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We have formulated a general approach for transforming an analytical equation dE€&8ento

the crossover form and developed a generalized @@ EOS for pure fluids, which incorporates
nonanalytic scaling laws in the critical region and in the lighit- 0 is transformed into the ideal gas
equation EOS. Using the GC EOS as a reference equation, we have developed a generalized version
of the corresponding stat¢6CS model, which contains the critical point parameters and accentric
factor as input as well as the Ginzburg number Gi. For nonionic fluids we propose a simple
correlation between the Ginzburg number Gi ahd », and molecular weight1,,. In the second

step, we develop on the basis of the GCS model and the density functional theory a GCS-density
functional theory(DFT) crossover model for the vapor—Iliquid interface and surface tension. We use
the GCS-DFT model for the prediction of the PVT, vapor-liquid equilibri0vbE) and surface
properties of more than 30 pure fluids. In a wide range of thermodynamic states, including the
nearest vicinity of the critical point, the GCS reproduces the PVT and VLE surface and the surface
tension of one-component fluidpolar and nonpolamwith high accuracy. In the critical region, the
GCS-DFT predictions for the surface tension are in excellent agreement with experimental data and
theoretical renormalization-group model developed earlier. Using the principle of the critical-point
universality we extended the GCS-DFT model to fluid mixtures and developed a field-variable
based GCS-FV model. We provide extensive comparisons of the GCS-FV model with experimental
data and with the GCS-XV model formulated in terms of the conventional density variable—
composition. Far from the critical point both models, GCS-FV and GCS-XYV, give practically similar
results, but in the critical region, the GCS-FV model yields a better representation of the VLE
surface of binary mixtures than the GCS-XV model. We also show that by considering the Ginzburg
number Gi as an independent CS parameter the GCS model is capable of reproducing the phase
behavior of finite neutral nuclear matter. 8003 American Institute of Physics.

[DOI: 10.1063/1.1605375

I. INTRODUCTION ids. It also allows an explicit formulation of the correspond-

In recent years, there has been a substantial interest lﬂg states(CS principle. However, the van der Waals EOS
supercritical fiuids(SCF$ from both the academic and in- anhd CS model are qualitatively correct only for systems with

. o . . ! two-parameter  spherically symmetric  intermolecular
dustrial communitie$.One important issue is to replace or a1l o .
reduce the use of organic solvefthwith sub- and super- potentials:® The quantitative difference between theory and
critical liquids such as wat®® and carbon dioxid&-3 To experiment in real molecular fluids is rather substantial, es-

make the potential for SCF technology more effective, it iSpec.ially in the critical region. The first well-known af[tempts
imperative to have a consistent thermodynamic model of® MProve the vdwW EOS were made by Redlich and

16 7 H
SCF solution behavior, capable of giving a good representd-Wong; Soave; and Peng and qu_ms&?l.These_ equa-
tion not only for vapor—liquid equilibriun{VLE) and PVT tions of state, and their different empirical and semiempirical

properties, but also of their many derivatives and interfaceModifications(for a review see Ref. 19ield a much better
For nonideal systems, like those containing supercritical flufepresentation of the thermodynamic properties of fluids and
ids, this is a challenging task by itself. The classical solutiorfluid mixtures than the original vdw EOS. However, all
of this problem was first given by van der Wadlsiw),'*  these models thermodynamically are not self-consistent.
who proposed a simple cubic equation of st@©3S based Namely, they cannot describe different thermodynamic prop-
on the ideal gas equation as a zeroth approximation, an€rties such as VLE, PVT, densities, specific heats, enthalpies,
including the effects of intermolecular interaction to a firstand excess properties in the gas and liquid phases simulta-
approximation. The vdW EOS is the simplest equationneously with the same set of the system-dependent param-
which predicts the existence of the critical point and yields aeters. Besides, all these analytical equations of state fail to
qualitative prediction of vapor-liquid equilibrium in real flu- reproduce the nonanalytical, singular behavior of fluids in
the critical region, which are caused by long-scale fluctua-

3Author to whom all correspondence should be addressed. Electronic maiponS in density. ) ) o -
skiselev@mines.edu The thermodynamic properties of pure fluids in the criti-

0021-9606/2003/119(16)/8645/18/$20.00 8645 © 2003 American Institute of Physics

Downloaded 12 Oct 2003 to 138.67.128.2. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



8646 J. Chem. Phys., Vol. 119, No. 16, 22 October 2003 S. B. Kiselev and J. F. Ely

cal region can be described correctly with the so-calledsical equation was proposed by KiseléThis procedure is
scaled EOS° However, in the limit of low densities, even in based on the renormalization-group theory and can be ap-
the crossover formulatioft,the scaled EOS do not reduce to plied to any analytical EOS, which predicts a critical point
the ideal gas EOS. Therefore, during the last two decadeand in the limit of low densities is transformed into the ideal
many efforts have been made to develop the “global,” orgas equation. An advantage of Kiselev's approach is that the
renormalized EOS that at low densities reproduce the ideairossover expression for the Helmholtz free energy in this
gas equation and is transformed into the nonanalytic scalegpproach can be written in the closed analytical form, which
EOS as the critical point is approach@d*®The most recent allows an analytical formulation of all derivatives. Kiselev’s
and theoretically well founded are the hierarchical referenc@pproach has been successfully applied for the ciidi,
theory (HRT) developed by Parola and co-workér€®and ~ SAFT,®"8 SAFT-BACK ! and high accuracy semiempir-
the “globalized” renormalization-groufRG) procedure pro- ical EOS for square-well fluid® In all cases, this method
posed by White and co-worke?$-4°A big advantage of the produces a thermodynamically self-consistent and accurate
HRT?*-2 and “globalized” RG®~%° models is that they re- crossover EOS near to and far from the critical point of pure
quire only few microscopic intermolecular potential param-fluids™">#and fluid mixtures®®® However, the crossover
eters as input. The price for this is tedious calculations reEOS in this approach contains four more adjustable param-
lated to an implementation of these first-principle theoreticafters than an original classical EOS, and similar to the
models. White’s “globalized” RG mode®~“°for example, EOSCF+RG modef;**°they have been applied so far only
similar to the MSA+RG model by Tani“.f’ and EOSCF in the density-variable formulation for mixtures.
+RG model by Prausnitz and co-work&s*can be solved In this paper we continue a study initiated in our previ-
only numerically and requires additional spline functions forous works for the cubi¢®*and SAFT®~"?EOS. Using the
the representation of the thermodynamic surface of real flucrossover sine modé?,we develop a generalized cuiigC)
ids. This restricts their widespread practical application, esEOS, which unlike the cubic crossover EOS developed be-
pecially for the critical mixtures where two-phase equilib- fore, can be analytically extended into the metastable region
rium calculations require the smaller steps and larger numbednd reproduces analytically connected van der Waals loops.
of iterations for their convergence. Another shortcoming ofSecond, we developed on the basis of the GC EOS and the
the EOSCF-RG model developed by Jiang and density functional theoryDFT) a GCS-DFT model for bulk
Prausnit2>#?is that for mixtures it was formulated in terms Properties and surface tension. We use this model for the
of the “density” variable—composition, that in the critical Prediction of the volumetric, VLE properties and surface ten-
region is, rigorously speaking, incorrect. sion of more than 3@polar and nonpolarpure fluids in a
The thermodynamic surface of fluid mixtures in the criti- Wide range of the parameters of state, including the nearest
cal region differs substantially from that of pure fluffs52  Vicinity of the critical point. Combining the GCS model with

According to the principle of critical-point universality;®®  the principle of critical-point universality we have also de-
also called the isomorphism principie®” a critical mixture ~ Veloped an isomorphic GCS for fluid mixtures, the GCS-FV

exhibits pure fluid like singularities at fixed “field” model. _

variable—the chemical potential, rather than at fixed “den- e proceed as follows: In Sec. Il we describe a general
sity” variable—the composition. There are few crossoverProcedure for transforming any analytical equation into th_e
models of mixtures that incorporate scaling laws in the criti-Crossover form. In Sec. Ill we develop a crossover cubic
cal region and transform into an analytical equation of staté=©OS for pure fluids. In Sec. IV we developed the GCS model
far away from the critical point. Examples include the field-@nd applied this model for more than 30 pure fluids. We
space conformal model based on the modified Penggon&der a generalized CS—D.FT model for surface tension in
Robinson and Benedict—Webb—Rubin ESSE® the six- Sec. V. In Sec. VI we consider an extension of the GCS
model to fluid mixtures, and our results are summarized and

term crossover modéf; % the crossover Leung—Griffiths ™M .
discussed in Sec. VII.

