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Generalized corresponding states model for bulk and interfacial properties
in pure fluids and fluid mixtures

S. B. Kiseleva) and J. F. Ely
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~Received 13 March 2003; accepted 9 July 2003!

We have formulated a general approach for transforming an analytical equation of state~EOS! into
the crossover form and developed a generalized cubic~GC! EOS for pure fluids, which incorporates
nonanalytic scaling laws in the critical region and in the limitr→0 is transformed into the ideal gas
equation EOS. Using the GC EOS as a reference equation, we have developed a generalized version
of the corresponding states~GCS! model, which contains the critical point parameters and accentric
factor as input as well as the Ginzburg number Gi. For nonionic fluids we propose a simple
correlation between the Ginzburg number Gi andZc , v, and molecular weightMw . In the second
step, we develop on the basis of the GCS model and the density functional theory a GCS-density
functional theory~DFT! crossover model for the vapor–liquid interface and surface tension. We use
the GCS-DFT model for the prediction of the PVT, vapor–liquid equilibrium~VLE! and surface
properties of more than 30 pure fluids. In a wide range of thermodynamic states, including the
nearest vicinity of the critical point, the GCS reproduces the PVT and VLE surface and the surface
tension of one-component fluids~polar and nonpolar! with high accuracy. In the critical region, the
GCS-DFT predictions for the surface tension are in excellent agreement with experimental data and
theoretical renormalization-group model developed earlier. Using the principle of the critical-point
universality we extended the GCS-DFT model to fluid mixtures and developed a field-variable
based GCS-FV model. We provide extensive comparisons of the GCS-FV model with experimental
data and with the GCS-XV model formulated in terms of the conventional density variable—
composition. Far from the critical point both models, GCS-FV and GCS-XV, give practically similar
results, but in the critical region, the GCS-FV model yields a better representation of the VLE
surface of binary mixtures than the GCS-XV model. We also show that by considering the Ginzburg
number Gi as an independent CS parameter the GCS model is capable of reproducing the phase
behavior of finite neutral nuclear matter. ©2003 American Institute of Physics.
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I. INTRODUCTION

In recent years, there has been a substantial intere
supercritical fluids~SCFs! from both the academic and in
dustrial communities.1 One important issue is to replace
reduce the use of organic solvents2–4 with sub- and super-
critical liquids such as water5–8 and carbon dioxide.9–13 To
make the potential for SCF technology more effective, it
imperative to have a consistent thermodynamic mode
SCF solution behavior, capable of giving a good represe
tion not only for vapor–liquid equilibrium~VLE! and PVT
properties, but also of their many derivatives and interfa
For nonideal systems, like those containing supercritical
ids, this is a challenging task by itself. The classical solut
of this problem was first given by van der Waals~vdW!,14

who proposed a simple cubic equation of state~EOS! based
on the ideal gas equation as a zeroth approximation,
including the effects of intermolecular interaction to a fi
approximation. The vdW EOS is the simplest equati
which predicts the existence of the critical point and yield
qualitative prediction of vapor–liquid equilibrium in real flu

a!Author to whom all correspondence should be addressed. Electronic
skiselev@mines.edu
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ids. It also allows an explicit formulation of the correspon
ing states~CS! principle. However, the van der Waals EO
and CS model are qualitatively correct only for systems w
two-parameter spherically symmetric intermolecu
potentials.15 The quantitative difference between theory a
experiment in real molecular fluids is rather substantial,
pecially in the critical region. The first well-known attemp
to improve the vdW EOS were made by Redlich a
Kwong,16 Soave,17 and Peng and Robinson.18 These equa-
tions of state, and their different empirical and semiempiri
modifications~for a review see Ref. 19! yield a much better
representation of the thermodynamic properties of fluids
fluid mixtures than the original vdW EOS. However, a
these models thermodynamically are not self-consist
Namely, they cannot describe different thermodynamic pr
erties such as VLE, PVT, densities, specific heats, enthalp
and excess properties in the gas and liquid phases sim
neously with the same set of the system-dependent pa
eters. Besides, all these analytical equations of state fa
reproduce the nonanalytical, singular behavior of fluids
the critical region, which are caused by long-scale fluct
tions in density.

The thermodynamic properties of pure fluids in the cr
il:
5 © 2003 American Institute of Physics
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cal region can be described correctly with the so-cal
scaled EOS.20 However, in the limit of low densities, even i
the crossover formulation,21 the scaled EOS do not reduce
the ideal gas EOS. Therefore, during the last two deca
many efforts have been made to develop the ‘‘global,’’
renormalized EOS that at low densities reproduce the id
gas equation and is transformed into the nonanalytic sc
EOS as the critical point is approached.22–48The most recent
and theoretically well founded are the hierarchical refere
theory ~HRT! developed by Parola and co-workers24–28 and
the ‘‘globalized’’ renormalization-group~RG! procedure pro-
posed by White and co-workers.36–40A big advantage of the
HRT24–28 and ‘‘globalized’’ RG36–40 models is that they re
quire only few microscopic intermolecular potential para
eters as input. The price for this is tedious calculations
lated to an implementation of these first-principle theoreti
models. White’s ‘‘globalized’’ RG model,36–40 for example,
similar to the MSA1RG model by Tang43 and EOSCF
1RG model by Prausnitz and co-workers44–49can be solved
only numerically and requires additional spline functions
the representation of the thermodynamic surface of real
ids. This restricts their widespread practical application,
pecially for the critical mixtures where two-phase equili
rium calculations require the smaller steps and larger num
of iterations for their convergence. Another shortcoming
the EOSCF1RG model developed by Jiang an
Prausnitz48,49 is that for mixtures it was formulated in term
of the ‘‘density’’ variable—composition, that in the critica
region is, rigorously speaking, incorrect.

The thermodynamic surface of fluid mixtures in the cri
cal region differs substantially from that of pure fluids.50–52

According to the principle of critical-point universality,53–55

also called the isomorphism principle,56,57 a critical mixture
exhibits pure fluid like singularities at fixed ‘‘field’
variable—the chemical potential, rather than at fixed ‘‘de
sity’’ variable—the composition. There are few crossov
models of mixtures that incorporate scaling laws in the cr
cal region and transform into an analytical equation of st
far away from the critical point. Examples include the fiel
space conformal model based on the modified Pen
Robinson and Benedict–Webb–Rubin EOS,23,58 the six-
term crossover model,59–63 the crossover Leung–Griffith
~CR LG! model,64,65 and the more extensive parametr
crossover model developed by Kiselev and co-workers.66–71

The Helmholtz free-energy in the latter model, also known
CREOS-97,66 was represented in a universal parame
form, which does not depend on the detail of the interm
lecular interactions and is equally valid for any pure flu
and binary mixture in the critical region, including aqueo
ionic solutions. Recently, the parametric crossover mod
named by CREOS-01 and CREOS-02, have been applie
the description of the thermodynamic properties of sup
cooled liquid H2O, D2O, and H2O1D2O mixtures,72,73 re-
spectively. However, CREOS-97~as are CREOS-01 an
CREOS-02! is an asymptotic crossover model,21 which fails
to reproduce the ideal gas equation in the limit of low de
sities.

