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In this paper we develop a crossover modification of the statistical associating fluid theory (SAFT)
equation of state for macromolecular chain fluids which incorporates the scaling laws asymptoti-
cally close to the critical point and is transformed into the original classical SAFT equation of
state far away from the critical point. A comparison is made with experimental data for pure
methane, ethane, n-hexane, n-decane, and n-eicosane in the one- and two-phase regions. We
also present comparisons with experimental single-phase data for n-triacontane and n-
tetracontane. We show that, over a wide range of states, the crossover SAFT model yields a
much better representation of the thermodynamic properties of pure fluids than the original
SAFT equation of state. The crossover SAFT equation of state reproduces the saturated pressure
data in the entire temperature range from the triple point to the critical temperature with an
average absolute deviation (AAD) of about 3.8%, the saturated liquid densities with an AAD of
about 1.5%, and the saturated vapor densities with an AAD of about 3.4%. In the one-phase
region, the crossover SAFT equation represents the experimental values of pressure in the critical
region with an AAD of about 2.9% in the region bounded by 0.05Fc e F e 2.5Fc and Tc e T e 2Tc,
and the liquid density data with an AAD of about 3% at the pressures up to P ) 2000 bar. For
the n-alkanes CmH2m+2 with the molecular weight Mw > 142 (m > 10), the crossover SAFT model
contains no adjustable parameters and can be used for the pure prediction of the fluid
thermodynamic surface.

1. Introduction

The development of a universal model for the predic-
tion of the thermodynamic properties of macromolecular
chain fluids and their mixtures has always been one of
the most difficult tasks in the theory of fluids. The
strong cooperative interactions between the molecules
even in simple liquids do not allow a general calculation
of their thermodynamic quantities over a wide range of
states. In the case of polymeric materials, increasing
the size of the molecule and the presence of association
add extra complications, which have never been ac-
curately included in modern theories.

In recent years, concentrated efforts have been made
to develop molecularly based equations of state (EOS)
for polymeric fluids. These models range from simple
cubic equations of state, which are widely used in the
engineering calculations, to more sophisticated free
energy models based on statistical mechanics, such as
the perturbed hard-sphere chain theory (PHSCT)1-8 or
the statistical associating fluid theory (SAFT).9-18 Simple
cubic EOS, such as ones developed by Redlich and
Kwong,19 Soave,20 and Peng and Robinson,21 yield
reasonable representations of the thermodynamic prop-
erties of fluids and fluid mixtures with low molecular
weight components, but they give the large errors for
long-chain molecular fluids and mixtures of components
which differ greatly in size or polarity.22-27 For these
systems, the PHSCT and SAFT models give better
results than the simple cubic EOS.28-32

In general, the chain fluid models work reasonably
well, especially at high-to-moderate polymer concentra-

tions. A major difference between them is in their
abilities to predict PVT properties of polymer and
polymer blends over a wide range of temperatures and
densities in the supercritical region, and particularly
the vapor-liquid (VLE) and liquid-liquid (LLE) equi-
libria. However, in situations where the system pos-
sesses long-range correlations, such as near a critical
point or at low polymer concentrations, these models
fail to yield an accurate description of the thermody-
namic behavior.

At the same time, the thermodynamic behavior of
simple fluids in the critical region has been studied in
great detail. The critical point of a one-component fluid
is the simplest case of a second-order phase transition
and is a typical example of cooperative behavior in a
fluid system. A characteristic feature of fluids in the
vicinity of the critical point is the presence of the long-
range fluctuations in the density, which involve a huge
number of molecules. Therefore, in the critical region
the details of the intermolecular interaction become
irrelevant to the thermodynamic behavior of the system,
which is completely determined by the interaction of the
fluctuations, and as a consequence, the thermodynamic
surface of fluids exhibit a singularity at the critical
point. The asymptotic singular critical behavior of the
thermodynamic properties can be described in terms of
scaling laws with universal critical exponents and
universal scaling functions.33,34 The thermodynamics of
a system in the extended critical region can be described
in terms of scaling laws with universal crossover func-
tions. These crossover functions reproduce the asymp-
totic scaling laws in the nearest vicinity of the critical
point and transform the Helmholtz free energy of the
system into the classical-analytical form far away from
the critical point.
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Theoretical crossover equations of state for pure fluids
and binary mixtures which incorporate the scaling laws
asymptotically close to the critical point and are trans-
formed into the regular classical expansion far away
from the critical point have been developed by Sengers
and co-workers35,36 and by Kiselev et al.37-41 Although
these crossover equations of state give a very accurate
representation of the thermodynamic properties of fluids
and fluid mixtures in a wide region around the critical
point, in the limit of zero density they do not reproduce
the ideal gas equation of state and, therefore, they
cannot be extrapolated to low densities.

A general procedure for transforming any classical
equation of state into a crossover EOS which incorpo-
rates the scaling laws asymptotically close to the critical
point and is transformed into the original classical EOS
far from the critical point was proposed by Kiselev.42

This procedure has a theoretical foundation in the
renormalization-group theory and has been successfully
applied to the cubic Patel-Teja (PT) EOS.43 The incor-
poration of the effects of the critical fluctuations into
the cubic EOS gives a major improvement of the
representation of the thermodynamic surface of fluids
in and beyond the critical region.42,44,45 As was shown
by Kiselev and co-workers,42,44 incorporation of the
universal crossover functions into the original PT EOS
not only yields a better description of the PVT and VLE
properties of pure fluids and binary mixtures in the
critical region but also improves the representation of
the thermodynamic surface of dense fluids in general.