(CR LG) model®*®® and the more extensive parametric
crossover model developed by Kiselev and co-work&r&:
The Helmholtz free-energy in the latter model, also known adl: THEORETICAL BACKGROUND
CREOS-97° was represented in a universal parametric  The critical point in pure fluids is the simplest example
form, which does not depend on the detail of the intermo-of a second-order phase transition, and the vdw EOS in the
lecular interactions and is equally valid for any pure fluid critical region corresponds to the Landau, or mean-field,
and binary mixture in the critical region, including aqueoustheory of the second-order phase transitions. In the Landau
ionic solutions. Recently, the parametric crossover modelsheory?® the critical partAF(T,7) of the thermodynamic
named by CREOS-01 and CREOS-02, have been applied fsotential of the system undergoing the second-order
the description of the thermodynamic properties of superphase transition is represented in the powers of the order
cooled liquid HO, D,O, and HO+D,0 mixtures!*"*re-  parameters,
spectively. However, CREOS-97as are CREOS-01 and
CREOS-02 is an asymptotic crossover modélwhich fails AF(T,m)=a07n*+ Uon"~hn, 2.1
to reproduce the ideal gas equation in the limit of low den-where r=T/T.—1 is a dimensionless deviation of the tem-
sities. peratureT from the transition temperatur€;, the coeffi-

A more general, phenomenological procedure for incorcients a;>0 and uy,>0 are the system-dependent param-
porating of the long-range density fluctuations into any claseters, andh is an external ordering field. The termz?®,
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which breaks the symmetry of thermodynamic potential with T/ 6%F

respect to the transformation——h and 7»—— 7, was Cv(T)/R:—§<(?—Tz)

omitted in Eq.(2.1) because it can be effectively taken into 7=0

account by simple redefinition of the order parameter =A; |7 “(1+a5|7*)+ By (7), (2.7

— p+d;7.158 An equation of state, which corresponds to

the thermodynamic potenti&?.1) is given by where Ay is the asymptotic amplitudea; is the first

_ Wegner-correction terrt, and By (7) is a background con-

h=2a,77+4uy7°, 2.2 ks o’/ .
0T 07 2.2 tribution above(+) and below(—) critical temperature. With

where 7= — 9F(T,h)/dh is an equilibrium value of the or- this in mind, the kemnel term can be written in the féfm

der parametel® After integration, the equilibrium thermody-
namic potential of the system near the second-order phase K(r, )= La, Y~ “21(r,7)—1]
transition in the Landau theory can be written in the form
+ LY () -1, (2.8
F(Tvn):aOTn2+u0774+Fbg(Tvp)v (23)

where the coefficientsa,, and a,; correspond to the
asymptotic and first Wegner-correction terms in E2.7),
respectively. At Gi<| 7| <1 the crossover functioli =1, and
Eq. (2.7) becomes identical to the Landau expansiar),
while asymptotically close to the critical point, pt| <Gi,

where the background contributidfy(T,p) is an analytic
function of T and p.

The Landau theory is valid only in the temperature re-
gion Gi<|7|<1 where the long-scale fluctuations in the or-

,84 ; 232
der parameter are smaft™ Here GPC(UO”C/_aOgO) is the the crossover functio® modifies each term in Eq2.6) in

Ginzburg numbery, is a critical volume, andy, is an effec- ¢ o g way that the singular pakﬂ:(r,;) is transformed
tive average radius of the interaction between molecules. Thg the scaled equatiof2.4).

intensity of the fluctuations diverges at the critical point and,
as a consequence, at temperatyrés<Gi the singular part
of the thermodynamic potential of a system becomes
nonanalytic function of the temperatureand the order pa-
rameterz,

Mathematically, Eq(2.1) corresponds to the asymptotic
terms in the Taylor expansion of the thermodynamic poten-
%al of the system near the critical point= =0 in the pow-
ers of r and %.1° In principle, as more terms are taken into
account in Eq(2.1), and consequently in expansi¢a6), a
higher accuracy and wider range of temperatures and densi-
ties can be achieved with this crossover model. In pure flu-
ids, except for the above-mentioned cubic term, additional
asymmetric terms: 57°h ando 7,® and the higher order sym-
[netric termse: " and « 7292, should be added into the
expansion2.7). As a consequence, the corresponding cross-
over model becomes more effective and accuf&e®

The effectiveness of the crossover model is determined
by the choice of the crossover functidh Unfortunately, the
RG equations for the crossover functidh in real three-
dimensional space can be solved rigorously only numeri-
cally. Therefore, in practice for the crossover function
Y different approximant$!®® and phenomenological
(9100102 5re ysually used. Incorporation of the

AF(7,5)=Ag| 71?2V (2), (2.4

where ¥(z) is a universal scaled function of the scaling
argumentz= /| 7|~.

The crossover behavior of the thermodynamic potential
of the system from the analytic Landau expandi2:3) into
the scaled equatiof2.4) in the asymptotic critical region,
also named the asymptotic crossover probférhas been
addressed with different theoretical methods by man
author§®%8(for a review see Refs. 21 and)5According to
a general solution of the renormalization-group
equation$®=% close to the critical point the fluctuations
renormalize the dimensionless temperatarand order pa-
rameter » in the singular part of the thermodynamic po-
tential (2.3), such that they become nonanalytic functions of

expression
empirically corrected crossover function into the six-term
Landau expansion, for example, has enabled this model to

7andz, represent the thermodynamic properties of pure fijitfs®®
— — in a much wider range of the temperatures and densities than
_ - a2A — N (y—2B)/4A )
To7=7Y Lo =Y g (29 the two- and six-term Landau model of Chehall03104

based on the spherical-model crossover function phenom-
enologically repaired for the scalar order parameter by Nicoll
and co-worker§2~9° CREOS-97°~"%1%0n the other hand,
represents the thermodynamic surface of pure fluids even in
+upptY(r 2P K (1), (2.6)  a bigger temperature rangep to T=2T.) than the six-term
Landau modet®%26 but with the crossover function ob-
where @=0.11, 8=0.325, y=2—-2B8—a=1.24, andA, tained by Kiselel’® as a simple Pade-approximant of the
=0.51 are universal nonclassical critical exponéff§,and  numerical solution of the RG equatiof’s®> However, even
Y (7,7n) denotes a crossover function. In E§.6) K(7) isa  with a well-determined crossover functiof, the extended
fluctuation induced kernel terfii;®*which is responsible for Taylor expansion2.6) diverges atp—0, and, therefore, in
the asymptotic singular behavior of the heat capacity in therinciple none of these crossover models can be used for
zero external fieldh=0, or =0 at >0, developing a “global” EOS.

and Eq.(2.3) takes a form

AF( T 77) _ aoTY_ a/ZAlWZY(y—ZB)IZAl
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In order to Qevelop a “glopal” crossover EOS, which_ K(T,v)=AK(AT,Av)+Kbg(T,v), (3.
reproduces the ideal gas equation in the limit of low densi-
ties, one needs to start from a full analytical expression fowhere the critical part of the Helmholtz free energy
the thermodynamic potential

F(T,p)=F"™{(T,p)+F%T,p), (2.9

whereF™T,p) is the residual part an@'(T,p) is the ideal ~In(Av+1)+AvPo(AT) (3.2

gas contribution. Then one needs to replace the singular paghq the background contribution is given by
AF(7,7) in Eq. (2.1) by the full expression obtained from

Eq. (2.9 Apg(T,v)=—AvPy(T)+AF(T)+AY(T). (3.3

AA(AT,Av)=A™(AT,Av)—A(AT,0)

AF(7,7)=F(T,p)=FuyT.p), (210 In Egs.(3.0—(3.3, AT=T/Toc—1 andAv=v/ve—1 are
where for one-component fluids the background contributiorflimensionless distances from the classical critical tempera-
Fuy(T.p) is an analytical function of temperature and den-ture To. and molar volume vg., respectively, Po(T)
sity, to be specified in the following. The “global” crossover =P(T,vqs) voc/RT is the dimensionless pressure and
expression for the thermodynamic potenti&(IT,p) in this KBGS(T):KVES(T,VOC) is the dimensionless residual part of

case can be written in the forfh the Helmholtz energy along the critical isochowve= v .
— Ed(T) is the dimensionless temperature-dependent ideal-gas
F(T,p)=AF(7,7)—K(7)+Fu(T,p), 2.1
(T.p) (7)) =K(7) bg_( p)_ (2.13 Helmholtz free energy.
where the renormalized parameterand » are given by Eq. In the next step, we need to replace the classical values

(2.5). In order to complete the transformation of the analyti-of AT and Av in the critical partAK(AT,Av) with the
cal thermodynamic potenti& (T, p) into the crossover form - onormalized values and 7. In the case where the classical
(2.11, one also needs to specify the crossover functionyjtical parametersT,. and vy, determined from Eq(A3)
Y(7,7). Ihe explicit expressionY(r,7) in Kiselev's  coincide with the real critical parametef, and v., the
approacfi'is discussed in the following. renormalizationAT— 7 and Av— 7 is given by Eq.(2.5).

