the MC EOS and CREOS97 give the - specific isochoric heat capacity in the immediate vicinity of
same behavior for the isochoric heat capacity while the SW the critical point. Furthermore, the non-analytical terms used

EOS does not follow the trend. Away from the critical point, are usually substance specific and cannot be transferred to
the SW EOS rejoins the CREOS97 curve but the MC EOS other fluid systems directly, i.e., the parameters used (includ-

shows some departure. The experimental measurements byhg the exponents) have to be redefined.
Abdulagatov eta[51] showninFigs. 9 and 1@vere included Incorporation of the crossover formulation into the equa-
during the development of the MC EOS, however, they were tjon of state gives an accurate description of the asymptotic
behavior in the immediate vicinity of the critical point. Since
the crossover formulation obeys universal scaling laws, it is
applicable to different fluid systems. In the previous work of
Kiselev and Friend22], it has been shown that the crossover
EOS improves the description in the critical region while
retaining the same accuracy in regions away from the critical
point. Once given the appropriate crossover parameters, the
e crossover EOS could be easily applied to different systems
with high accuracy.
The selection and optimization algorithm proposed in this

175
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o
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Sound Velocity m s-1
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1.000

1.001
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1.003

paper enables the incorporation of the crossover formulation
into a multiparameter equation of state. Because of the cor-
rect behavior given by the crossover part and the optimized
weights for the experimental data points, the intercorrela-
tions in the terms in the EOS are reduced and it is possible
to develop a compact but accurate crossover EOS from an

Fig. 11. The speed of sound of carbon dioxide along the critical isochore as optimization procedure based on stepwise regression.

a function of reduced density. The solid curve represents values calculated
from the crossover model, the dashed curve corresponds to values calculate(%h
from MC EOS, and the dotted-dashed curve indicates values calculated from

SW EOS.

A MC EOS for carbon dioxide was developed by applying
e proposed algorithm. There were only 26 terms in the MC
EOS, more compact than the reference EOS by Span and
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Wagner15]. In a wide-range of states away from the critical
point, the MC EOS shows agreement with the reference EOS«
for the description of thermodynamic properties. However, B
in the immediate vicinity of the critical point, the advantages §
of the crossover EOS are clear, especially in its description y
of the caloric properties. e

The goal of this work was not to develop a new state- o

of-the-art EOS for the thermodynamic surface for carbon ug

dioxide; rather it was focused on the development of opti-
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Greek letters

critical exponent

critical exponent

dimensionless density

critical exponent, exponent of equation of state
exponent of equation of state

saturation

analytical function of temperature
dimensionless temperature difference

mization algorithm with a crossover formulation included. p density
We realize that the difference between the MC EOS and @ dimensionless Helmholtz energy
SP EOS appears only extremely close to the critical point A difference

(0<|7r| <104 where no experimental data are available. A;
Out of this critical region (atz| >10~%), both equations are 5
practically equivalent. Therefore, for practical engineering A®
calculations one can use either of these two equations. Fur-@"
ther research will be carried out on the application of the new
algorithm proposed in this paper to other fluids of engineering Superscripts

critical exponent

order parameter

critical part of dimensionless Helmholtz energy
crossover form of the residual Helmholtz energy

interest. id ideal gas part
r residual part
List of symbols Subscripts
am coefficients of the crossover equation of state 0 reference state
azo coefficient of the kernel term c critical
Helmholtz energy per mole L liquid
specific isobaric heat capacity S saturation
specific isochoric heat capacity tri triple-point
Ginzburg number \4 vapor
exponents of equation of state
exponents of equation of state
exponents of equation of state Acknowledgements

kernel term

, d1, v1 crossover parameters
molecular weight, length of equation of state
pressure
argument of crossover function
molar gas constant
entropy
temperature
dimensionless temperature
volume
speed of sound
crossover function
compressibility

N<XS<"H0I2TZIZ AT Q00>

Table A.1
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Appendix A. Equation of state derivatives

SeeTables A.1-A.5

Thermodynamic properties in the form of the dimensionless Helmholtz ede(gyt)

Property

Dimensionless functional form

PressureR (p, T)
Second virial coefficientB (T)

Isochoric heat capacit@y (o, T)

Isobaric heat capacit@y(p, T)

P(p.T) _

p‘,’w =1+ 5]
peB(T) = lim;_o(®})
D) (0l + 0,

Co _ Oy | (ro0f-nof)?
R = R 7 (14+2505+520f,)