It is the aim of this paper to develop, on the basis of
Kiselev’s approach,42 a crossover SAFT equation of state
for pure fluids which incorporates the scaling laws
asymptotically close to the critical point and is trans-
formed into the original SAFT equation of state far away
from the critical point. We proceed as follows. In section
2 we describe the original SAFT model. In section 3 we
formulate the crossover expression for the Helmholtz
free energy for the SAFT EOS. Comparisons with
experimental data for pure n-alkanes are discussed in
section 4. Our results are summarized in section 5.

2. Original SAFT Equation

In the present work we apply the crossover theory to
the SAFT equation of state developed by Huang and
Radosz.10 The original SAFT EOS is given in terms of
the residual Helmholtz free energy per mole:

where a(T, V, N) is the total Helmholtz free energy,
ares(T, V, N) is the residual Helmholtz free energy, and
aideal(T, V, N) ) -RT ln(V/N) + a0(T) is the ideal gas
Helmholtz free energy per mole at the same tempera-
ture T and the molar volume v ) V/N. The residual
Helmholtz free energy ares is represented in the SAFT
model as a sum of three terms corresponding to the
contributions from three different intermolecular inter-
actions:

The first term on the right side of eq 2 represents
segment-segment interaction,

where aseg is the Helmholtz free energy of a nonassoci-
ated spherical segment and m is the number of seg-
ments. In the SAFT EOS a0

seg is composed of two
parts,10

where for the hard-sphere contribution a0
hs the Carna-

han-Starling equation is used,46

while for the dispersion term a0
disp the power series

proposed by Alder et al.47 for square-well fluids was
adopted:

In eqs 5 and 6, R is the universal gas constant, k is the
Boltzmann constant, and the reduced density is

where η0 ) 0.74048, v0 is the segment molar volume in
a close-packed arrangement, u is the well depth, and
Dij are universal constants which have been fitted to
the experimental data for argon by Chen and Kre-
glewski.48 Following Chen and Kreglewski,48 the pa-
rameters v0 and u were represented in the form

where C ) 0.12, e/k ) 10, and v00 and u0 are the system-
dependent parameters.

The second term on the right side of eq 2 is the chain
term, which is the same as the one described by
Chapman et al.,9

where for the hard-sphere radial distribution function
the Carnahan-Starling approximation46 is used:

The Helmholtz free energy change due to association,
the third term in eq 2, is given by

where M is the number of association sites on each
molecule, XA is the mole fraction of molecules not bonded
at site A, and ∑A represents a sum over all associating

a(T, V, N) ) ares(T, V, N) + aideal(T, V, N) (1)

ares ) aseg + achain + aassoc (2)

aseg ) ma0
seg (3)

a0
seg ) a0

hs + a0
disp (4)

a0
hs ) RT4η - 3η2

(1 - η)2
(5)

a0
disp ) RT∑

i
∑

j

Dij( u

kT)i( η

η0
)j

(6)

η ) η0mv0/v (7)

v0 ) v00 [1 - C exp(-3u0

kT )]3

(8)

u ) u0(1 + e
kT) (9)

achain ) RT(1 - m) ln ghs(η) (10)

ghs(η) ) 2 - η
2(1 - η)3

(11)

aassoc ) RT[∑
A

(ln XA -
XA

2 ) +
1

2
M] (12)
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sites on the molecule. The mole fraction of nonbonded
molecules is represented in the SAFT EOS as

where the summation over all sites A, B, C, ... is
provided, NA is Avogadro’s number, and

The critical parameters T0c, v0c, and P0c corresponding
to the classical SAFT equation of state can be found
from the conditions

which for the SAFT EOS can be solved only numerically.
In general, the critical parameters in the SAFT EOS
(T0c, v0c, P0c) are the complicated functions of the
parameters m, v00, εAB, and κAB.

3. Crossover SAFT Model

A simple method for incorporating scaling laws into
an analytical equation of state has been developed by
Kiselev.42 The crossover function in this method does
not depend on the particular type of classical EOS to
be renormalized, and it can be applied to any analytical
equation of state.

To apply this method to the SAFT equation of state,
one first rewrites the classical expression for the Helm-
holtz free energy in the dimensionless form

where Ph 0(T) ) P(T, v0c)v0c/RT and Ah 0
r(T) ) ares(T, v )

v0c)/RT are the dimensionless pressure and the dimen-
sionless residual part of the Helmholtz free energy along
the critical isochore v ) v0c, and Ah 0(T) ) a0(T)/RT is the
dimensionless temperature-dependent part of the ideal
gas Helmholtz free energy. The critical part of the
Helmholtz free energy is written in the form

where the dimensionless residual part of the Helmholtz
free energy

and the dimensionless pressure at the critical isochore

are expressed as functions of the dimensionless devia-
tion of the temperature from the classical critical
temperature ∆T ) T/T0c - 1 and the classical order
parameter ∆v ) v/v0c - 1.