For some cubic EO'8*!%the conditionT o= T, can in prin-
lll. CROSSOVER EQUATION OF STATE ciple be satisfied. However, in order to provide a better de-
escription of the vapor pressures and saturated liquid densities

above-described theoretical approach, an important role p&t low temperatu.res, for all cubic EOS the classical critical
longs to the definition of the order parameter that determined'0lar volumewy is usually chosen tolltielll:;lgger'than the real
which particular type of the thermodynamic potential should®itic@l molar volumer, (Or poc<pc).""In this work, a

be used in Eq(2.10. As was recently shown by Fisher dlffere_nce betwe_en real and cla_ssmal crltl_cal_volumes was
et al 19197 neither the dimensionless densiftyp= p/p— 1 effectively taken into account byuncorporatlng into E2.5

nor the molar volume\ v=v/v.— 1, but actually their linear the renormalized order parametgradditional term
combination should be used as the order parameter in one- — ..
component fluids. From the theoretical point of view, the T=1Y g (3.4
choice of the order parameter determines which derivative — _28)/4A 2-a)/2A :
(9°P13T?), or (#*ulaT?),_ is responsible for the diver- 7= Y O EE L (1 ) AwY 27,

gence of the isochoric heat capacity at the critical point. Inwhere7=T/T.—1 is a dimensionless deviation of the tem-
practice it appears that the VLE surface of a one-componergerature from the real critical temperaturg, n=v/v.—1
fluid is more symmetric im\p variable, rather than in».2®® is a dimensionless deviation of the molar volume form the
Therefore, traditionally in all above-discussed asymptoticreal critical molar volumey., andAv.=(ve— voc)/ voc<1
crossover modeldp was used as the order parameter, andjs a dimensionless shift of the critical volume. The exponent
as a consequence, in this CaﬁR/ﬂTz)pC*)m as|7—0. (2—a)/2A, for the crossover functiolY in the second term

For the GCS model this question becomes irrelevant becaude Eq. (3.4 has been obtained from the condition
we set in this model the coefficients, anday, in Eq. (2.8 lim,_o(9?9°/d7%), o7 . In this case, the corrections to
equal to zero, and, therefore, both derivatives remain finite ithe asymptotic singular behavior of the isochoric heat capac-
the critical point. Therefore, following Kiseléd,we chose in ity SC{HNxcAp272~92=<~A27 and SCPocApd21-a)
the GCS model the dimensionless molar voluteas the ~Awvi7?, which appear in Eq(2.7) from this term aty
order parameter. Althoughw is less symmetric in the criti- =0, are a higher order of magnitude comparing the
cal region, it is better behaved over a broad range of statasymptotic,x 7~ ¢, and the first Wegner correctiom,r*1~ ¢,
variables than the conventional density-based order paranterms. Asymptotically close to the critical point, the cross-
eter and ap— 0 it naturally provides a physically obvious over functionY — 0, the terme<A v, Y ¢~ 9221 pecomes neg-
conditionY =1 in the dilute gas regime. ligibly small in comparison with the main term
With Av as the order parameter, the thermodynamic po< 7Y (*=2A)/41 and Eq.(3.4) is transformed into the origi-
tential F(T,p) in Eg. (2.9 should be replaced by the classi- nal Eq.(2.5). Far away from the critical poifY =1 and the
E"l expression for the dimensionless Helmholtz free energyenoramalized order paramete_;r= 7+ (1+ 9)Ave= vl vy,
A=A(T,v)/RT written in the form —1 coincides with the classical order parameler

In developing a generalized crossover EOS within th
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Since the RG equations cannot be solved analytically, ndriple point of liquids, we added into the right-hand side of
rigorous theoretical expression for the crossover function cakg. (3.6) an empirical terny v, exp(—10%), where the co-
be obtained by this method. Therefore, in practice differenefficient v, is supposed to be positive and small<®,
approximants are used faf. The simplest one is a phenom- <1). This term is relevant only in dense liquids@t2p,
enological crossover function obtained by Kiselev(or »<—0.5) where exp{10%)>1. In the asymptotic criti-

et al,’*7683 cal and low-density regions this term is negligibly small and
24, practically disappears at—0 (or 7—©).
Y(q)= _a ' (3.5 Finally, the crossover expression for the Helmholtz free
1+q energy can be written in the form

whereq=(r/Gi)*? is a renormalized distance to the critical — T
point andr(7,7) is a parametric variable. The crossover A(T,v)=AA(7,7) =K(7,7)
funcuonY given by _Eq.(_3.5) coincides with the cor.resp(_)nd— — AvPy(T)+ AR T) +Ag(T) (3.7
ing crossover function in the CR LG model obtained in the
first order ofe expansion by Belyakoet al® In our previ-  with the kernel term given by E¢2.8). Asymptotically close
ous works’*"®the renormalized distancewas found froma  to the critical point(at q<1, or |7|<Gi at p=p, and | 7|
solution of the crossover linear mod@lM). In this study, <Gi? at T=T,), the crossover functio® «r®1, and the
following our recent work§ ~"°we findqg from a solution of  critical partAA in Eq. (3.1) obeys the scaling low2.4). In
the crossover sine modéesM) the intermediate regiortat q~1, or |7]~Gi<1 and ||

r ~GiP<1) AA corresponds to the RG-theory expression
( 2— a) 1 (2.6), while far away from the critical point ag>1

(|7|>Gi at p=p., or |5|>Gi¥ at T=T.) the crossover

2 n[1+viexp—10p)]+di7
B moGi?

p? T
4b ( q GI)
2 functionY — 1 and Eq.(3.7) is transformed into the classical

Y2881, (3.6 Helmholtz free energy3.1). The GC EOS can be obtained

by differentiation of Eq.(3.7) with respect to volume
wheremy, v¢, d;, and Gi are the system-dependent param-

eters, while the universal parametgs and b? can be set d
equal to the LM parametér?y, = 1.35978 The term=d,zin ~ P(»T) =~ RT( (9_)
Eq. (3.6) corresponds to the rectilinear diameter of the coex- i
istence curve, which appears from the cubic term in the Lan- RT[

Voc

dau expansion(2.1), as discussed earlier. Aty|<0.5, the = ”
Cc

(aAK) (aK)

—_ + —_

. . . . an an

linear-model crossover equation for the parametric varigble T

employed earlier by Kiseleet al%¢70190102j5 recaptured

from Eq (36) when parametepz_,o, while at p2>0 Eq IV. GENERALIZED CS MODEL FOR PURE FLUIDS

(3.6) asymptotically close to the critical pointg&l) is

transformed into the trigopnometric model originally devel-

opeizlrhbg/ ggﬁﬁ;gpydezoug?gﬁgg and (2.6) are, rigorously The e_xplicit form gf me PT EROS_and corres_ponding ex-

speaking, valid only in the region where the short-Pressions for functiond™(AT,Av), A7T), andPo(T) for

wavelength components of the order parameter can be e&?€ PT EOS are given in Appendix A. The PT EOS is a good

cluded from consideration and the system can be statisticallghoice for developing a GCS model because by setting

described with the effective Hamiltonian written in terms of — ¢=0 in the attractive term, it is transformed into the vdw

the long-wavelength components oAt the triple point ~ EOS. Withb+0 andc=0 it corresponds to the Redlich—

of a liqui i , by Kwong—Soave(RKS) EOS®7 and choosingg=c#0 the
quid, the long-wavelength fluctuations are negligibly ™"'* - - 18

small, the RG theory is not applicable anymore, and the’ T IS transformed into the Peng—Robins@R) EOS.

properties of the system should be described by the partition  Written in the dimensionless form, the PT EOS corre-

function with the microscopic Hamiltonian. As a conse- SPONds to the four-parameter corresponding states i8del

quence, the thermpdynamlc_ potential of liquid near the trlple P, =forT, ,pr 0 Zoc), 4.1)

point is an analytical function of temperature and density.