L. Sun et al. / Fluid Phase Equilibria 233 (2005) 204-219

Table A.1 Continued

Property

Dimensionless functional form

Speed of soundy(P, T)

Enthalpy,H(p, T)

Gibbs free energya(p, T)

Entropy,S(p, T)

Internal energyJ(p, T)

Derivative of pressure(%)r

Derivative of pressure(,%)p

Fugacity coefficient, lfip(P, T)] = f, [ﬂT%T - %] dp

Joule—-Thomson coefficient,(P, T) = (37/9P),

2(pT) _ Cp(P.T) 2
i = oo (1 + 250 + 520)
H(p.T) _ 1+t<I)id + Tl _,’_8(1)[

RT — 1 t §
G(p.T) _ id

Tt =14 0% 4 & — 50

D) — (@l o — 1pld — 1))

Yel) = (ol + @)

(a

i)
(ﬁ)p = Ro(1+ 8®f — 81d},)

T _

s ¥

)T = RT(1+ 259} 4 5%®1;)

INg = @' + 50§ — In(1 4 5PY)

_ 7(123<I>/r5+62.<b§5+8t<1>g,)
(1805 —51®Y, )2 —12(0} + DY, ) (1-+25Df+52 DY)

nRp

Subscripts denote derivatives with respect to the indicated variable.

Table A.2
Derivatives with respect td andt of the polynomial and exponential terms in the residual part of Helmholtz energy
Derivative Expression
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d>}r>ol Z Q8 tIm
m=1

M:
IDL o 1
BE’OI) = X: Qi 8 Lim
m=1

o]

r
Pol,§

o]

M; . .
Z A (im — 1)8lm72t]m

r
Pol,8s
m=1

D,
o N
e
=}
\/
Il

r
q)PoI,asa

m=1

r P2k, My P o
_ Lo ; _
cDPOI,tt 3,20 = 2 amjm(jm — 1)3" t/m
8 m=
M
oL 1 . .
r Pol | P T S

CDF’OLB)‘ a&”o ) — Z amlm,]malm t]m

m=1

o]

(

p My
r Pol | — ii(i im—14J,—2
Polir aaaﬁo) = 2 amimjm(jm — 1)8"t/m
m=

My . )
551) = 3 il = i 20500
t m=1

d>rExp Y. awd™miin expl—ym,stn)
m=M1+1
@ Yoo ) — % am8m iy — Yk 85 )t eXP(—y8Fm)
Exp,s 3 = m m — Ym&m PE=Vm
t m=M1+1
2oL My . )
q)rEXp'M ( Hﬁgxp> = Z Ay 8 72[(1'»1 - mGmskm)(im -1- ymkm(skm) - ()’mkm)zskm]tjm exp(*}’msk'")
t m=M1+1
3’ M (im —3~— mGmskm)[(im - mGmskm)(im -1- mGm‘skm) - (mGm)z‘skm]
r =" 2 im =34 k
DPeyp.sss 953 = ) andm Tt explyms)
p Mt Him — L= Yk 8" = 2/mkin)28 Wi — Yinkm8") = ki (Yinkin )28

215



216 L. Sun et al. / Fluid Phase Equilibria 233 (2005) 204-219

Table A.2 Continued

Derivative Expression
oL M o
Phyps ( ;XP) = X anjndmtn Tt explyms)
8 m=M1+1
. PoL,, Mp o D, .
P ( a2 ) = 2 amjn(m — 1)8" /"% expl=ynd)
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m=My
Table A.3
Derivatives with respect tdandr of Gaussian terms in the residual part of Helmholtz energy
Abbreviation Derivatives
M;
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Table A.4
Thermophysical properties in terms of the crossover dimensionless residual Helmholtz &h@érgy
Property Dimensionless functional form
Enthalpy MeT) — 1419l 4 1] + 6]
Gibbs free energy o) — 14 ¢l 4 " — 53]
plo.T) _ G
Pressure Ehr =1+ 80
Entropy D — (@l 4 ' — 10 — 1))
Internal energy “UeT) — (ol + §f)
Isochoric heat capacity D) — _2(gld 4§,
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Table A.4 Continued
Property Dimensionless functional form

. . Cp _ oy, (A43PI-5:®Y )
Isobaric heat capacity ==t W‘%

- . . 3%
Second virial coefficient ocb(T) = pclims_o -
2 lof T ~ ~

Speed of sound “’R}‘/’;‘? = CC((‘;T)) (1+ 250 + 520%)
Table A.5

Derivatives of the dimensionless crossover Helmholtz energy
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Table A.5 Continued

20 -]+ [ 5] () ),
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