Secondly, one must replace the classical dimension-
less temperature ∆T and volume ∆v in the critical part

of the Helmholtz free energy as given by eq 17 with the
renormalized values

so that ∆T f τj and ∆v f ∆ηj in eq 17; this transforma-
tion is not applied to Ph 0(T) and Ah 0

r(T) in eq 16. In eqs 20
and 21, τ ) T/Tc - 1 is the dimensionless deviation of
the temperature from the real critical temperature Tc
and ∆η ) v/vc - 1 is the real order parameter. The
factors ∆τc ) ∆Tc/T0c ) (Tc - T0c)/T0c and ∆ηc ) ∆vc/v0c
) (vc - v0c)/v0c are the dimensionless shifts of the real
critical temperature Tc and the real critical volume vc
from the classical values T0c and v0c determined from
eq 15.

The crossover function Y in eqs 20 and 21 can be
written in the parametric form44

which corresponds to the theoretical crossover function
obtained recently by Belyakov et al.49 in the first order
of an ε expansion. The parametric variable q, which has
a meaning of a renormalized measure of the distance
from the critical point, can be found from the solution
of the equation

where b2 ) 1.359 is a universal linear-model parameter
and Gi is the Ginzburg number for the fluid of inter-
est.42,44 The first term ∝ d1τ in the square brackets on
the right-hand side of eq 23 corresponds to a projection
of the rectilinear diameter of the coexistence curve in
the temperature-density variables Fd ) (FG + FL)/2 )
Fc(1 + d1τ) on the temperature-volume plane vd ) 1/Fd
= vc(1 + d1τ - 2d1τ2).42 The second term ∝ v1 ×
exp(-δ1∆η) in the square brackets effectively takes
into account the asymmetry of the crossover function
Y(q) with respect to a transformation ∆η f -∆η which
provides the physically obvious condition Y(q) f 1 at v
, vc.44 In our previous discussion of the crossover
model,44 we have shown that the parameter δ1 is not
sensitive to the choice of fluid, and this parameter can
be considered constant δ1 ) 8.5.

To complete the transformation of the classical Helm-
holtz free energy into the crossover form, one needs next
to add to eq 16 the kernel term

where the first term corresponds to the asymptotic limit
and the second term to the first Wegner correction for
the isochoric specific heat.50 In eqs 20-24, γ ) 1.24, â
) 0.325, R ) 2 - γ - 2â ) 0.110, and ∆1 ) 0.51 are the
best estimates of the nonclassical critical exponents.33,34

XA ) (1 + NA∑
B

XB∆AB)-1 (13)

∆AB ) κ
AB6η0v

00

πNA
[exp(εAB/kT) - 1]ghs(η) (14)

P0c ) -(∂a
∂v)

T0c

, (∂2a
∂v2)

T0c

) 0, (∂3a
∂v3)

T0c

) 0 (15)

Ah (T, v) )
a(T, V, N)

RT
) ∆Ah (∆T, ∆v) -

∆vPh 0(T) + Ah 0
r(T) + Ah 0(T) (16)

∆Ah (∆Th , ∆v) ) Ah r(∆T, ∆v) - Ah r(∆T, 0) -
ln(∆v + 1) + ∆vPh 0(∆T) (17)

Ah r(∆T, ∆v) ) ares(∆T, ∆v)/RT (18)

Ph 0(∆T) ) 1 - (∂Ah r

∂∆v)
∆T(∆v)0)

(19)

τj ) τY-R/2∆1 + (1 + τ)∆τcY
2(2-R)/3∆1 (20)

∆ηj ) ∆ηY(γ-2â)/4∆1 + (1 + ∆η)∆ηcY
(2-R)/2∆1 (21)

Y(q) ) ( q
1 + q)2∆1

(22)

q2 ) τ
Gi

+ b2(∆η
Giâ)2

[1 + d1τ(1 - 2τ) +

v1∆η2 exp(-δ1∆η)]2( q
1 + q)2(1-2â)

(23)

K (τ2) ) 1
2
a20τ2(Y-R/∆1 - 1) + 1

2
a21τ2(Y-(R-∆1)/∆1 - 1)

(24)
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Finally, from eq 16, the crossover expression for the
Helmholtz free energy can be written in the form

where the critical part ∆Ah (see eq 17) is given by

The crossover SAFT equation of state can be obtained
from the crossover expression (25) by differentiation
with respect to volume

The exact expressions for Ah r(τj, ∆ηj), Ah r(τj, 0), and Ph 0(τj)
as functions of the renormalized temperature τj and the
order parameter ∆ηj for the SAFT EOS are given in the
Appendix.