However, as was pointed out by Landau and Lifshitbe-  where P,=P/P,. and w is the Pitzer’s accentric factor.

cause of the strong interaction between molecules a generdllowever, as we mentioned earlier, the CS models based on

calculation of the thermodynamic quantities in liquids, orsimple cubic equations of state give only a qualitative de-

even their temperature dependence, is impossible. The peseription of the thermodynamic surface of pure fluids, quan-

turbation theory developed by Barker and Hendet¥bn titatively their prediction is very bad. This is issue not only

brings some relief in this grim prophecy of Landau and Lif- for the PT EOS, but also all other classical cubic E®%o

shitz, but this analytical theory is not valid in the critical provide an accurate representation, purpose, a complex EOS

region. Therefore, we do not believe that any theoreticaln combination with extended corresponding states principle

crossover expression for the thermodynamic potential ofs usually used®® In order to overcome this shortcoming of

dense fluids can be obtained analytically. In this work, inthe cubic EOS, we develop here a generalized CS model,

order to provide a physically obvious conditidfi=1 at the  which requires the same number of the input parameters as

Voc -

—FO(T)]. (3.9

In developing the GCS model for a reference EOS we
have chosen here a simple cubic Patel-TBj& EOQS109110
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the classical CS modéd.1), but reproduces the PVT surface methane
of one-component fluids with the much higher accuracy than N

X
X N
g & § &

196 K
190.567 k.
180K
165K
150 K

the classical cubic EOS. 10
With this in mind, we will use for the function,(T,) in
Eq. (A2) the CS expression proposed by Jechtira

ay(T)=1+0%T,—1)-20(1+0)(JT,~1), (4.2

P, MPa

where the shape-factor is given by

©=11.96583 —7.224 473 +4.938 447,

—0.805 807 (3.025 16Z.+ 0.543 518w
—(0.428 9817+ 1.520 1 10 ?) w?
+(3.79533K10 2 Z.—1.8126% 10 4 ws. (4.3

0
0 2 4 6 8 101214 1618
p, molsl”!

. . . FIG. 1. PpT data (symbolg for methane—Refs. 135-137eft) and
In the PT EOSZOC IS usua”y considered as an adJUStableethane—Ref. 138right) with predictions of the the GCS mod&urves.

parameter, but in principle, it can be expressed as a functiome open symbols correspond to the one-phase region and the closed sym-
of w and the real compressibilitg, .'%° We found that for  bols indicate the VLE data.
the GCS model a good approximation g is

Zo.=3tanh(—6.88156- 1.46574 w+32.8331Z;), (44  Gj 1=1.37355 10w ?(1—2.189 960 2+ 1.769 4403?)

where the pre-factofl/3) before the hyperbolic tangent en- +23.39587.+4.88317% 10 2 M,,. (4.9
sures for the PT EOS a requirement that attalind Z . the Using Eq.(4.9). the GCS model f L
classical compressibility ,.<1/3. Since even in the cross- sing Eq.(4.8), the model for one-component nonionic

over formulation a simple cubic EOS is unable to reproduceflulds formally can be written in the classical form
Cy data within an experimental accurdéywe set in the P.=fR(T, ,.p;;0,Z¢) (4.9

GCS model the coefficients, =a,; =0, the coefficientm, \where, however, unlike the classical CS mogel), the real

=0.852 was considered to be a system-independent... .
2 . - critical parameterd ., p., Z., and the crossover function
parametef? while the coefficientsd; and v, were repre- g : )
f~7, instead of the classical functidipt, are used. In order

sented as functions of the critical compressibility to apply the GCS model to real fluids, similar to the classical

d,=21.8356-83.4257, (4.5 CS model(4.1), one needs to know only the real critical
parametersS ., p., Z;, and the accentric facta.
v1=0.444163-3.613 75+ 7.4084Z2. (4.6 The numerical values of all coefficients in Edd.4)—

) o ) . (4.9 have been found from an analysis of the PVT and VLE
After this redefinition, the generalized correspondinggaia for methane, ethane, carbon dioxide, water, and refrig-
state principle can be written in the form erants R32, R125, and R134A. The predictions of the GCS
P, =fR(T, ,p, 0,2, Gi), (4.7) model fpr me.thane, e_thane, carbon dioxide, _and. water in
comparison with experimental data are shown in Figs. 1 and
where f°R for the PT EOS is determined by E€8.8) with 2. In general, very good agreement between the GCS model
a;, Zoe, Mg, dq, andv, given by Eqs(4.2—(4.8), and the and experimental data for all four fluids is observed. We
Ginzburg number is an additional CS parameter. Similar tovould especially like to emphasize the excellent agreement
the classical CS principle, the accentric faciom Eq. (4.7) between experimental liquid- and vapor-density data and
determines the steepness of the vapor-pressure tthrve,predictions of the GCS model in the critical region Bt
while the Ginzburg number Gi is responsible for the flatness=T=0.9T.. Only at low temperature$=<0.6T,. for meth-
of the vapor—liquid coexistence curve in therplane’*By  ane and water does the GCS model predict systematically
definition, the Ginzburg number depends on the coefficientiigher (up to 3% for CH and up to 7% for HO) values of
ap andug in the Landau expansiaf2.1), critical volumev,, liquid densities than the experimental data. But outside from
and the effective average radius of the interaction betweethis region, atT=0.6T;, the GCS model reproduces the
molecules. In the critical region any EOS can be representesiaturated pressure and liquid density data for all fluids with
in the form of the Landau expansiai.1), therefore, the an average absolute deviatiGAAD) of about 1% and the
coefficientsa, and ug, in principle, can be expressed as vapor density with AAD of about 2—3%. In the one phase
functions of w and Z.. Since in many nonionic fluids the region atp<2p. the GCS model reproduces the PVT data
critical volume v, directly related to the molecular weight with an AAD less than 2% and the liquid densities (at
M, , "t we assume that in these fluids the Ginzburg numbek2p, with an AAD of about 1-2%.
can be also expressed as a function«9fZ,, and M,, . We should note that some simple EOS involving expo-
Therefore, in order to make the GCS model more predictivepential attractive term, like a revised Dieterici—Carnahan—
in the next step we represent the inverse Ginzburg number iStarling (DCS EOS developed recently by Sadtfsfor ex-
the form ample, are also capable of representing the liquid—vapor
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H,0 sides, the DCS EOS, as well as all other analytical EOS, fails
b to reproduce the theoretically well-established asymptotic
scaling laws in the critical region.

Since experimental data for methane, ethane, carbon di-
oxide, and water have been partially used for the optimiza-
tion of the GCS model, it is not unexpected that the GCS
model yields a good description of the thermodynamic sur-
face in these fluids. From a practical point of view it is more

interesting to test the GCS model against the PVT and VLE
data for other fluids, which have not been used in the model
T optimization. In this work, we applied the GCS model for the
prediction of the PVT and VLE properties of more than 30
° p1r?10|-|'115 B0 o rzn%m 00 pure fluids listed in Table I. In Fig. 3 we show the experi-
' mental saturated pressures and densities data for higher
T e e oo acions 1 e s ey alkanes, up tan-eicosane (G4, in comparison with
(curves. The empty symbols correspond to the one-phase region, and thBredictions of the GCS model. The dashed curves in Fig. 3
closed symbols indicate the VLE data. represent the values calculated with the CR SAFT EOS de-
veloped earlier for methane, ethanehexanen-decane, and
n-eicosane by Kiselev and Ef$.For all n-alkanes, including
densities in some monatomic fluids and methane with similaP-€icosane, excellent agreement between the GCS model
accuracy. But the DCS EOS exhibits fast deterioration of théredictions and experimental data is observed. One can see
quality of description of the saturated densities with increasfrom Fig. 3 that the GCS model without any adjustable pa-
ing the carbon atoms in-alkanes and is practically inappli- rameters describes the PVT and VLE propertiea-alkanes
cable for water and other polar and associated fluids. Bepractically with the same accuracy as the CR SAFT EOS

-

60

-
o

50

40

P, MPa

30

20

| [APWS.95

+ critical point
| GCS mode| 1 0

o =~ N W kA OO N oW

o

TABLE |. System-dependent constants for the GCS model.