A more general, phenomenological procedure for inc
porating of the long-range density fluctuations into any cl
Downloaded 12 Oct 2003 to 138.67.128.2. Redistribution subject to AI
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sical equation was proposed by Kiselev.74 This procedure is
based on the renormalization-group theory and can be
plied to any analytical EOS, which predicts a critical poi
and in the limit of low densities is transformed into the ide
gas equation. An advantage of Kiselev’s approach is that
crossover expression for the Helmholtz free energy in t
approach can be written in the closed analytical form, wh
allows an analytical formulation of all derivatives. Kiselev
approach has been successfully applied for the cubic,74,75

SAFT,76–80 SAFT-BACK,81 and high accuracy semiempir
ical EOS for square-well fluids.82 In all cases, this method
produces a thermodynamically self-consistent and accu
crossover EOS near to and far from the critical point of pu
fluids74,75,83 and fluid mixtures.78,83 However, the crossove
EOS in this approach contains four more adjustable par
eters than an original classical EOS, and similar to
EOSCF1RG model,48,49 they have been applied so far on
in the density-variable formulation for mixtures.

In this paper we continue a study initiated in our pre
ous works for the cubic74,83 and SAFT76–79 EOS. Using the
crossover sine model,78 we develop a generalized cubic~GC!
EOS, which unlike the cubic crossover EOS developed
fore, can be analytically extended into the metastable reg
and reproduces analytically connected van der Waals lo
Second, we developed on the basis of the GC EOS and
density functional theory~DFT! a GCS-DFT model for bulk
properties and surface tension. We use this model for
prediction of the volumetric, VLE properties and surface te
sion of more than 30~polar and nonpolar! pure fluids in a
wide range of the parameters of state, including the nea
vicinity of the critical point. Combining the GCS model wit
the principle of critical-point universality we have also d
veloped an isomorphic GCS for fluid mixtures, the GCS-F
model.

We proceed as follows: In Sec. II we describe a gene
procedure for transforming any analytical equation into
crossover form. In Sec. III we develop a crossover cu
EOS for pure fluids. In Sec. IV we developed the GCS mo
and applied this model for more than 30 pure fluids. W
consider a generalized CS-DFT model for surface tensio
Sec. V. In Sec. VI we consider an extension of the G
model to fluid mixtures, and our results are summarized
discussed in Sec. VII.

II. THEORETICAL BACKGROUND

The critical point in pure fluids is the simplest examp
of a second-order phase transition, and the vdW EOS in
critical region corresponds to the Landau, or mean-fie
theory of the second-order phase transitions. In the Lan
theory,15 the critical partDF(T,h) of the thermodynamic
potential of the system undergoing the second-or
phase transition is represented in the powers of the o
parameterh,

DF~T,h!5a0th21u0h42hh, ~2.1!

wheret5T/Tc21 is a dimensionless deviation of the tem
peratureT from the transition temperatureTc , the coeffi-
cients a0.0 and u0.0 are the system-dependent para
eters, andh is an external ordering field. The term}h3,
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which breaks the symmetry of thermodynamic potential w
respect to the transformationh→2h and h→2h, was
omitted in Eq.~2.1! because it can be effectively taken in
account by simple redefinition of the order parameterh
→h1d1t.15,84 An equation of state, which corresponds
the thermodynamic potential~2.1! is given by

h52a0th14u0h3, ~2.2!

whereh52]F(T,h)/]h is an equilibrium value of the or
der parameter.15 After integration, the equilibrium thermody
namic potential of the system near the second-order ph
transition in the Landau theory can be written in the form

F~T,h!5a0th21u0h41Fbg~T,r!, ~2.3!

where the background contributionFbg(T,r) is an analytic
function of T andr.

The Landau theory is valid only in the temperature
gion Gi!utu!1 where the long-scale fluctuations in the o

der parameter are small.15,84 Here Gi}(u0nc /a0
2j̄0

3)2 is the

Ginzburg number,nc is a critical volume, andj̄0 is an effec-
tive average radius of the interaction between molecules.
intensity of the fluctuations diverges at the critical point an
as a consequence, at temperaturesutu!Gi the singular part
of the thermodynamic potential of a system become
nonanalytic function of the temperaturet and the order pa-
rameterh,

DF~t,h!5A0utu22aC0~z!, ~2.4!

where C0(z) is a universal scaled function of the scalin
argumentz5h/utub.

The crossover behavior of the thermodynamic poten
of the system from the analytic Landau expansion~2.3! into
the scaled equation~2.4! in the asymptotic critical region
also named the asymptotic crossover problem,21 has been
addressed with different theoretical methods by ma
authors85–98~for a review see Refs. 21 and 51!. According to
a general solution of the renormalization-gro
equations,85–90 close to the critical point the fluctuation
renormalize the dimensionless temperaturet and order pa-
rameterh in the singular part of the thermodynamic p
tential ~2.3!, such that they become nonanalytic functions
t andh,

t→ t̄5tY2 a/2D1, h→h̄5hY~g22b!/4D1, ~2.5!

and Eq.~2.3! takes a form

DF~t,h!5a0tY2 a/2D1h2Y~g22b!/2D1

1u0h4Y~g22b!/D12K~t!, ~2.6!

where a50.11, b50.325, g5222b2a51.24, and D1

50.51 are universal nonclassical critical exponents,20,51 and
Y(t,h) denotes a crossover function. In Eq.~2.6! K~t! is a
fluctuation induced kernel term,85–90which is responsible for
the asymptotic singular behavior of the heat capacity in
zero external fieldh50, or h50 at t.0,
Downloaded 12 Oct 2003 to 138.67.128.2. Redistribution subject to AI
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]T2D
h50

5A0
6utu2a~11a1

6utuD1!1B0
6~t!, ~2.7!

where A0
6 is the asymptotic amplitude,a1

6 is the first
Wegner-correction term,99 and B0

6(t) is a background con-
tribution above~1! and below~2! critical temperature. With
this in mind, the kernel term can be written in the form74

K~t,h!5 1
2 a20t

2@Y2a/D1~t,h!21#

1 1
2 a21t

2@Y2(a2D1)/D1~t,h!21#, ~2.8!

where the coefficientsa20 and a21 correspond to the
asymptotic and first Wegner-correction terms in Eq.~2.7!,
respectively. At Gi!utu!1 the crossover functionY>1, and
Eq. ~2.7! becomes identical to the Landau expansion~2.3!,
while asymptotically close to the critical point, atutu!Gi,
the crossover functionY modifies each term in Eq.~2.6! in
such a way that the singular partDF(t,h̄) is transformed
into the scaled equation~2.4!.

Mathematically, Eq.~2.1! corresponds to the asymptot
terms in the Taylor expansion of the thermodynamic pot
tial of the system near the critical pointt5h50 in the pow-
ers of t and h.15 In principle, as more terms are taken in
account in Eq.~2.1!, and consequently in expansion~2.6!, a
higher accuracy and wider range of temperatures and de
ties can be achieved with this crossover model. In pure
ids, except for the above-mentioned cubic term, additio
asymmetric terms}h2h and}h,5 and the higher order sym
metric terms}th4 and }t2h2, should be added into the
expansion~2.7!. As a consequence, the corresponding cro
over model becomes more effective and accurate.100–105

The effectiveness of the crossover model is determi
by the choice of the crossover functionY. Unfortunately, the
RG equations for the crossover functionY in real three-
dimensional space can be solved rigorously only num
cally. Therefore, in practice for the crossover functi
Y different approximants94,105 and phenomenologica
expressions70,100–102are usually used. Incorporation of th
empirically corrected crossover function into the six-te
Landau expansion, for example, has enabled this mode
represent the thermodynamic properties of pure fluids59,62,63

in a much wider range of the temperatures and densities
the two- and six-term Landau model of Chenet al.103,104

based on the spherical-model crossover function phen
enologically repaired for the scalar order parameter by Nic
and co-workers.88–90 CREOS-97,66–71,102on the other hand,
represents the thermodynamic surface of pure fluids eve
a bigger temperature range~up toT52Tc) than the six-term
Landau model,59,62,63 but with the crossover function ob
tained by Kiselev100 as a simple Pade-approximant of th
numerical solution of the RG equations.91–93 However, even
with a well-determined crossover functionY, the extended
Taylor expansion~2.6! diverges atr→0, and, therefore, in
principle none of these crossover models can be used
developing a ‘‘global’’ EOS.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In order to develop a ‘‘global’’ crossover EOS, whic
reproduces the ideal gas equation in the limit of low den
ties, one needs to start from a full analytical expression
the thermodynamic potential

F~T,r!5F res~T,r!1F id~T,r!, ~2.9!

whereF res(T,r) is the residual part andF id(T,r) is the ideal
gas contribution. Then one needs to replace the singular
DF(t,h) in Eq. ~2.1! by the full expression obtained from
Eq. ~2.9!