Equations 20-26 completely determine the crossover
Helmholtz free energy for the SAFT equation of state.
Asymptotically close to the critical point q , 1 (|τ| , Gi
on the critical isochore), the crossover function Y(q) ∝
q2∆1, the renormalized temperature τj ∝τq-R (τj ∝ τ(2-R)/2

on the critical isochore), the renormalized volume ∆ηj ∝
∆ηq(γ-2â)/2(∆ηj ∝ ∆η(γ-2â)/4â on the critical isotherm), and
the critical part of the free energy ∆Ah (τj, ∆ηj) is a singular
nonanalytic function of τ and ∆η. In this region, the
vapor-liquid coexistence curve ∆Fs, the singular part
of the isochoric specific heat ∆Ch v ) Tc

2Fc∆Cv/TPc, and
the reduced susceptibility øjT ) Pc(∂F/∂P)T/Fc along the
critical isochore satisfy the following asymptotic laws:

According to the fluctuation theory of critical phenom-
ena the critical amplitudes in eq 28 are the system-
dependent parameters, but only two of them are inde-
pendent such that the amplitude ratio Γ0

+A0
+/B0

2 is a
universal constant.33,34 Because the critical parameters
for the SAFT EOS can be found only numerically (see
eq 15), it is impossible to obtain the rigorous analytical
expressions for the critical amplitudes B0, A0

+, and Γ0
+

and to check the universality of this amplitude ratio
analytically. Similar to the crossover PT EOS,44 for the
crossover SAFT EOS we can do this only numerically.

Far away from the critical point q . 1 (or |τ| . Gi at
v ) vc), the crossover function Y(q) f 1, the renormal-
ized temperature and volume tend to their classical
values τj f ∆T and ∆ηj f ∆v, and eq 25 is transformed
into the classical Helmholtz free energy density for the
original SAFT equation of state (16). In the limit of zero
density v f ∞, q . Gi for all values of the temperature
and the Ginzburg number, and eq 25 is transformed into
the ideal gas expression

and equation eq 27 reproduces the ideal gas equation
of state:

4. Comparison with Experimental Data

The crossover SAFT equation of state contains the
following system-dependent parameters in addition to
the parameters in the original SAFT EOS: critical shifts
∆Tc and ∆vc, the Ginzburg number Gi, the rectilinear
diameter amplitude d1, the parameter v1 in the asym-
metric correction for the order parameter, and the
critical amplitudes a20 and a21 in the kernel term.
Because the critical parameters Tc and Vc of a pure fluid
are usually known, the critical shifts can be easily
determined from any classical critical parameters T0c
and v0c obtained from a solution of equations in (15) for
the SAFT EOS.

The parameters Gi, d1, and v1 can be found from the
fit of equations 25-27 to experimental PFT data, as are
the parameters m, v00, u0, εAB, and κAB in the SAFT EOS.
The number of segments m was considered as an
additional adjustable parameter of the model in the
original SAFT EOS.10 In the present work, the param-
eter m for n-alkanes is taken to be an integer number
equal to the number of the carbon atoms in the
molecule. Because self-associated fluids are not consid-
ered in this work, we also set the association constants
εAB and κAB equal to zero.

Critical amplitudes a20 and a21 determine the nonan-
alytic singular behavior of the isochoric specific heat in
the critical region, and when only VLE and volumetric
properties are considered, these amplitudes can be set
equal to zero.42 In a more general approach, the param-
eters a20 and a21 can be found from an analysis of
experimental Cv or sound velocity data in the near-
critical region.42 In the present work we set a20 ) a21 )
0, while the inverse Ginzburg number g ) 1/Gi, the
rectilinear diameter amplitude d1, and the coefficient
v1, designed as ki, were represented as linear functions
of the molecular weight Mw,

where parameters ki
(0) and ki

(1) were found from the
analysis of the PVT and VLE data for n-hexane and
n-decane with the crossover SAFT EOS. The values of
these parameters are listed in Table 1.

Finally, only two adjustable parameters in the clas-
sical SAFT EOS, v00, and u0, are left. These classical
parameters for all n-alkanes have been found from a
fit of our model to experimental data. The values of all
system-dependent parameters for methane, ethane,
n-hexane, n-decane, and n-C20H42 are presented in Table
2.

For pure methane and ethane, we have adopted the
same critical parameters as used earlier by Kiselev.37

The classical parameters v00 and u0 have been deter-
mined from a fit of the crossover SAFT EOS to the
experimental PFT data obtained by Kleinrahm and co-
workers51,52 and by Trappeniers et al.53,54 for methane,

Table 1. Constants in Equation 31 for n-Alkanes

coefficients ki
(0) coefficients ki

(1)

g(0) 27.003 g(1) -2.3206 × 10-2

d1
(0) 2.8297 d1

(1) -2.5844 × 10-3

v1
(0) 2.6807 × 10-2 v1

(1) 6.0456 × 10-5

Ah (T, v) ) ∆Ah (τj, ∆ηj) - ∆vPh 0(T) + Ah 0
r(T) +

Ah 0(T) - K (τ2) (25)

∆Ah (τj, ∆ηj) ) Ah r(τj, ∆ηj) - Ah r(τj, 0) - ln(∆ηj + 1) +
∆ηjPh 0(τj) (26)

P(T, v) ) -(∂A
∂v)

T
) RT

v0c
[-

v0c

vc
(∂∆Ah
∂∆η)T

+ Ph 0(T) +

v0c

vc
( ∂K
∂∆η)T] (27)

∆Fs ) (B0(-τ)â, ∆Ch v ) R-1A0
+τ-R, øjT ) Γ0

+τ-γ (28)

Ah (T, v) ) -ln(v/v0c) + A0(T) (29)

Pv ) RT (30)

ki ) ki
(0) + ki

(1)Mw (31)
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and to selected experimental PFT data obtained by
Douslin and Harrison55 and by Reamer et al.56 for
ethane.