Te (K) pc (mol Iil) Z; @ My,
Methane 190.564 10.122 0.286 773 0.0110 16.042
Ethane 305.322 6.8701 0.279 699 0.0994 30.069
Propane 369.850 5.0000 0.276 247 0.1520 44.097
n-Butane 425.160 3.9200 0.273 937 0.1930 58.124
n-Pentane 469.650 3.2155 0.266 800 0.2510 72.151
n-Hexane 507.850 2.7108 0.266 241 0.3000 86.178
n-Heptane 540.110 2.3352 0.260 327 0.3510 100.205
n-Octane 568.950 2.0310 0.259 166 0.3960 114.232
n-Nonane 594.550 1.8400 0.250 664 0.4440 128.259
n-Decane 617.650 1.6430 0.248 792 0.4882 142.284
n-Eicosane 767.300 0.8357 0.200 648 0.9070 282.556
R12 385.010 4.6974 0.274 586 0.1795 120.910
R134A 374.274 5.0500 0.258 668 0.3270 102.300
R22 369.320 5.9559 0.269 071 0.2210 120.910
R32 351.350 8.2080 0.241 679 0.2770 52.0200
R143A 345.750 5.0810 0.257 761 0.2746 84.0440
R125 339.330 4.7946 0.268 274 0.3030 120.020
Methanol 512.580 8.4746 0.224 213 0.5590 32.0420
Ethanol 516.250 5.9880 0.248 359 0.6350 46.0690
Propan-1-ol 536.710 4.5830 0.252 790 0.6240 60.0970
Butan-1-ol 562.900 3.6500 0.258 622 0.5900 74.1230
Pentan-1-ol 588.150 3.0300 0.263 949 0.5800 88.1500
Hexan-1-ol 611.400 2.6250 0.263 036 0.5600 102.177
Heptan-1-ol 633.150 2.2980 0.257 989 0.5600 116.204
Octan-1-ol 658.150 2.0430 0.267 270 0.5300 130.231
Nonan-1-ol 683.150 1.8370 0.256 367 0.5250 144.260
Decan-1-ol 705.100 1.6670 0.273 205 0.4840 158.390
CG, 304.128 10.625 0.274 588 0.2250 44.0100
H,O 647.096 17.874 0.229 450 0.3440 18.0158
D,0O 643.847 17.776 0.227 750 0.3440 20.0275
N, 126.200 11.173 0.285 745 0.0400 28.0130
0O, 154.580 13.623 0.284 424 0.0210 31.9990
Ar 150.660 13.395 0.291 369 —0.004 39.9480
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FIG. 4. The vapor pressuiéeft) and saturated densityight) data for hy-
drofluorocarbons R1@Refs. 176179 R134A(Refs. 180, 18], R22(Refs.

182-184, R32 (Ref. 185, R143A (Ref. 186, and R125(Refs. 187-18p
500 630 800 (symbolg with predictions of the GCS modébolid curves and the simpli-
— T T fied crossover SAFT EOS—Ref. {8ashed curves

5 . |
i values of the liquid densities than the experimental dsea

41 ) Figs. 4 and & The dot-dashed curves in Fig. 6 correspond to
the predictions of the simple CS model based on the cross-

Q“f_ 3| 1 over SAFT EOS? As one can see, in the strong polar and
> associating fluids such as R32 and methanol the CR SAFT
a EOS " "gives at low temperatures a better representation of
21 ) the saturated liquid densities than the GCS model based on

the simple cubic EOS. The AAD achieved with the GCS

1l i model for all data presented in Figs. 1-6 are summarized in

Table II.
As it was pointed out earlier, although the six-term Lan-
A i’ ‘ ‘ dau modet®®?® and parametric crossover moffei’19?
50 200 350 500 650 800 have a theoretical foundation in the renormalization-group
theory and have been confirmed in the second ordet of
T,K exXDaNSi :
pansion, affT<T. they cannot be analytically extended
FIG. 3. The saturated densityop) and vapor pressurgbottom data for ~ deep into the metastable region. That restricts their applica-
methane(Ref. 135, ethane(Refs. 138, 145-148 n-butane (Refs. 147,  tion to the interface modeling and the surface tension calcu-
149-153, n-hefxanz(RefE. I;54_h16}3 g-decaHEf(RﬁfS- 164—13)1;1:13 lations. As one can see from Figs. 1 and 2, the sine-model
n-icosane—Ref. 17%symbols with predictions of the GCS modésolid  phased GCS EOS, unlike the parametric crossover
curves and the crossover SAFT EOS—Ref. {tfashed curvgs modef®-74192 and cubic crossover EOS based on the LM
equation forY,®3 can be extended into the metastable region
and at temperaturéb< T, represents analytically connected
specially optimized to the experimental data for theseyan der Waals loops. This, together with the high accuracy of
substance§’ the representation of the PVT and VLE surface near to and
Itis usually pointed out that a corresponding-states prinfar from the critical point, makes the GCS model extremely

ciple based only on the accentric facwris not applicable  efficient for the direct interface and surface tension calcula-
for polar and associating fluids! Therefore, it is interesting  tions.

to test the GCS model against experimental data for these
fluids. One of the fluids, kD, was already considered earlier
(see Fig. 2 A comparison of the predictions of the GCS V. INTERFACE AND SURFACE TENSION

model with the saturated pressure and density data for the |n the density-functional theory, the surface tension on
hydro-fluorocarbons R12, R134A, R22, R32, R143A, andhe planar liquid—vapor interface is defined'4s*®

R125 is shown in Fig. 4, and in Figs. 5 and 6 fealcohols.

In the entire temperature regidR<T<T,, the GCS model o=2 f”co(a_p
reproduces the saturated pressures for all fluids shown in w

Jz
Figs. 35 with an AAD less than 1%. The GCS model alsc;?herep(z) is density of fluid at a distance. The density

2
dz, (5.1

gives very good description of the saturated densities in an rofile p(z) can be found from the optimization of the func-

beyond the critical region. Some discrepancy between pre-

. . oo o ional
dicted and experimental values for liquid densities is ob-
served only at low temperatures in R32 and methanol, where B o ra 5

the GCS model predicts systematically lowemp to 5% f[p(Z)]—f dre [ [A(p)+co(Vp)©ldz, (5.2
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FIG. 5. The saturated pressure data in the norfted) and logarithmic
(bottom scale for methandlRefs. 190, 19}, ethanol(Refs. 190, 192, 193
propan-1-olRefs. 190, 19% butan-1-ol(Refs. 190, 195 pentan-1-o[Refs.
196-198, hexan-1-ol(Refs. 196—198 heptan-1-ol(Ref. 199, octan-1-ol
(Ref. 200, nonan-1-oRef. 200, and decan-1-ol—Ref. 20@ymbolg with
predictions of the GCS modésolid curve$, the crossover SAFT EOS—
Ref. 77 (dashed curvgs and crossover SAFT CS model—Ref. 7&ot-
dashed curves

600

whereA(p) = pA(T,p) is a Helmholtz free-energy density of
the bulk fluid. Optimization of the function#b.2) at condi-
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FIG. 6. The saturated density data for methaiRefs. 190, 191, 201, 202
ethanol (Ref. 190, propan-1-ol(Refs. 190, 194 butan-1-ol(Refs. 200,
203, pentan-1-ol (Refs. 197, 204 hexan-1-ol (Refs. 196, 197, 205

heptan-1-ol(Ref. 199, octan-1-ol(Ref. 200, nonan-1-ol(Ref. 200, and

decan-1-ol—Ref. 20@symbolg with predictions of the GCS modésolid

curves, the crossover SAFT EOS—Ref. Tdashed curvesand the cross-
over SAFT CS model—Ref. 7@ot-dashed curvés

1/2

dp | AA(p)
a7 | o (5.9
and the surface tension is given by
PL -
o=cg?| TAA(p)1¥dp. (5.5
pv

In the Landau theory of inhomogeneous fluldshe excess

part of the free-energy densit¥A is given by Eq.(2.1)
where the order parameter=p/p.— 1 and the ordering field
h={ un(T,n) — up(T,pc) 1/RT, that leads to the MF expres-
sion for the surface tension

(5.6

while in the scaling theory the asymptotic behavior of the
surface tension in the critical region is given'#/

o=0o|7,

o=oy| %", (5.7
where »=0.63 is a critical exponent of the correlation
length.

In the CGS-DFT model developed in this work, we used
Eq. (3.7) for the calculation of the excess free energy-density
AA(p)=pRTAA(T,p) with the parameters and7 as given
by Eq. (3.4). The temperature dependence appears in the
CGS-DFT model through the excess free-energy density

AA(p) and the parametex,. In our previous study?>*??we

tion N=const by Langrange’s method leads to the Euler—

Lagrange equation

dAA(p)  d%

T—cod?=0, (53)

where AA(p) =A(T,p) — pu(T,py L) is an excess part of
the Helmholtz free energy density, angu(T,py )
=(dpAldp)t is a chemical potential of the bulk fluid along
the saturated curve=py  (T). The first integral of Eq(5.3

is

TABLE Il. Percentage average absolute deviatighAD %) between ex-
perimental data and values calculated with the GCS model.