DF~t,h!5F~T,r!2Fbg~T,r!, ~2.10!

where for one-component fluids the background contribut
Fbg(T,r) is an analytical function of temperature and de
sity, to be specified in the following. The ‘‘global’’ crossove
expression for the thermodynamic potentialF(T,r) in this
case can be written in the form74

F~T,r!5DF~ t̄,h̄ !2K~t!1Fbg~T,r!, ~2.11!

where the renormalized parameterst̄ andh̄ are given by Eq.
~2.5!. In order to complete the transformation of the analy
cal thermodynamic potentialF(T,r) into the crossover form
~2.11!, one also needs to specify the crossover funct
Y~t,h!. The explicit expressionY~t,h! in Kiselev’s
approach74 is discussed in the following.

III. CROSSOVER EQUATION OF STATE

In developing a generalized crossover EOS within
above-described theoretical approach, an important role
longs to the definition of the order parameter that determi
which particular type of the thermodynamic potential sho
be used in Eq.~2.11!. As was recently shown by Fishe
et al.106,107 neither the dimensionless densityDr5r/rc21
nor the molar volumeDn5n/nc21, but actually their linear
combination should be used as the order parameter in
component fluids. From the theoretical point of view, t
choice of the order parameter determines which deriva
(]2P/]T2)rc

or (]2m/]T2)rc
is responsible for the diver

gence of the isochoric heat capacity at the critical point.
practice it appears that the VLE surface of a one-compon
fluid is more symmetric inDr variable, rather than inDn.108

Therefore, traditionally in all above-discussed asympto
crossover modelsDr was used as the order parameter, a
as a consequence, in this case (]2P/]T2)rc

→` as utu→0.
For the GCS model this question becomes irrelevant bec
we set in this model the coefficientsa20 anda21 in Eq. ~2.8!
equal to zero, and, therefore, both derivatives remain finit
the critical point. Therefore, following Kiselev,74 we chose in
the GCS model the dimensionless molar volumeDn as the
order parameter. AlthoughDn is less symmetric in the criti-
cal region, it is better behaved over a broad range of s
variables than the conventional density-based order par
eter and atr→0 it naturally provides a physically obviou
conditionY51 in the dilute gas regime.

With Dn as the order parameter, the thermodynamic
tential F(T,r) in Eq. ~2.9! should be replaced by the class
cal expression for the dimensionless Helmholtz free ene
Ā5A(T,n)/RT written in the form
Downloaded 12 Oct 2003 to 138.67.128.2. Redistribution subject to AI
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Ā~T,n!5DĀ~DT,Dn!1Ābg~T,n!, ~3.1!

where the critical part of the Helmholtz free energy

DĀ~DT,Dn!5Āres~DT,Dn!2Āres~DT,0!

2 ln~Dn11!1Dn P̄0~DT! ~3.2!

and the background contribution is given by

Ābg~T,n!52Dn P̄0~T!1Ā0
res~T!1Āid~T!. ~3.3!

In Eqs. ~3.1!–~3.3!, DT5T/T0c21 andDn5n/n0c21 are
dimensionless distances from the classical critical temp
ture T0c and molar volume n0c , respectively, P̄0(T)
5P(T,n0c)n0c /RT is the dimensionless pressure a
Ā0

res(T)5Āres(T,n0c) is the dimensionless residual part
the Helmholtz energy along the critical isochoren5n0c .
Āid(T) is the dimensionless temperature-dependent ideal
Helmholtz free energy.

In the next step, we need to replace the classical va
of DT and Dn in the critical partDĀ(DT,Dn) with the
renormalized valuest̄ andh̄. In the case where the classic
critical parametersT0c and n0c determined from Eq.~A3!
coincide with the real critical parametersTc and nc , the
renormalizationDT→ t̄ and Dn→h̄ is given by Eq.~2.5!.
For some cubic EOS109,110the conditionT0c5Tc can in prin-
ciple be satisfied. However, in order to provide a better
scription of the vapor pressures and saturated liquid dens
at low temperatures, for all cubic EOS the classical criti
molar volumen0c is usually chosen to be bigger than the re
critical molar volumenc ~or r0c,rc).

111,112 In this work, a
difference between real and classical critical volumes w
effectively taken into account by incorporating into Eq.~2.5!
the renormalized order parameterh̄ additional term

t̄5tY2a/2D1,
~3.4!

h̄5hY (g22b)/4D11~11h!DncY
(22a)/2D1,

wheret5T/Tc21 is a dimensionless deviation of the tem
perature from the real critical temperatureTc , h5n/nc21
is a dimensionless deviation of the molar volume form t
real critical molar volumenc , andDnc5(nc2n0c)/n0c!1
is a dimensionless shift of the critical volume. The expon
(22a)/2D1 for the crossover functionY in the second term
in Eq. ~3.4! has been obtained from the conditio
limt→0(]2h̄2/]t2)h50}t2a. In this case, the corrections t
the asymptotic singular behavior of the isochoric heat cap
ity dCV

(1)}Dnc
2t (22a)/2'Dnc

2t and dCV
(2)}Dnc

4t2(12a)

'Dnc
4t2, which appear in Eq.~2.7! from this term ath

50, are a higher order of magnitude comparing t
asymptotic,}t2a, and the first Wegner correction,}tD12a,
terms. Asymptotically close to the critical point, the cros
over functionY→0, the term}DncY

(22a)/2D1 becomes neg-
ligibly small in comparison with the main term
}hY (g22b)/4D1, and Eq.~3.4! is transformed into the origi-
nal Eq.~2.5!. Far away from the critical pointY51 and the
renoramalized order parameterh̄5h1(11h)Dnc5n/n0c

21 coincides with the classical order parameterDn.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Since the RG equations cannot be solved analytically
rigorous theoretical expression for the crossover function
be obtained by this method. Therefore, in practice differ
approximants are used forY. The simplest one is a phenom
enological crossover function obtained by Kisel
et al.,74,76,83

Y~q!5S q

11qD 2D1

, ~3.5!

whereq5(r /Gi)1/2 is a renormalized distance to the critic
point and r (t,h) is a parametric variable. The crossov
functionY given by Eq.~3.5! coincides with the correspond
ing crossover function in the CR LG model obtained in t
first order of« expansion by Belyakovet al.64 In our previ-
ous works,74,76the renormalized distanceq was found from a
solution of the crossover linear model~LM !. In this study,
following our recent works77–79we findq from a solution of
the crossover sine model~SM!