Comparisons of the crossover SAFT equation of state
with experimental PFT data in the critical and super-
critical regions are shown in Figures 1 and 2. As one
can see, the crossover SAFT equation of state gives a
good representation of the PFT surface, especially in the
critical region. The crossover SAFT EOS represents the
experimental values of pressure in the critical region
with an average absolute deviation (AAD) of about
0.78% (n ) 96) in the region bounded by 0.75Fc e F e
1.25Fc and Tc e T e 1.25Tc, and about 2.9% in pressure
for the entire set of 784 points for both substances in
the region bounded by 0.05Fc e p e 2.5Fc and Tc e T e
2Tc. Comparisons of the crossover SAFT equation of
state with experimental VLE data are shown in Figures
3 and 4. The figures show that the crossover SAFT EOS
yields a good representation of vapor pressures and
saturated liquid and vapor densities over the entire
range of temperatures from the critical temperature
down to the triple point. The crossover model represents
the experimental saturated pressure data for both fluids
with an AAD of about 3.8% (n ) 38), the saturated liquid

densities with an AAD of about 1.45% (n ) 54), and the
saturated vapor densities with an AAD of about 3.4%
(n ) 18).

For methane and ethane we can compare the cross-
over SAFT model not only with the original SAFT EOS
obtained by Huang and Radosz,10 but also with the cubic
crossover EOS developed recently by Kiselev and
Friend.44 We need to note that for methane in the
original SAFT EOS the parameter e/k ) 1, while in this
work for all substances we set e/k ) 10. Therefore, the
critical parameters shown in Figures 1 and 3 for the

Table 2. System-Dependent Constants for the Crossover
SAFT Equation of State

n-alkane Mw Tc, K Fc, mol/L v00, mL/mol u0/k, K

CH4 16.043 190.564a 10.122a 23.674 177.942
C2H6 30.069 305.322a 6.8601a 15.689 180.669
C6H14 86.178 507.850b 2.7108b 10.378 177.018
C10H22 142.284 617.650c 1.6430c 9.1588 179.513
C20H42 282.556 767.300d 0.84034d 9.1984 181.652
C30H62 422.826 840.350e 0.58292f 9.6289 180.288
C40H82 563.096 882.120e 0.39087f 9.7294 179.829

a Kiselev, ref 37. b Grigoryev et al., ref 58. c Ely, ref 59. d Texas
A&M University, ref 63. e From the Hankinson-Brobst-Thomson
and Rackett correlations (see ref 57, p 58). f Calculated with the
Joback modification of Lydesen’s method (see eq 33).

Figure 1. PFT data51,52 (symbols) for methane with predictions
of the crossover SAFT equation of state (solid lines) and classical
SAFT EOS (short-dashed lines) and with the cubic crossover EOS44

(long-dashed lines). The open symbols correspond to the one-phase
region and the filled symbols indicate VLE data.

Figure 2. PFT data55 (symbols) for ethane with predictions of the
crossover SAFT equation of state (solid lines) and classical SAFT
EOS10 (short-dashed lines) and with the five-parameter crossover
SAFT model (long-dashed lines). The open symbols correspond to
the one-phase region and the filled symbols indicate VLE data.

Figure 3. VLE data51 for methane with predictions of the
crossover SAFT equation of state (solid lines) and classical SAFT
EOS (short-dashed lines) and with the cubic crossover EOS44 (long-
dashed lines).
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SAFT EOS differ slightly from those obtained with the
original SAFT EOS.10 The difference is small, and as
one can see, the crossover SAFT equation of state gives
a much better representation of the pressures and
saturated densities than the original SAFT EOS,10

especially in the critical region where the SAFT EOS
yields systematic deviations up to 15-20%. However,
the average deviation of pressures and the saturated
densities are approximately 2 times bigger than those
for the cubic crossover EOS. In principle, the represen-
tation of pressures and the saturated densities for
methane and ethane with the crossover SAFT EOS can
be improved if we do not use eq 31 for the parameters
g ) 1/Gi, d1, and v1, but find them from a fit to the
experimental data (see long-dashed curve in Figures 2
and 4 for ethane). However, even in this case, a
representation of the saturated pressures with the five-
parameter crossover SAFT EOS for ethane and methane
is worse than that achieved with the cubic crossover
EOS.44 This is mostly because of the fact that in simple
fluids at low temperatures (Gi , |τ|) the saturated liquid
density is rather a cubic parabola (FL ∝ |τ|1/3; see Reid
et al.57) than a linear function of the dimensionless
temperature τ as it follows from the SAFT EOS.