Liquid Vapor

Region densities densities Pressure
One-phase 1%-2%
(p=2p.)
Two-phase 1%-2% 2%-3% 1%

(T>T>0.6T,)

Two-phase 2%—-3% 3%-5% 1%—-2%
(T<O0.6Ty)
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FIG. 8. The surface tension datdef. 206 for methane, ethan@-hexane,
n-octane,n-decane,n-dodecanen-pentadecane, and-icosane(symbolg
with predictions of the GCS-DFT modéturves.

prediction of the GCS-DFT model for water with experimen-
tal datd?® and with the values calculated with the asymptotic
crossover model developed earlier by Belyaletal 1>* The
latter one is a phenomenological generalization of the
1 renormalization-group model, exact to the first order indghe
expansion. This model contains the Ginzburg number as a
parameter, and in the critical regidat | 7| <Gi), reproduces
the scaling-law behaviof5.7) while at Gi<|7|<1 it corre-
sponds to the MF Eq(5.6). As one can see, in the critical

] region both models practically coincide and they both are in
excellent agreement with experimental data. However, at low
temperatures the asymptotic crossover model by Belyakov
et al1?*gives systematically higher values of the surface ten-
sion than experimental ones, while the GCS-DFT model fol-
lows experimental data with a high accuracy down to the
temperature T=300 K. Only at low temperatures,T
=300 K, do systematic deviations of the GCS-DFT predic-
tions from experimental data appear. These deviations are
small (less than 3% at=273.16 K) and we should contend
that in general the GCS-DFT model yields an excellent rep-
resentation of the surface tension in water.

In the case when no experimental data for surface ten-
sion are available, or the experimental information is scarce,
showed that for water, a good estimate for this parameter ir the estimation of the parameteg in nonionic and non-
Co= kBTP%/B- Following that study, for ordinary and heavy associating fluids one can use a simple corresponding-state
water we use here expression

Co=(1-k0)’keTp¢">, (5.8

O IAPWS-94
O'OTZVYG; cg=215
GCS+DFT; x,=0.33

0 1

580 600 620

T, K

FIG. 7. The surface tension data for water—Ref. 1&&nbolg with pre-
dictions of the asymptotic crossover model by Belyaletval—Ref. 124
(dot-dashed curyeand GCS-DFT mode(solid curve.

1.91w1?
~ (1+0.4050)2

which appears to be a good approximationriealkanesup
Co= (1— ko) 2kgTopl3 (5.9 to GgHsp) and CQ. In cryogenic quu_ids such as nitrogen

0 o) ®8lclc ' and oxygen, Eq(5.10 usually overestimates values for the
where kg is Boltzmann constant and the parameigr< 1l parametetc,. Therefore, in order to provide a more reliable
was introduced to take into account a difference of the preestimate for the surface tension in cryogenic liquids, a pre-
factor (1— kg) in real fluids from unity. Similar to the accen- factor(1/3) should be applied to the parameigy calculated
tric factor ,**! the coefficientc, can be extracted from the with Eq. (5.10. A comparison of the GCS-DFT model with
surface tension measured®&t0.7T, or close values. surface-tension experimental data for severallkanes is

Because of the hydrogen bounding and strong orientashown in Fig. 8. The solid curves in Fig. 8 correspond to the

interaction between molecules, water is always a challengingalues calculated with the parametey extracted from the
object for modeling. In Fig. 7 we show a comparison of theexperimental data, while the dashed curves represent the pa-

Ko=1.194X 102MW[1 , (5.10

while for all other fluids we adopt the temperature-
independent parameteg in the form
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T T T T
1 ©  CH, b(x)=2, bWx;, c(x)=2 cWx;, (6.1

O CO, i |

E 2')2 where the index denotes the component of the mixture, and
0 & A T for the parametea the conventional van der Waals mixing
N — GOSM+ @M,) rules are used. The critical parametdrgx), v¢(x), and
E P.(x) for binary mixtures are determined from the critical-
) point condition$®
\; 1 au &Z,LL 83,u,
g ), o (5l o (5l =0
e Te.Pe Te Pe Te.Pe

(6.2

whereu = u,— w1 =(dA/9x) 1, is the chemical potential of
a mixture. Using general thermodynamic relatigese Ap-
pendix B, the conditions(6.2) can be represented in the
form>®

-3 -2 -1 0 9P 2P 2P
|°g1o (-7) (%)T =0, (W)T =0, (W)T >0,

cMc c'Mc c'Mc
6.3
FIG. 9. The Sugden parameter déRef. 125 for methane, carbon dioxide, ( )
nitrogen, oxygen, and argofsymbol$ with predictions of the GCS-DFT  which determineT.(x), v.(X), and the chemical potential

model (curves. For nitrogen, oxygen, and argon a pre-fadf3) in Eq. |, (x) of a mixture. Comparing these conditions with the
(5.10 for the parametex, was applied. corresponding conditions for one-component flisise Eq.
(A3)] one can conclude that in the critical region the equa-
tion of state of binary mixtures at fixed chemical potential
lgnras the same analytic form as, or is isomorphic to, the EOS
of one-component fluid® In a more general formulation,
the principle of critical-point universality—>° means that
with adding into the system a density variak|ehe thermo-
dynamic potential of mixtures

rameterk, calculated with Eq(5.10. As one can see, in
both cases very good agreement between the GCS-D
model and experimental data for aflalkanes including
n-eicosane (GyH,,) is observed.

In Fig. 9 we show the predictions of the GCS-DFT

model for the Sugden parameter
n

S= 2—0- (51]) ’A(T! V!Iu’i:1,2,...n):K(T!V!Xi:l,Z,...n)_2]_ p’ixi (64)
g(pL—pv) =

(whereg is the acceleration due to the grayitpgether with ~ at fixed field variablez;=w;/RT, related to composition
experimental data for CH CGO,, N,, O,, and Ar obtained x;= —(&A/&ﬁi)T,VVmﬁi, has the same analytical form as the
by Gielenet al'* Since the Sugden parameter involves si-thermodynamic potential of a one-component fI&T, v).
multaneous calculation of the surface tension and vaporFherefore, in order to reproduce the nonanalytical singular
liquid densities, it is a good test for the physical self-behavior of binary mixtures in the critical region one should
consistency of the quel in the. critical region. Again, as oN€gnsider the thermodynamic poten#®(T, »,72), rather than
can see from Fig. 9, in the entire temperature regisal . the Helmholtz free energﬁ(T,v,x). It means, that for the

down 1o dimensionless temperatures i =10 . good hysically self-consistent representation of the thermody-
agreement between experimental data and predicted vaIuE mic surface of fluid mixtures close to and far away from

of the Sugden parameters is observed. The predictions of tt}ﬁe critical region, not only a crossover EOS for pure com-

: 124
asympotic crossover model by Belyak@t al*= for the. onents, but also the field-varialEV) mixing rules should
Sugden parameters are not shown in Fig. 9 because in t used

entire temperature range they practically coincide with In this work, we developed for binary mixtures the

the GCS-DFT curves. GCS-FV model formulated in terms of the field variaide
=exp@)/[1+exp)], which related to the composition

VI. EXTENSION OF THE GCS MODEL TO MIXTURES through the thermodynamic relation

In order to apply the GCS model to fluid mixtures, one _ | oA
needs to formulate the mixing rules for the system-dependent X~ _X(l_x)<§) : 6.5
parameters of the model. For all classical EOS, these mixing T
rules are usually formulated in terms of compositignthat ~ For the thermodynamic potentidl we use in the GCS-FV
is physically correct far away from the critical point and canmodel the GCS model for pure fluids as determined by Egs.
be justified by direct statistical mechanics calculatibhin (3.7, and (4.2—(4.8), but with the molecular weight and
the original PT EOS%0 the coefficientsb and ¢ are  accentric factor expressed as linear functions of the field
simple linear functions of composition variable,
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FIG. 11. VLE data for methaneethane mixtures by Wit al. (Ref. 128 in
comparison with values calculated with the GCS-FV mddelid curves,

CREOS-97—Ref. 67{dot—dashed curvgsand the GCS-XV modeflong-
dashed curves

FIG. 10. VLE data for methaneethane mixtures by Wichterle and Koba-
yashi (Ref. 207 in comparison with values calculated with the GCS-FV
model (solid curve$, CREOS-97(dot—dashed cureysand the GCS-XV
model (long-dashed curves