S q22
t

GiD F12
p2

4b2 S 12
t

q2GiD G
5b2H h@11n1 exp~210h!#1d1t

m0Gib J 2

Y~122b!/D1, ~3.6!

wherem0 , n1 , d1 , and Gi are the system-dependent para
eters, while the universal parametersp2 and b2 can be set
equal to the LM parameterbLM

2 51.359.78 The term}d1t in
Eq. ~3.6! corresponds to the rectilinear diameter of the co
istence curve, which appears from the cubic term in the L
dau expansion~2.1!, as discussed earlier. Atuhu,0.5, the
linear-model crossover equation for the parametric variabq
employed earlier by Kiselevet al.66,70,100,102is recaptured
from Eq. ~3.6! when parameterp2→0, while at p2.0 Eq.
~3.6! asymptotically close to the critical point (q!1) is
transformed into the trigonometric model originally deve
oped by Fisher and co-workers.113

The RG theory equations~2.5! and ~2.6! are, rigorously
speaking, valid only in the region where the sho
wavelength components of the order parameter can be
cluded from consideration and the system can be statistic
described with the effective Hamiltonian written in terms
the long-wavelength components only.15,84At the triple point
of a liquid, the long-wavelength fluctuations are negligib
small, the RG theory is not applicable anymore, and
properties of the system should be described by the part
function with the microscopic Hamiltonian. As a cons
quence, the thermodynamic potential of liquid near the tri
point is an analytical function of temperature and dens
However, as was pointed out by Landau and Lifshitz,15 be-
cause of the strong interaction between molecules a gen
calculation of the thermodynamic quantities in liquids,
even their temperature dependence, is impossible. The
turbation theory developed by Barker and Henderson114

brings some relief in this grim prophecy of Landau and L
shitz, but this analytical theory is not valid in the critic
region. Therefore, we do not believe that any theoret
crossover expression for the thermodynamic potential
dense fluids can be obtained analytically. In this work,
order to provide a physically obvious conditionY51 at the
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triple point of liquids, we added into the right-hand side
Eq. ~3.6! an empirical term}n1 exp(210h), where the co-
efficient n1 is supposed to be positive and small (0<n1

!1). This term is relevant only in dense liquids atr.2rc

~or h,20.5) where exp(210h)@1. In the asymptotic criti-
cal and low-density regions this term is negligibly small a
practically disappears atr→0 ~or h→`).

Finally, the crossover expression for the Helmholtz fr
energy can be written in the form

Ā~T,n!5DĀ~ t̄,h̄ !2K~t,h!

2Dn P̄0~T!1Ā0
res~T!1Āid~T! ~3.7!

with the kernel term given by Eq.~2.8!. Asymptotically close
to the critical point~at q!1, or utu!Gi at r5rc and uhu
!Gib at T5Tc), the crossover functionY}r D1, and the
critical partDĀ in Eq. ~3.1! obeys the scaling low~2.4!. In
the intermediate region~at q;1, or utu;Gi,1 and uhu
;Gib,1) DĀ corresponds to the RG-theory expressi
~2.6!, while far away from the critical point atq@1
(utu@Gi at r5rc , or uhu@Gib at T5Tc) the crossover
functionY→1 and Eq.~3.7! is transformed into the classica
Helmholtz free energy~3.1!. The GC EOS can be obtaine
by differentiation of Eq.~3.7! with respect to volume

P~n,T!52RTS ]Ā

]n
D

T

52
RT

n0c
H n0c

nc
F S ]DĀ

]h
D

T

1S ]K

]h D
t
G2 P̄0~T!J . ~3.8!

IV. GENERALIZED CS MODEL FOR PURE FLUIDS

In developing the GCS model for a reference EOS
have chosen here a simple cubic Patel–Teja~PT! EOS.109,110

The explicit form of the PT EROS and corresponding e
pressions for functionsĀres(DT,Dn), Ā0

res(T), andP̄0(T) for
the PT EOS are given in Appendix A. The PT EOS is a go
choice for developing a GCS model because by settinb
5c50 in the attractive term, it is transformed into the vd
EOS. With bÞ0 and c50 it corresponds to the Redlich–
Kwong–Soave~RKS! EOS,16,17 and choosingb5cÞ0 the
PT is transformed into the Peng–Robinson~PR! EOS.18

Written in the dimensionless form, the PT EOS corr
sponds to the four-parameter corresponding states mode109

Pr5 f PT~Tr ,r r ;v,Z0c!, ~4.1!

where Pr5P/P0c and v is the Pitzer’s accentric factor
However, as we mentioned earlier, the CS models base
simple cubic equations of state give only a qualitative d
scription of the thermodynamic surface of pure fluids, qua
titatively their prediction is very bad. This is issue not on
for the PT EOS, but also all other classical cubic EOS.19 To
provide an accurate representation, purpose, a complex
in combination with extended corresponding states princ
is usually used.115 In order to overcome this shortcoming o
the cubic EOS, we develop here a generalized CS mo
which requires the same number of the input parameter
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the classical CS model~4.1!, but reproduces the PVT surfac
of one-component fluids with the much higher accuracy th
the classical cubic EOS.

With this in mind, we will use for the functionaa(Tr) in
Eq. ~A2! the CS expression proposed by Jechura116

aa~Tr !511Q2~Tr21!22Q~11Q!~ATr21!, ~4.2!

where the shape-factor is given by

Q511.9658Z0c
3 27.224 49Z0c

2 14.938 44Z0c

20.805 8071~3.025 16Z0c10.543 518!v

2~0.428 981Z0c11.520 1231022!v2

1~3.795 3331022 Z0c21.812 6231024!v3. ~4.3!

In the PT EOS,Z0c is usually considered as an adjustab
parameter, but in principle, it can be expressed as a func
of v and the real compressibilityZc .109 We found that for
the GCS model a good approximation forZ0c is

Z0c5 1
3 tanh~26.881 5611.465 74 v132.8331Zc!, ~4.4!

where the pre-factor~1/3! before the hyperbolic tangent en
sures for the PT EOS a requirement that at allv andZc the
classical compressibilityZ0c<1/3. Since even in the cross
over formulation a simple cubic EOS is unable to reprodu
CV data within an experimental accuracy,74 we set in the
GCS model the coefficientsa205a21[0, the coefficientm0

50.852 was considered to be a system-independ
parameter,82 while the coefficientsd1 and n1 were repre-
sented as functions of the critical compressibility

d1521.8356283.425Zc , ~4.5!

n150.444 16323.613 75Zc17.4084Zc
2. ~4.6!

After this redefinition, the generalized correspondi
state principle can be written in the form

Pr5 f CR~Tr ,r r ;v,Zc ,Gi!, ~4.7!

where f CR for the PT EOS is determined by Eq.~3.8! with
a r , Z0c , m0 , d1 , andn1 given by Eqs.~4.2!–~4.8!, and the
Ginzburg number is an additional CS parameter. Similar
the classical CS principle, the accentric factorv in Eq. ~4.7!
determines the steepness of the vapor-pressure curv111

while the Ginzburg number Gi is responsible for the flatn
of the vapor–liquid coexistence curve in theh–t plane.79 By
definition, the Ginzburg number depends on the coefficie
a0 andu0 in the Landau expansion~2.1!, critical volumenc ,
and the effective average radius of the interaction betw
molecules. In the critical region any EOS can be represen
in the form of the Landau expansion~2.1!, therefore, the
coefficientsa0 and u0 , in principle, can be expressed a
functions of v and Zc . Since in many nonionic fluids the
critical volume nc directly related to the molecular weigh
Mw ,111 we assume that in these fluids the Ginzburg num
can be also expressed as a function ofv, Zc , and Mw .
Therefore, in order to make the GCS model more predict
in the next step we represent the inverse Ginzburg numbe
the form
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Gi2151.373 553102v1/2~122.189 96v1/211.769 44v3/2!