For n-hexane and n-decane all parameters v00, u0, Gi,
d1, and v1 in the crossover SAFT EOS were found from
a fit to the experimental data. For the critical param-
eters Tc and Fc we adopted the values obtained by
Grigoryev et al.58 for n-hexane and by Ely59 for n-decane.
Comparisons of the crossover SAFT equation of state
with PVT experimental data in the one-phase region for
n-hexane and n-decane are shown in Figures 5 and 6
and with the VLE data in Figures 7 and 8. As one can
see, with the five adjustable parameters for n-hexane
and n-decane, approximately the same accuracy for the
pressures and saturated densities was achieved as that
for ethane and methane with only two adjustable
parameters, v00 and u0. However, even with five adjust-
able parameters, the crossover SAFT EOS gives a

systematic deviation up to 8-10% for the saturated
liquid densities at low temperatures, T < 0.5Tc. These
deviations are smaller than those for the original SAFT
EOS (up to 12-18%) but still bigger than those for the
crossover cubic model (about 1-2%).

Comparisons of the crossover SAFT equation of state
with isobaric specific heat experimental data in the
critical region for methane and ethane are shown in
Figures 9 and 10. The crossover SAFT EOS yields not
only a qualitative but also a reasonably good quantita-
tive representation of the CP data in the critical region,
while the original SAFT EOS due to its large errors in
critical point prediction does not even qualitatively
describe the singular behavior; note that the curves
calculated with the original SAFT EOS for ethane do
not even overlap the scale for the near critical isobars
shown in Figure 10.

As we mentioned above, in the present crossover EOS,
the parameters a20 and a21 in eq 24 for the kernel term
were set to zero. Therefore, it is not surprising that,
without the kernel term, the crossover SAFT EOS
cannot describe the experimental isochoric specific heat
data in the asymptotic critical region within experimen-
tal uncertainty. For this purpose, the kernel term should
be included and a better analytical equation of state has
to be chosen as the basis of the model. However, in the

Figure 4. VLE data55,65-63 for ethane with predictions of the
crossover SAFT equation of state (solid lines) and classical SAFT
EOS10 (short-dashed lines) and with the five-parameter crossover
SAFT model (long-dashed lines).

Figure 5. PFT data69,70 (symbols) for n-hexane with predictions
of the crossover SAFT equation of state (solid lines) and classical
SAFT EOS10 (short-dashed lines).

Figure 6. PFT data71 (symbols) for n-decane with predictions of
the crossover SAFT equation of state (solid lines) and classical
SAFT EOS (short-dashed lines).
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present form the crossover SAFT EOS yields a satisfac-
tory representation of the experimental CP data in and
beyond the critical region.

We are not aware of any experimental CP data for
n-hexane and n-decane in the critical and supercritica-
lyregion. Therefore, in Figures 11 and 12 we show a
comparison with experimental CP data for saturated
liquids obtained by Grigoryev et al.60 and Amirkhanov
et al.61 for n-hexane, and by Finke et al.62 for n-decane.
Again, a reasonable agreement between the experimen-
tal data and values calculated with the crossover SAFT
EOS is observed.

The original SAFT equation of sate was initially
developed for modeling of the thermodynamic properties
and the phase equilibrium of macromolecular chain
fluids. Therefore, it is interesting to compare the
crossover SAFT EOS with the experimental data for

Figure 7. VLE data for n-hexane70,72-80 (symbols) with predic-
tions of the crossover SAFT equation of state (solid lines) and
classical SAFT EOS10 (short-dashed lines).

Figure 8. VLE data for n-decane71,81-92 (symbols) with predictions
of the crossover SAFT equation of state (solid lines) and classical
SAFT EOS.10

Figure 9. The isobaric specific heat data of Jones et al.93 (empty
symbols) and of van Kasteren and Zeldenrust94 (filled symbols)
for methane with predictions of the crossover SAFT equation of
state (solid lines) and classical SAFT EOS10 (short-dashed lines).

Figure 10. The isobaric specific heat data of Furtado95 (empty
symbols) and of Miazaki et al.96 (filled symbols) for ethane with
predictions of the crossover SAFT equation of state (solid lines)
and classical SAFT EOS10 (short-dashed lines).

Figure 11. The saturated liquid CP data60,61 for n-hexane with
predictions of the crossover SAFT equation of state (solid lines)
and classical SAFT EOS10 (short-dashed lines).

Ind. Eng. Chem. Res., Vol. 38, No. 12, 1999 4999



n-alkanes with higher molecular weights, m > 10. In
this work we applied the crossover SAFT EOS for
representing the thermodynamic surface of n-eicosane
(C20H42), n-triacontane (C30H62), and n-tetracontane
(C40H82).

For the n-eicosane we adopted the experimental
values of the critical parameters obtained in the Ther-
modynamics Research Center of Texas A&M Univer-
sity.63 We are not aware of any experimental values of
the critical parameters for n-alkanes with m > 20.
Therefore, for n-triacontane and n-tetracontane we
adopted the same critical temperatures as employed
earlier in the Hankinson-Brobst-Thomson and the
Rackett liquid-volume correlations,57 while the critical
pressure and volume we calculated with the Joback
modification of Lydersen’s method (see Reid et al.57)

where for the n-alkanes mA ) 3m + 2, ∑∆P ) -0.0024,
and ∑∆v ) 0.13 + 0.056(m - 2). The values of the
parameters v00 and u0 for n-eicosane, n-triacontane, and
n-tetracontane were found from a fit of the crossover
SAFT model to the experimental specific volumes data
obtained by Doolittle.64 The values of all system-
dependent parameters in the crossover SAFT EOS for
n-eicosane, n-triacontane, and n-tetracontane are listed
in Table 2.