M (X)= >, MD%, w(x)=2, 0% . (6.69  entropy of a binary mixture can be chosen so that the field
[ i variableX=x not only in the pure component limitx€0
Since in the nonreacting systems the zero level of the er@1d X=1), but also along the whole critical locug,(X)
tropy Sy=—dA%/dT|;_, can be chosen arbitrary, the tem- — T<(X) and »(X)=»c(x). With the CLC given by Eq.
perature dependent ideal gas part of the Helmholtz free er{6-8), @ general thermodynamic relatié8.5) can be written
ergy for binary mixturesA¥(T)=AY(T)(1—x) +A%(T)x is " the form
usually considered without a linear terail. In this work, IAR IR,
we consider the ideal gas paff%(T %) for the GCS-FV X=X—X(1-X) (J‘) +<g>
i X axX
model in the form Tv T

AT %) S dAAu, (da; 3, dTg|
—RT = IN1L=%) +8p(X) +E,(X) 7(X) i T T, dx 7(X) (6.9
+Eld(T)(1—7() +E2d(-|-)7(, (6.7 that provides in the GCS-FV model a relationship between
- ~ . . ) . andX at givenT and v.
wherer(X)=T/T;(X) —1 is a dimensionless deviation of the In this work, we applied the GCS-FV model to the pre-

temperature from the critical temperatdrg(X) at fixed field  giction of the VLE surface in metharesthane mixture. In
variableX and the coefficien®, is determined from the so- o Gcs-FV model for methareethane mixtures we

called critical line conditio(CLC) adopted the same critical locus as obtained earlier by Kiselev
o ARy, % dT, in th:—:- ?REOfS-Qif while for the paramete®; we use a
- w T simple linear function

— ~ a1(X)="a+aX, 6.1
ve dvoe— dP, AL 1) =@t e (610
- UT?.)C dx Po(Te) +Ave ax e + dx /., where the coefficient&;=0.53 anda,= —3.65 have been

found from a fit of the model to the few low-pressure VLE
_ _ A, dT, data points aff =230 K obtained by Weét al?® Compari-

+AN T —AS(To) + T % (6.8)  sons of the GCS-XV model with experimental VLE data for

¢ methane- ethane mixtures are shown in Figs. 10 and 11. The

where Aﬁbg=z\bg—ln(1—7<). The CLC, first introduced by dot-dashed lines in Figs. 10 and 11 represent the values cal-
Moldover and Gallaghé?® and later modified by culated with the CREOS-§% and the long-dashed curves
Rainwatet®’ for the Leung—Griffiths model and by Kiselev correspond to the GCS-XV model with the mixing rules for-
et al®"%for the CREOS-97, implies that a zero level of the mulated in terms of composition. In the GCS-XV model, the
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coefficientsb(x) and c(x) were calculated with Eq(6.2), COZ+CZH6
while for the coefficienta(T) we used the modified van der —— i
Waals mixing rules in the forfi 298.15 K
. 293,15 K == CREOS-97
T e dia2d1.15 K — GCS-FV
806(X) = 2 % 2 X Va6 (Toe) 362 (Toc) (1 ki), 6L 1

(6.10
kij:kji! k“:k“:O,

where a temperature-dependent functigyfT) is calculated
with Eq. (4.2), the accentric factor

o(X)=2>, oWx (6.12)

P, MPa

and the pseudocritical paramet@ig(x) andvy.(x), and the
critical compressibilityZy.(x) are determined by EqA2)
with the coefficients) ,, Q,, andQ). given in the Appendix

[see Egs.(A6) and (A9)]. The coefficientk;,=—1.63 2 245 15K

X 10~ 2 for this mixture was found from a fit of the GCS-XV il

model to the PVT-data obtained by Hayretsal}?° and by 20315 K

Bespalowet al**°As one can see from Figs. 10 and 11, in the Tt

critical region the GCS-FV model practically coincides with S —_—

the CREOS-97, while far away from the critical region it is 0.0 0.2 0.4 0.6 0.8 1.0
close to the GCS-XV model. The GCS-XV yields very good X, mol. frac. C,H,

representation of the VLE surface at low pressures and com-

positions, but on moderate compositions, the GCS-XV prefle. 2159 (VLE bdal‘;% for carbon diOXit‘:']emTa”e r*}iXt‘IJff$dReftSH L8 u
. . " . . . , symbolg in comparison with values calculated with the -
dicts in the critical region the systematically higher pressureﬁmdel(solid curve$ and with the parametric crossover EOS by Kiselev and

than experimental data and values calculated with the&yikov—Ref. 68 (dot-dashed curves
CREOS-97°

In this work, we also applied the GCS-FV model for the
prediction of the VLE surface in the carbon dioxidethane  mixtures, we adopted the same critical locus as employed
mixture, which contains a critical azeotrope, and, thereforeearlier by Kiselev and Rainwatff, while parametersi,
is interesting for testing of the GCS-XV model. For the car-=1 anda,= —4 were determined from an optimization to a
bon dioxidet- ethane mixture we used the critical locus ob- few bubble-curve data points @t=319.3 K*? As one can
tained by Kiselev and Kuliko® while the coefficientsy;  see, at this isotherm excellent agreement between experimen-
=2 anda,= —2.7 have been found from an optimization of tal data and GCS-F¥DFT predictions is observed. At
the model to the few VLE-data points obtained &t lower temperatures, the GCS-FV model predicts the system-
=263.15 K by Brownet al*** A comparison of the predic- atically lower values of the surface tension than experimental
tions of the GCS-FV model with experimental data in carbondata, but in general an agreement between theory and experi-
dioxidet ethane mixtures is shown in Fig. 12. Again, a very ment is fairly good. The dashed curve in Fig. 13 represents
good agreement of the GCS-FV model with all experimentathe values with two-scale-factor-universaliffSFU model
data in the entire temperature range from critical locus dowrby Sahimi and Taylot>® Since both models, GCS-FV
T=223.15K is observed. At low temperaturgat T +DFT and TSFU, are based on the principle of the critical-
<270 K) the GCS-FV model even gives a better represenpoint universality it is interesting to compare the predictions
tation of the VLE surface in carbon dioxidesthane mix- of the TSFU model for the surface tension in carbon
tures than the parametric crossover md8dh the critical  dioxide—n-butane mixtures with our calculations. As one
region atT=283 K both models practically coincide. can see from Fig. 13, in the critical region both models give

The compositions of the vapor and liquid phases in bi-very similar predictions.
nary mixtures usually do not coincide, while the field vari-
ablex ha_s th_e same_value in both pha_lses. Therefore, the_VLléu_ CONCLUSION
surface in binary mixtures by definition belongs to the iso-
morphic patX=const. This means that for calculation of the In this paper, we describe a general approach for devel-
surface tension in a binary mixture one can use(Bdp), but  oping a “global” crossover EOS, which in the critical region
with the excess free energy-density calculate&atconst reproduces theoretically well-established scaling laws, and in
with the corresponding GCS-FV model. We are not aware ofhe limit of low densities is transformed into the ideal gas
any experimental surface-tension data for methagthane equation. Using a simple cubic EOS as a reference EOS for
and carbon dioxid¢ ethane mixtures, therefore, in Fig. 13 one-component fluids, we developed a generalized corre-
we show the predicted values of the surface tension againsponding state model for pure fluids and fluid mixtures,
experimental data for carbon dioxidex-butane mixtures®>  which in addition to the accentric facter contains also the
In the GCS-FV model data for carbon dioxiderbutane Ginzburg Gi as a parameter. In general, the Ginzburg number
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is independent CS parameters, but for nonionic and nonpoly- CO, + n-butane
meric fluids we expressed Gi as a simple function of the —
classical CS parameters,andZ., and the molecular weight | 319.3K A Hsuet al. (1985)
M,,, thus formally reducing the number of the input param- —— GCS-FV + K (oM,)
eters in the GCS model to two. Unlike all other “global” sr \ TSFU (Sahimi&Taylor, 1991) -
crossover models developed before, the GCS model was for- I
mulated in the closed analytical form and at temperatiires - 3443 K
<T. can be extended into the metastable region for repre- € 6 “n
senting analytically connected van der Waals loops. This al- E - \
lowed us to develop on the basis of the GCS model and the 5 ~ S\
density functional theory a generalized CS-DFT model for 4 o
the volumetric properties, VLE-surface, and surface tension. | 3776 K AN
The GCS-DFT model requires only the critical parameters A & ~
T., P¢, pc, and the accentric factap as input, but repre- 2 I AN N
sents thePpT and VLE data, as well as the surface tension X
of one-component fluidgpolar and nonpolarin a wide ™ e -
range, including the nearest vicinity of the critical point, with %_0 0.2 0_ 0.6 0_ 1.0
a high accuracy. In the critical region, the GCS-DFT model
reproduces all theoretical scaling laws for the liquid—vapor
densities, surface tension, and the Sugden parameter. FIG. 13. The surface tension dat@ef. 132 for CO,+ n-butane mixtures