123.3958Zc14.883 1731022 Mw . ~4.8!

Using Eq.~4.8!, the GCS model for one-component nonion
fluids formally can be written in the classical form

Pr5 f CR~Tr ,r r ;v,Zc! ~4.9!

where, however, unlike the classical CS model~4.1!, the real
critical parametersTc , rc , Zc , and the crossover function
f CR, instead of the classical functionf PT, are used. In order
to apply the GCS model to real fluids, similar to the classi
CS model~4.1!, one needs to know only the real critica
parametersTc , rc , Zc , and the accentric factorv.

The numerical values of all coefficients in Eqs.~4.4!–
~4.8! have been found from an analysis of the PVT and V
data for methane, ethane, carbon dioxide, water, and re
erants R32, R125, and R134A. The predictions of the G
model for methane, ethane, carbon dioxide, and wate
comparison with experimental data are shown in Figs. 1
2. In general, very good agreement between the GCS m
and experimental data for all four fluids is observed. W
would especially like to emphasize the excellent agreem
between experimental liquid- and vapor-density data a
predictions of the GCS model in the critical region atTc

>T>0.9Tc . Only at low temperaturesT<0.6Tc for meth-
ane and water does the GCS model predict systematic
higher ~up to 3% for CH4 and up to 7% for H2O) values of
liquid densities than the experimental data. But outside fr
this region, atT>0.6Tc , the GCS model reproduces th
saturated pressure and liquid density data for all fluids w
an average absolute deviation~AAD ! of about 1% and the
vapor density with AAD of about 2–3%. In the one pha
region atr<2rc the GCS model reproduces the PVT da
with an AAD less than 2% and the liquid densities atr
>2rc with an AAD of about 1–2%.

We should note that some simple EOS involving exp
nential attractive term, like a revised Dieterici–Carnaha
Starling ~DCS! EOS developed recently by Sadus117 for ex-
ample, are also capable of representing the liquid–va

FIG. 1. PrT data ~symbols! for methane—Refs. 135–137~left! and
ethane—Ref. 138~right! with predictions of the the GCS model~curves!.
The open symbols correspond to the one-phase region and the closed
bols indicate the VLE data.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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densities in some monatomic fluids and methane with sim
accuracy. But the DCS EOS exhibits fast deterioration of
quality of description of the saturated densities with incre
ing the carbon atoms inn-alkanes and is practically inappl
cable for water and other polar and associated fluids.

FIG. 2. PrT data~symbols! for carbon dioxide—Refs. 139 and 140~left!
and water—Refs. 141–144~right! with predictions of the GCS mode
~curves!. The empty symbols correspond to the one-phase region, and
closed symbols indicate the VLE data.
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sides, the DCS EOS, as well as all other analytical EOS, f
to reproduce the theoretically well-established asympto
scaling laws in the critical region.

Since experimental data for methane, ethane, carbon
oxide, and water have been partially used for the optimi
tion of the GCS model, it is not unexpected that the G
model yields a good description of the thermodynamic s
face in these fluids. From a practical point of view it is mo
interesting to test the GCS model against the PVT and V
data for other fluids, which have not been used in the mo
optimization. In this work, we applied the GCS model for t
prediction of the PVT and VLE properties of more than
pure fluids listed in Table I. In Fig. 3 we show the expe
mental saturated pressures and densities data for hi
n-alkanes, up ton-eicosane (C20H42), in comparison with
predictions of the GCS model. The dashed curves in Fig
represent the values calculated with the CR SAFT EOS
veloped earlier for methane, ethane,n-hexane,n-decane, and
n-eicosane by Kiselev and Ely.76 For all n-alkanes, including
n-eicosane, excellent agreement between the GCS m
predictions and experimental data is observed. One can
from Fig. 3 that the GCS model without any adjustable p
rameters describes the PVT and VLE properties ofn-alkanes
practically with the same accuracy as the CR SAFT E

he
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TABLE I. System-dependent constants for the GCS model.

Tc ~K! rc (mol l21) Zc v Mw

Methane 190.564 10.122 0.286 773 0.0110 16.04
Ethane 305.322 6.8701 0.279 699 0.0994 30.06
Propane 369.850 5.0000 0.276 247 0.1520 44.09
n-Butane 425.160 3.9200 0.273 937 0.1930 58.12
n-Pentane 469.650 3.2155 0.266 800 0.2510 72.15
n-Hexane 507.850 2.7108 0.266 241 0.3000 86.17
n-Heptane 540.110 2.3352 0.260 327 0.3510 100.20
n-Octane 568.950 2.0310 0.259 166 0.3960 114.23
n-Nonane 594.550 1.8400 0.250 664 0.4440 128.25
n-Decane 617.650 1.6430 0.248 792 0.4882 142.28
n-Eicosane 767.300 0.8357 0.200 648 0.9070 282.55
R12 385.010 4.6974 0.274 586 0.1795 120.91
R134A 374.274 5.0500 0.258 668 0.3270 102.30
R22 369.320 5.9559 0.269 071 0.2210 120.91
R32 351.350 8.2080 0.241 679 0.2770 52.02
R143A 345.750 5.0810 0.257 761 0.2746 84.04
R125 339.330 4.7946 0.268 274 0.3030 120.02
Methanol 512.580 8.4746 0.224 213 0.5590 32.04
Ethanol 516.250 5.9880 0.248 359 0.6350 46.06
Propan-1-ol 536.710 4.5830 0.252 790 0.6240 60.09
Butan-1-ol 562.900 3.6500 0.258 622 0.5900 74.12
Pentan-1-ol 588.150 3.0300 0.263 949 0.5800 88.15
Hexan-1-ol 611.400 2.6250 0.263 036 0.5600 102.17
Heptan-1-ol 633.150 2.2980 0.257 989 0.5600 116.20
Octan-1-ol 658.150 2.0430 0.267 270 0.5300 130.23
Nonan-1-ol 683.150 1.8370 0.256 367 0.5250 144.26
Decan-1-ol 705.100 1.6670 0.273 205 0.4840 158.39
CO2 304.128 10.625 0.274 588 0.2250 44.010
H2O 647.096 17.874 0.229 450 0.3440 18.01
D2O 643.847 17.776 0.227 750 0.3440 20.02
N2 126.200 11.173 0.285 745 0.0400 28.013
O2 154.580 13.623 0.284 424 0.0210 31.999
Ar 150.660 13.395 0.291 369 20.004 39.9480
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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specially optimized to the experimental data for the
substances.76

It is usually pointed out that a corresponding-states p
ciple based only on the accentric factorv is not applicable
for polar and associating fluids.111 Therefore, it is interesting
to test the GCS model against experimental data for th
fluids. One of the fluids, H2O, was already considered earli
~see Fig. 2!. A comparison of the predictions of the GC
model with the saturated pressure and density data for
hydro-fluorocarbons R12, R134A, R22, R32, R143A, a
R125 is shown in Fig. 4, and in Figs. 5 and 6 forn-alcohols.
In the entire temperature regionTtr<T<Tc , the GCS model
reproduces the saturated pressures for all fluids show
Figs. 3–5 with an AAD less than 1%. The GCS model a
gives very good description of the saturated densities in
beyond the critical region. Some discrepancy between
dicted and experimental values for liquid densities is o
served only at low temperatures in R32 and methanol, wh
the GCS model predicts systematically lower~up to 5%!