A comparison of the crossover SAFT equation of state
with experimental VLE data for n-eicosane is shown in
Figure 13. The crossover model represents the experi-
mental saturated pressure data with an AAD of about
1.3%, the saturated liquid densities with an AAD of
about 1.8%, and vapor densities with an AAD of about
3.4%. Comparisons of the crossover SAFT equation of
state with the experimental liquid density data are
shown in Figure 14 for n-eicosane and Figure 15 shows
results for n-triacontane and n-tetracontane. The cross-
over model represents the experimental liquid density
data with an AAD of about 2.3% at the pressures up to
2000 bar. The dashed curves in Figures 13 and 14 show
the values of pressures and densities calculated with
the original SAFT EOS.10 As one can see, even far from
the critical region the crossover SAFT EOS gives a
better representation of the experimental data than the
original SAFT equation of state.

For the practical application of the crossover SAFT
EOS it is important to establish the relationships
between the number of segments m, or molecular weight
Mw, and the parameters v00 and u0 of the crossover
model. The parameter v00 has a physical meaning of the
temperature-independent segment volume and the pa-
rameter u0/k is the temperature-independent dispersion
energy of interaction between segments. Because the
macromolecules in the SAFT EOS are treated as the
chains of the m similar segments, we expect that, in a
physically consistent model, as m becomes larger, the
parameters v00 and u0 should not depend on the number
of segments. In Figure 16 we show the parameter v00

as a function of the molecular weight of the n-alkanes.
The parameter u0 as a function of the molecular weight
is shown in Figure 17. As one can see from Figure 16,
for the small molecules with Mw < 142 (m < 10) the
parameter v00 qualitatively reproduces the behavior of
the critical density and decreases upon increasing the
molecular weight. However, at Mw > 142 (m > 10) the

Figure 12. The saturated liquid CP data62 for n-decane with
predictions of the crossover SAFT equation of state (solid lines)
and classical SAFT EOS10 (short-dashed lines).

Figure 13. VLE data64 (symbols) for n-eicosane with predictions
of the crossover SAFT equation of state (solid lines) and classical
SAFT EOS10 (short-dashed lines).

Figure 14. Liquid density data64 (symbols) for n-eicosane with
predictions of the crossover SAFT equation of state (solid lines)
and classical SAFT EOS10 (short-dashed lines).

Pc ) (0.113 + 0.0032mA - 0.965∑∆P)-2 (32)

vc ) 0.0175 + ∑∆v (33)
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parameter v00 is practically slightly increased and tends
to its constant value v00 ≈ 9.7 mL mol-1 at Mw g 422
(m g 30). Qualitatively, the same behavior is observed
for the parameter u0 (see Figure 17). For the long
molecules with Mw g 142 (m g 10) the real critical
temperature Tc ≈ 1.022T0c, while the parameter u0

exhibits small oscillations around its constant value u0

≈ 180 K which is achieved at Mw g 422 (m g 30).
Thus, in the crossover SAFT EOS for the n-alkanes

with Mw > 142 (m > 10), we can set

and the critical molar volume vc can be calculated with
the Joback-Lyndersen method (see eq 33). For the
n-alkanes with Mw e 943 (m e 70) for the crossover
parameters g, dl, and v1, one can use eq 31 with the
coefficients as given in Table 1. We do not expect that
these simple linear expressions for the parameters g,
d1, and v1 with the same coefficients will be valid at Mw
> 943 (m > 70); therefore, we do not recommend
applying them in this region.

A comparison of the experimental values of critical
pressure with the values predicted with the crossover
SAFT EOS as well as with the critical pressures
calculated for the n-alkanes with Mw g 184 (m g 13)
with the Joback-Lyndersen equation 32 is shown in
Figure 18. Good agreement between experimental criti-
cal pressures and predicted values is observed. In Figure
19 we show a comparison of the experimental liquid
density data for n-tridecane and n-heptadecane obtained
by Doolittle64 with the densities predicted with the
crossover SAFT model with the fixed values of the
coefficients v00 and u0. Again, good agreement with
experimental data is observed.

5. Discussion

In this paper we develop a crossover SAFT EOS on
the basis of the crossover approach proposed by Kiselev.42

In Kiselev’s approach the crossover function used for
renormalization of the EOS does not depend on the
particular type of classical EOS to be renormalized and
can be applied to any analytical equation of state. In
the present paper, we use the SAFT EOS developed by
Huang and Radosz10 as an example. The crossover
SAFT equation of state reproduces the nonanalytical,
singular behavior asymptotically close to the critical
point and is transformed into the original SAFT equa-
tion of state far from the critical point. In the limit of
zero density, the crossover equation is transformed into
the ideal gas equation of state. Application of this
equation to PVT and VLE data for pure n-alkanes shows
that the crossover SAFT equation yields a satisfactory

Figure 15. Liquid density data64 (symbols) for n-tricontane (top)
and n-tetracontane (bottom) with predictions of the crossover
SAFT equation of state (lines).