In spite of the obvious advantage of the GCS model ovelsymbols with predictions of the GCS-F¥ DFT model(solid curves and
all other “global” EOS developed earlier, it also has a short-the TSFU modeldashed curvgsby Sahimi and Taylo(Ref. 133.
coming in describing the saturated liquid densities for strong
polar and associating fluids at low temperatures. We found
that for these fluids the crossover SAFT EOS developed iRimple CS model, which is able to predict the thermody-
our previous papef8 " yields better results than the GCS namic surface and interface in pure fluids and fluid mixtures
model. However, we need to note that the problem appears igith high accuracy. Therefore, for the coeffici@t(X) we
the range of temperatures and densities where the crossovgged the simplest linear relatidf.10 with the parameters
function Y=1 and, therefore, is not specific to the GCS getermined from the low-temperature low-pressure VLE data
model only, but is rather a “genetic” defect of all cubic EOS for each mixture. In this case, the GCS-FV gives in the one
in general. At low temperatures, the crossover SAFT EOS il’bhage region ap= 165)(: Systematica”y lower values of
agreement with experimental data yields an almost lineapressure than experimental data, and we anticipate that this
temperature-dependence for the saturated liquid densitiesimple linear relation for the mixing coefficief (X) can
while the CR LCS, similar to all classical cubic EOS, gives aalso cause some problems in the extension of the GCS-FV
parabolic-like dependence. Therefore, in order to improvénodel to multicomponent and more complex mixtures with
the representation of the low-temperature liquid-densitiegolatile and nonvolatile components. As an example we con-
data for strong polar and associating fluids, the referencsidered here the surface tension in £SQi-butane mixture
cubic EOS in the GCS model should be replaced on thgsee Fig. 13 At low temperatures and compositions the
SAFT EQOS, as the most promising one. GCS+DFT model does predict systematically lower values

In this work, we also extended the GCS model to binaryof the surface tension than experimental ones. This can be
mixtures. Using the principle of the critical point universality partially explained because the critical locus by Kiselev and
we developed the GCS-FV model with all system parameterRainwate?’ does not correspond exactly to the experimental
expressed as functions of the field variakleWe compare critical locus by Hstet al,'*? and because E@6.10) for this
this model with experimental data for methanethane and system should be replaced with other more accurate correla-
carbon dioxide-ethane mixtures and with the GCS-XV tion. The isomorphic corresponding-states expression formu-
model formulated in terms of composition The GCS-FV  lated in terms of the excess compressibility factor
model developed in this work reproduces the VLE surface oA Z(%)®®"%is a good candidate for this replacement, among
binary in the critical region with the same accuracy as theother options.
CREOS-97° and far away from the critical point the The GCS-DFT model is based on the renormalization-
GCS-FV model reproduces the VLE data with the same acgroup and density functional theories and, therefore, except
curacy as the GCS-XV model, while the GCS-XV model for the reference EOS, does not contain any restriction on its
fails to reproduce the critical locus of mixture with experi- application to other systems with the scalar order parameter.
mental accuracy and predicts in the critical region systematiThis generality of the GCS model allows us also to apply this
cally higher values of pressure than experimental ones.  model for the analysis of the phase behavior of much more

We should point out that the goal of this work was not tocomplex systems than simple fluids and their binary mix-
develop a new, more accurate EOS for some particular mixtures. Recently Elliott and co-worké?é presented experi-
tures, and the methamesthane and carbon dioxideethane mental ISiS data for the excited nuclei, which have been
mixtures have been chosen only as examples. The major oaterpreted by the authors as the liquid—vapor equilibrium of
jective of this work was to develop a generalized but stillfinite neutral nuclear matter. Comparisons of experimental

x, mol. frac. CO ,
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Excited Nuclei thermodynamic surface, interface properties, and wetting
: ‘ transitions in such systems as polymers and polymer solu-
1 tions, surfactants, and micro emulsions. We do believe that
successful solution of this problem is possible only after
comprehensive understanding of the physical nature of these
phenomena and developing an adequate model for their de-
scribing. We are not aware of any other theoretical model,
with the same degree of simplicity, physical self-consistency,
and accuracy of representation of the thermodynamic and
surface properties of fluid systems close in and far beyond
the critical region as the GCS-DFT model. Therefore, we
consider this work as an important step in this direction.
Research toward the application of the GCS model to the
bulk properties and interface, as well as adsorption and wet-
ting transitions in more complex fluid systems is now in
progress and the results will be presented in future publica-
4 tions.

@® exp (Elliott et al., 2002)
— GCSM (Gi=0.1)
0.8 +  critical point.
------ Ar (Z.=0.29; o= -0.004)

(&)
o
~—
. | 2,=0.30
o w=-log P (0.7)-1=-0.25
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2 & 1
o @ exp (Elliott et al., 2002)
a F == Guggenheim model
—— GCSM (Gi=0.1) APPENDIX A: PATEL-TEJA EQUATION OF STATE
- +  critical point s
1 P The Patel-TejaPT) EOS*!can be written in the
form
b RT a (AL)
O ) I — _ ,
v—b v(v+b)+c(v—Dh)
00 02 04 06 08 1.0 _ | _
/T whereP is the pressurey=1/p is molar volume, anR is
c the universal gas constant,
FIG. 14. The vapor pressufep) and saturated densitjpotton) data for- 2 (?)c
finite neutral nuclear matter—Ref. 134ymbols with predictions of the a(M=Q,—=—ax(T)=ag.a(T),
GCS model (solid curve$ and Guggenheim model—Ref. 13#lashed POC
curves. The dot-dashed curve represents the values of saturated pressures 2 (A2)
calculated with the GCS model for argoa € —0.004) and the shaded area b=0 RToc -0 RToc
corresponds to “normal” fluids withw=0. TP Py =2 Poc '

where a,(T)=a,4(T,) is a function of the dimensionless
temperaturel, =T/ Ty, with an asymptotic valuer,(1)=1,
H1e coefficientd) ., Qp,, and(). are functions of the critical
compressibility Z,., and the classical critical parameters
Toc, Poc, andyg, that can be found from the condition

data obtained by Elliotet al*** with the predictions of the
GSM model are shown in Fig. 14. The shaded area in Fig. 1
marks the region, which corresponds to “normal” fluids with
»=0. As one can see, with=—0.25 andZ.=0.3 extracted

from the experimental datd* and with the Ginzburg num- JP 9?P Poc¥oc
ber G=0.1, which was considered in this case as an inde- F =Y\ 52 =Y, RT, =Zgc< 3 (A3)
pendent CS parameter, the predictions of the GCS model are Toc T ¢

in excellent agreement with experimental data. We consider | the dimensionless form, the PT EOS is giverd‘by
this result as additional conformation of the conclusion made

by Elliott and co-workerS* that experimental data in the Pvoc 1 Q, ay(T))

excited nuclei can be really treated as liquid—vapor equilib- RT - Q0. /7 - 7 T A A

rium of finite neutral nuclear matter, but with enormously v (/200 ZocTr v+ Q) (v +2)

small, negative accentric factar. (A4)
Currently there is a growing interest in modeling of the and the residual Helmholtz free energy

E:
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or the same &P/av)TC,MfO. Similarly, one can show that

— |, the second equality in E4B1) is equivalent to the condition
ZOC Tr Vr+92 (072P/<9v2)TC'Mc=O.

A5
R (A5) ! Supercritical Fluid Technology: Reviews in Modern Theory and Applica-
WhereTr:T/TOC, v, = v/ Voc s the parameter@a, le and tion, edited by T. J. Bruno and J. F. E(ZRS, Boston, 1991
~ . 2p. T. Anastas and T. C. Williamson, ACS Symp. Ser626(1996.
Q,, are given by jB. Horton, Nature(London 400, 797 (1999.
_ 72 2 D. Adam, Nature(London 407, 938 (2000.
Qa=3Z5+3(1=2Z0c) Qp+ Qp+ Qe 5M. Modell, in Standard Handbook of Hazardous Waste Treatment and
(AB) Disposal edited by H. M. FreematMcGraw—Hill, New York, 1989, p.
Qe=1-3Zqc, 8.153.
~ ~ 6J. W. Tester, H. R. Holgate, F. J. Armellini, P. Webley, W. R. Killilea, G.
Q1=(Qc+Qp—0)2Zy,, Qy=(Q+Qp+Q)/2Z,,, T. Hong, and H. E. Bamer, iEmerging Technologies in Hazardous
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0 r 7
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