FIG. 3. The saturated density~top! and vapor pressure~bottom! data for
methane~Ref. 135!, ethane~Refs. 138, 145–148!, n-butane ~Refs. 147,
149–153!, n-hexane ~Refs. 154–163!, n-decane ~Refs. 164–174!, and
n-icosane—Ref. 175~symbols! with predictions of the GCS model~solid
curves! and the crossover SAFT EOS—Ref. 76~dashed curves!.
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values of the liquid densities than the experimental data~see
Figs. 4 and 6!. The dot-dashed curves in Fig. 6 correspond
the predictions of the simple CS model based on the cro
over SAFT EOS.79 As one can see, in the strong polar a
associating fluids such as R32 and methanol the CR SA
EOS77–79gives at low temperatures a better representation
the saturated liquid densities than the GCS model based
the simple cubic EOS. The AAD achieved with the GC
model for all data presented in Figs. 1–6 are summarize
Table II.

As it was pointed out earlier, although the six-term La
dau model59,62,63 and parametric crossover model66–71,102

have a theoretical foundation in the renormalization-gro
theory and have been confirmed in the second order o«
expansion, atT,Tc they cannot be analytically extende
deep into the metastable region. That restricts their appl
tion to the interface modeling and the surface tension ca
lations. As one can see from Figs. 1 and 2, the sine-mo
based GCS EOS, unlike the parametric crosso
model66–71,102 and cubic crossover EOS based on the L
equation forY,83 can be extended into the metastable reg
and at temperaturesT,Tc represents analytically connecte
van der Waals loops. This, together with the high accuracy
the representation of the PVT and VLE surface near to
far from the critical point, makes the GCS model extreme
efficient for the direct interface and surface tension calcu
tions.

V. INTERFACE AND SURFACE TENSION

In the density-functional theory, the surface tension
the planar liquid–vapor interface is defined as118,119

s52 E
2`

1`

c0S ]r

]zD 2

dz, ~5.1!

wherer(z) is density of fluid at a distancez. The density
profile r(z) can be found from the optimization of the func
tional

F@r~z!#5E dr2E @Â~r!1c0~¹r!2#dz, ~5.2!

FIG. 4. The vapor pressure~left! and saturated density~right! data for hy-
drofluorocarbons R12~Refs. 176–179!, R134A~Refs. 180, 181!, R22~Refs.
182–184!, R32 ~Ref. 185!, R143A ~Ref. 186!, and R125~Refs. 187–189!
~symbols! with predictions of the GCS model~solid curves! and the simpli-
fied crossover SAFT EOS—Ref. 78~dashed curves!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereÂ(r)5rA(T,r) is a Helmholtz free-energy density o
the bulk fluid. Optimization of the functional~5.2! at condi-
tion N5const by Langrange’s method leads to the Eule
Lagrange equation

dDÂ~r!

dr
2c0

d2r

dz2 50, ~5.3!

where DÂ(r)5Âb(T,r)2rm(T,rV,L) is an excess part o
the Helmholtz free energy density, andm(T,rV,L)
5(]rA/]r)T is a chemical potential of the bulk fluid alon
the saturated curver5rV,L(T). The first integral of Eq.~5.3!
is

FIG. 5. The saturated pressure data in the normal~top! and logarithmic
~bottom! scale for methanol~Refs. 190, 191!, ethanol~Refs. 190, 192, 193!,
propan-1-ol~Refs. 190, 194!, butan-1-ol~Refs. 190, 195!, pentan-1-ol~Refs.
196–198!, hexan-1-ol~Refs. 196–198!, heptan-1-ol~Ref. 199!, octan-1-ol
~Ref. 200!, nonan-1-ol~Ref. 200!, and decan-1-ol—Ref. 200~symbols! with
predictions of the GCS model~solid curves!, the crossover SAFT EOS—
Ref. 77 ~dashed curves!, and crossover SAFT CS model—Ref. 79~dot-
dashed curves!.
Downloaded 12 Oct 2003 to 138.67.128.2. Redistribution subject to AI
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dr

dz
5FDÂ~r!

c0
G1/2

~5.4!

and the surface tension is given by

s5c0
1/2E

rV

rL
@DÂ~r!#1/2dr. ~5.5!

In the Landau theory of inhomogeneous fluids,15 the excess
part of the free-energy densityDÂ is given by Eq.~2.1!
where the order parameterh5r/rc21 and the ordering field
h5@mb(T,h)2mb(T,rc)#/RT, that leads to the MF expres
sion for the surface tension

s5s0utu, ~5.6!

while in the scaling theory the asymptotic behavior of t
surface tension in the critical region is given by120

s5s0utu2n, ~5.7!

where n>0.63 is a critical exponent of the correlatio
length.

In the CGS-DFT model developed in this work, we us
Eq. ~3.7! for the calculation of the excess free energy-dens
DÂ(r)5rRTDĀ(T,r) with the parameterst̄ andh̄ as given
by Eq. ~3.4!. The temperature dependence appears in
CGS-DFT model through the excess free-energy den
DÂ(r) and the parameterc0 . In our previous study121,122we

FIG. 6. The saturated density data for methanol~Refs. 190, 191, 201, 202!,
ethanol ~Ref. 190!, propan-1-ol~Refs. 190, 194!, butan-1-ol ~Refs. 200,
203!, pentan-1-ol ~Refs. 197, 204!, hexan-1-ol ~Refs. 196, 197, 205!,
heptan-1-ol~Ref. 199!, octan-1-ol~Ref. 200!, nonan-1-ol~Ref. 200!, and
decan-1-ol—Ref. 200~symbols! with predictions of the GCS model~solid
curves!, the crossover SAFT EOS—Ref. 77~dashed curves!, and the cross-
over SAFT CS model—Ref. 79~dot-dashed curves!.

TABLE II. Percentage average absolute deviations~AAD %! between ex-
perimental data and values calculated with the GCS model.

Region
Liquid

densities
Vapor

densities Pressure

One-phase
(r<2rc)

¯ ¯ 1%–2%

Two-phase
(Tc.T.0.6Tc)

1%–2% 2%–3% 1%

Two-phase
(T,0.6Tc)

2%–3% 3%–5% 1%–2%
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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showed that for water, a good estimate for this paramete
c0>kBTrc

1/3. Following that study, for ordinary and heav
water we use here

c05~12k0!2kBTrc
1/3, ~5.8!

while for all other fluids we adopt the temperatur
independent parameterc0 in the form

c05~12k0!2kBTcrc
1/3, ~5.9!

where kB is Boltzmann constant and the parameterk0,1
was introduced to take into account a difference of the p
factor (12k0) in real fluids from unity. Similar to the accen
tric factor v,111 the coefficientk0 can be extracted from th
surface tension measured atT50.7Tc , or close values.