Figure 16. The critical density data (left axis) and the parameter
v00 (right axis) for n-alkanes as a function of the molecular weight.

Figure 17. The critical temperature data (left axis) and the
parameter u0 (right axis) for n-alkanes as a function of the
molecular weight.

Figure 18. The critical pressure data (crosses) for n-alkanes with
values predicted with the classical SAFT EOS10 crossover SAFT
EOS (circles) and with the Joback-Lyndersen equation (32)
(squares).

v00 ) 9.7 mL mol-1, u0/k ) 180 K,
Tc ) 1.022T0c K (34)
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representation of the thermodynamic surface in a tem-
perature range from the triple point to T e 2Tc and a
density range F e 2Fc. The results of our calculations of
CP show that the crossover SAFT equation of state,
unlike the classical SAFT equation of state, gives a
reasonable representation of the experimental CP data
in and beyond the critical region. To improve the
representation of the CP data and extend the range of
validity of our crossover equation to a wide range of
densities, a better equation of state for the reference
fluids must be chosen.

The method described here can also be applied to
mixture calculations. Further research toward this goal
is in progress and the results will be presented in the
next publication.
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Nomenclature

a ) Helmholtz free energy per mole (total, res, seg, chain,
assoc, etc.)

a0 ) segment Helmholtz free energy per mole
a2i ) coefficients in the kernel term (i ) 0 and i ) 1)
Ah ) dimensionless Helmholtz free energy (total, residual,

etc.)
C ) integration constant in eq 8
d1 ) rectilinear diameter amplitude
Dij ) universal constants in eq 6
Gi ) Ginzburg number
ghs ) hard-sphere radial distribution function
K ) kernel term
k ) Boltzmann’s constant ≈ 1.3814 × 10-23 J/K
ki

(j) ) coefficients in eq 31 (j ) 0 or j ) 1)
M ) number of association sites on the molecule
Mw ) molecular weight
m ) number of segments

N ) total number of molecules
NA ) Avogadro’s number
P ) pressure
Pc ) critical pressure
q ) measure of distance from critical point
R ) gas constant
T ) temperature, K
Tc ) critical temperature, K
u/k ) temperature-dependent dispersion energy of interac-

tion between segments, K
u0/k ) temperature-independent dispersion energy of

interaction between segments, K
V ) total volume
v ) molar volume
v1 ) system-dependent coefficient in eq 23
v0 ) temperature-dependent segment volume
v00 ) temperature-independent segment volume
XA ) mole fraction of molecules NOT bonded at site A
Y ) crossover function

Greek Letters

R ) universal critical exponent
â ) universal critical exponent
γ ) universal critical exponent
∆ ) difference
∆1 ) universal critical exponent
∆v ) classical order parameter
∆vc ) shift of the critical volume
∆η ) order parameter
∆ηj ) rescaled order parameter
∆ηc )dimensionless shift of the critical volume
∆T ) dimensionless deviation of the temperature from the

classical critical temperature
∆τc ) dimensionless shift of the critical temperature
δ1 ) universal constant in eq 23
τ ) reduced temperature difference
τj ) rescaled reduced temperature difference
F ) molar density
Fc ) critical density, mol/L

Superscripts

A, B, C, ... ) association sites
assoc ) association
chain ) chain
hs ) hard sphere
ideal ) ideal gas
res ) residual
seg ) segment

Subscripts

c ) critical
0 ) classical
G ) gas
L ) liquid

Appendix. Crossover Helmholtz Free Energy

The crossover expression for the Helmholtz free
energy for the SAFT equation of state is (see eqs 25 and
26)

where the critical part

Figure 19. Liquid density data64 (symbols) for n-tridecane (top)
and n-heptadecane (bottom) with predictions of the crossover SAFT
equation of state (lines).

Ah (T, v) ) ∆Ah (τj, ∆ηj) - ∆vPh 0(T) + Ah 0
r(T) + Ah 0(T) -

K(τ2) (A.1)

∆Ah (τj, ∆ηj) ) Ah r(τj, ∆ηj) - Ah r(τj, 0) - ln(∆ηj + 1) +
∆ηjPh 0(τj) (A.2)
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The dimensionless residual part of the Helmholtz free
energy is given by

where the hard sphere distribution function ghs is given
by the eq 11 with account of the replacement of the
reduced density η on the renormmalized value ηj ) η0c/
(∆ηj + 1), η0c ) η0mv0/v0c is the reduced critical density,
and parameters v0, u, and ∆AB are given by eqs 8, 9,
and 14 where temperature T is expressed through the
renormalized temperature τj

In eqs A.3-A.6, the parameters T0c and v0c, are the
classical critical parameters for the original SAFT EOS
determined from the solution of eq 15.

The dimensionless residual part of the Helmholtz free
energy at the critical isochore v ) vc

and

where the renormalized temperature τj and order pa-
rameter ∆τj connected to the real dimensionless tem-
perature τ and the real order parameter ∆η through eqs
20 and 21.

The temperature dependent functions Ah 0
r(T) and Ph 0-

(T) in eq A.1 are given by

and

where the hard sphere distribution function ghs is given
by the eq 11 with η ) η0c, and parameters v0, u, and
∆AB are given by eqs 8, 9, and 14.
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