Because of the hydrogen bounding and strong orie
interaction between molecules, water is always a challeng
object for modeling. In Fig. 7 we show a comparison of t

FIG. 7. The surface tension data for water—Ref. 123~symbols! with pre-
dictions of the asymptotic crossover model by Belyakovet al.—Ref. 124
~dot-dashed curve!, and GCS-DFT model~solid curve!.
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prediction of the GCS-DFT model for water with experime
tal data123 and with the values calculated with the asympto
crossover model developed earlier by Belyakovet al.124 The
latter one is a phenomenological generalization of
renormalization-group model, exact to the first order in th«
expansion. This model contains the Ginzburg number a
parameter, and in the critical region~at utu!Gi), reproduces
the scaling-law behavior~5.7! while at Gi!utu!1 it corre-
sponds to the MF Eq.~5.6!. As one can see, in the critica
region both models practically coincide and they both are
excellent agreement with experimental data. However, at
temperatures the asymptotic crossover model by Belya
et al.124 gives systematically higher values of the surface t
sion than experimental ones, while the GCS-DFT model f
lows experimental data with a high accuracy down to
temperature T.300 K. Only at low temperatures,T
<300 K, do systematic deviations of the GCS-DFT pred
tions from experimental data appear. These deviations
small ~less than 3% atT.273.16 K) and we should conten
that in general the GCS-DFT model yields an excellent r
resentation of the surface tension in water.

In the case when no experimental data for surface t
sion are available, or the experimental information is sca
for the estimation of the parameterk0 in nonionic and non-
associating fluids one can use a simple corresponding-s
expression

k051.19431022MwF12
1.91v1/2

~110.405v!2G , ~5.10!

which appears to be a good approximation forn-alkanes~up
to C20H42) and CO2. In cryogenic liquids such as nitroge
and oxygen, Eq.~5.10! usually overestimates values for th
parameterk0 . Therefore, in order to provide a more reliab
estimate for the surface tension in cryogenic liquids, a p
factor ~1/3! should be applied to the parameterk0 calculated
with Eq. ~5.10!. A comparison of the GCS-DFT model wit
surface-tension experimental data for severaln-alkanes is
shown in Fig. 8. The solid curves in Fig. 8 correspond to
values calculated with the parameterk0 extracted from the
experimental data, while the dashed curves represent the

FIG. 8. The surface tension data~Ref. 206! for methane, ethane,n-hexane,
n-octane,n-decane,n-dodecane,n-pentadecane, andn-icosane~symbols!
with predictions of the GCS-DFT model~curves!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rameterk0 calculated with Eq.~5.10!. As one can see, in
both cases very good agreement between the GCS-
model and experimental data for alln-alkanes including
n-eicosane (C20H42) is observed.

In Fig. 9 we show the predictions of the GCS-DF
model for the Sugden parameter

S5
2s

g~rL2rV!
~5.11!

~whereg is the acceleration due to the gravity! together with
experimental data for CH4, CO2, N2 , O2 , and Ar obtained
by Gielenet al.125 Since the Sugden parameter involves
multaneous calculation of the surface tension and vap
liquid densities, it is a good test for the physical se
consistency of the model in the critical region. Again, as o
can see from Fig. 9, in the entire temperature regionT<Tc

down to dimensionless temperatures of (2t).1023 good
agreement between experimental data and predicted va
of the Sugden parameters is observed. The predictions o
asymptotic crossover model by Belyakovet al.124 for the
Sugden parameters are not shown in Fig. 9 because in
entire temperature range they practically coincide w
the GCS-DFT curves.

VI. EXTENSION OF THE GCS MODEL TO MIXTURES

In order to apply the GCS model to fluid mixtures, o
needs to formulate the mixing rules for the system-depend
parameters of the model. For all classical EOS, these mix
rules are usually formulated in terms of compositionx, that
is physically correct far away from the critical point and c
be justified by direct statistical mechanics calculations.15 In
the original PT EOS,109,110 the coefficientsb and c are
simple linear functions of composition

FIG. 9. The Sugden parameter data~Ref. 125! for methane, carbon dioxide
nitrogen, oxygen, and argon~symbols! with predictions of the GCS-DFT
model ~curves!. For nitrogen, oxygen, and argon a pre-factor~1/3! in Eq.
~5.10! for the parameterk0 was applied.
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b~x!5(
i

b( i )xi , c~x!5(
i

c( i )xi , ~6.1!

where the indexi denotes the component of the mixture, a
for the parametera the conventional van der Waals mixin
rules are used. The critical parametersTc(x), nc(x), and
Pc(x) for binary mixtures are determined from the critica
point conditions15

S ]m

]x D
Tc ,Pc

50, S ]2m

]x2 D
Tc ,Pc

50, S ]3m

]x3 D
Tc ,Pc

.0,

~6.2!

wherem5m22m15(]A/]x)T,n is the chemical potential o
a mixture. Using general thermodynamic relations~see Ap-
pendix B!, the conditions~6.2! can be represented in th
form56

S ]P

]n D
Tc ,mc

50, S ]2P

]n2 D
Tc ,mc

50, S ]3P

]n3 D
Tc ,mc

.0,

~6.3!

which determineTc(x), nc(x), and the chemical potentia
mc(x) of a mixture. Comparing these conditions with th
corresponding conditions for one-component fluids@see Eq.
~A3!# one can conclude that in the critical region the equ
tion of state of binary mixtures at fixed chemical potent
has the same analytic form as, or is isomorphic to, the E
of one-component fluids.56 In a more general formulation
the principle of critical-point universality53–55 means that
with adding into the system a density variablexi the thermo-
dynamic potential of mixtures

Ã~T,n,m i 51,2,...,n!5Ā~T,n,xi 51,2,...,n!2(
i 51

n

m̃ ixi ~6.4!

at fixed field variablem̃ i5m i /RT, related to composition
xi52(]Ã/]m̃ i)T,n,mj Þ i

, has the same analytical form as th
thermodynamic potential of a one-component fluidA(T,n).
Therefore, in order to reproduce the nonanalytical singu
behavior of binary mixtures in the critical region one shou
consider the thermodynamic potentialÃ(T,n,m̃), rather than
the Helmholtz free energyĀ(T,n,x). It means, that for the
physically self-consistent representation of the thermo
namic surface of fluid mixtures close to and far away fro
the critical region, not only a crossover EOS for pure co
ponents, but also the field-variable~FV! mixing rules should
be used.

In this work, we developed for binary mixtures th
GCS-FV model formulated in terms of the field variablex̃
5exp(m̃)/@11exp(m̃)#, which related to the composition
through the thermodynamic relation

x52 x̃~12 x̃!S ]Ã

] x̃
D

T,n

. ~6.5!

For the thermodynamic potentialÃ we use in the GCS-FV
model the GCS model for pure fluids as determined by E
~3.7!, and ~4.2!–~4.8!, but with the molecular weight and
accentric factor expressed as linear functions of the fi
variablex̃,
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



e
-
e

e

-

v
e

eld

n

e-

lev

E

or
he
cal-
s
r-

he

-
V

8656 J. Chem. Phys., Vol. 119, No. 16, 22 October 2003 S. B. Kiselev and J. F. Ely
Mw~x!5(
i

Mw
( i )x̃i , v~x!5(

i
v ( i )x̃i . ~6.6!

Since in the nonreacting systems the zero level of the
tropy S052dAid/dTuT→0 can be chosen arbitrary, the tem
perature dependent ideal gas part of the Helmholtz free
ergy for binary mixturesĀid(T)5Ā1

id(T)(12x)1Ā2
id(T)x is

usually considered without a linear term}T. In this work,
we consider the ideal gas partÃid(T,x̃) for the GCS-FV
model in the form

Ãid~T,x̃!

RT
5 ln~12 x̃!1ã0~ x̃!1ã1~ x̃!t~ x̃!

1Ā1
id~T!~12 x̃!1Ā2

id~T!x̃, ~6.7!

wheret( x̃)5T/Tc( x̃)21 is a dimensionless deviation of th
temperature from the critical temperatureTc( x̃) at fixed field
variablex̃ and the coefficientã0 is determined from the so
called critical line condition~CLC!

dã0

dx̃
5

dDÃbg

dx̃
1

ã1

Tc

dTc

dx̃

52
nc

v0c
2

dn0c

dx̃
P̄0~Tc!1DncS dP̄0

dx̃
D

T5Tc

1S dÃ0
res

dx̃
D

T5Tc

1Ā1
id~Tc!2Ā2

id~Tc!1
ã1

Tc

dTc

dx̃
, ~6.8!

where DÃbg5Ãbg2 ln(12x̃). The CLC, first introduced by
Moldover and Gallagher126 and later modified by
Rainwater127 for the Leung–Griffiths model and by Kisele
et al.66,70 for the CREOS-97, implies that a zero level of th

FIG. 10. VLE data for methane1ethane mixtures by Wichterle and Koba
yashi ~Ref. 207! in comparison with values calculated with the GCS-F
model ~solid curves!, CREOS-97~dot–dashed curevs!, and the GCS-XV
model ~long-dashed curves!.
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entropy of a binary mixture can be chosen so that the fi
variable x̃5x not only in the pure component limits (x50
and x51), but also along the whole critical locusTc( x̃)
5Tc(x) and nc( x̃)5nc(x). With the CLC given by Eq.
~6.8!, a general thermodynamic relation~6.5! can be written
in the form

x5 x̃2 x̃~12 x̃!F S ]DÃ

] x̃
D

T,n

1S ]Ãbg

] x̃
D

T,n

1
dDÃbg

dx̃
1S dã1

dx̃
2

ã1

Tc

dTc

dx̃ D t~ x̃!G ~6.9!

that provides in the GCS-FV model a relationship betweex
and x̃ at givenT andn.

In this work, we applied the GCS-FV model to the pr
diction of the VLE surface in methane1ethane mixture. In
the GCS-FV model for methane1ethane mixtures we
adopted the same critical locus as obtained earlier by Kise
in the CREOS-97,66 while for the parameterã1 we use a
simple linear function

ã1~ x̃!5ã11ã2x̃, ~6.10!

where the coefficientsã150.53 andã2523.65 have been
found from a fit of the model to the few low-pressure VL
data points atT5230 K obtained by Weiet al.128 Compari-
sons of the GCS-XV model with experimental VLE data f
methane1ethane mixtures are shown in Figs. 10 and 11. T
dot-dashed lines in Figs. 10 and 11 represent the values
culated with the CREOS-9766 and the long-dashed curve
correspond to the GCS-XV model with the mixing rules fo
mulated in terms of composition. In the GCS-XV model, t

FIG. 11. VLE data for methane1ethane mixtures by Weiet al. ~Ref. 128! in
comparison with values calculated with the GCS-FV model~solid curves!,
CREOS-97—Ref. 67~dot–dashed curves!, and the GCS-XV model~long-
dashed curves!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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coefficientsb(x) and c(x) were calculated with Eq.~6.1!,
while for the coefficienta(T) we used the modified van de
Waals mixing rules in the form83

a0c~x!5(
i

xi(
j

xjAa0c
( i )~T0c!a0c

( j )~T0c!~12ki j !,

~6.11!
ki j 5kji , kii 5kj j 50,

where a temperature-dependent functionaa(T) is calculated
with Eq. ~4.2!, the accentric factor

v~x!5(
i

v ( i )xi , ~6.12!

and the pseudocritical parametersT0c(x) andn0c(x), and the
critical compressibilityZ0c(x) are determined by Eq.~A2!
with the coefficientsVa , Vb , andVc given in the Appendix
@see Eqs. ~A6! and ~A9!#. The coefficient k12521.63
31022 for this mixture was found from a fit of the GCS-XV
model to the PVT-data obtained by Hayneset al.129 and by
Bespalovet al.130As one can see from Figs. 10 and 11, in t
critical region the GCS-FV model practically coincides wi
the CREOS-97, while far away from the critical region it
close to the GCS-XV model. The GCS-XV yields very go
representation of the VLE surface at low pressures and c
positions, but on moderate compositions, the GCS-XV p
dicts in the critical region the systematically higher pressu
than experimental data and values calculated with
CREOS-97.66

In this work, we also applied the GCS-FV model for th
prediction of the VLE surface in the carbon dioxide1ethane
mixture, which contains a critical azeotrope, and, therefo
is interesting for testing of the GCS-XV model. For the c
bon dioxide1ethane mixture we used the critical locus o
tained by Kiselev and Kulikov,68 while the coefficientsã1

52 andã2522.7 have been found from an optimization
the model to the few VLE-data points obtained atT
5263.15 K by Brownet al.131 A comparison of the predic
tions of the GCS-FV model with experimental data in carb
dioxide1ethane mixtures is shown in Fig. 12. Again, a ve
good agreement of the GCS-FV model with all experimen
data in the entire temperature range from critical locus do
T5223.15 K is observed. At low temperatures~at T
<270 K) the GCS-FV model even gives a better repres
tation of the VLE surface in carbon dioxide1ethane mix-
tures than the parametric crossover model.68 In the critical
region atT>283 K both models practically coincide.

The compositions of the vapor and liquid phases in
nary mixtures usually do not coincide, while the field va
ablex̃ has the same value in both phases. Therefore, the V
surface in binary mixtures by definition belongs to the is
morphic pathx̃5const. This means that for calculation of th
surface tension in a binary mixture one can use Eq.~5.5!, but
with the excess free energy-density calculated atx̃5const
with the corresponding GCS-FV model. We are not aware
any experimental surface-tension data for methane1ethane
and carbon dioxide1ethane mixtures, therefore, in Fig. 1
we show the predicted values of the surface tension aga
experimental data for carbon dioxide—n-butane mixtures.132

In the GCS-FV model data for carbon dioxide—n-butane
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mixtures, we adopted the same critical locus as emplo
earlier by Kiselev and Rainwater,67 while parametersã1

51 andã2524 were determined from an optimization to
few bubble-curve data points atT5319.3 K.132 As one can
see, at this isotherm excellent agreement between experim
tal data and GCS-FV1DFT predictions is observed. A
lower temperatures, the GCS-FV model predicts the syst
atically lower values of the surface tension than experime
data, but in general an agreement between theory and ex
ment is fairly good. The dashed curve in Fig. 13 represe
the values with two-scale-factor-universality~TSFU! model
by Sahimi and Taylor.133 Since both models, GCS-FV
1DFT and TSFU, are based on the principle of the critic
point universality it is interesting to compare the predictio
of the TSFU model for the surface tension in carb
dioxide—n-butane mixtures with our calculations. As on
can see from Fig. 13, in the critical region both models g
very similar predictions.

VII. CONCLUSION

In this paper, we describe a general approach for de
oping a ‘‘global’’ crossover EOS, which in the critical regio
reproduces theoretically well-established scaling laws, an
the limit of low densities is transformed into the ideal g
equation. Using a simple cubic EOS as a reference EOS
one-component fluids, we developed a generalized co
sponding state model for pure fluids and fluid mixture
which in addition to the accentric factorv contains also the
Ginzburg Gi as a parameter. In general, the Ginzburg num

FIG. 12. VLE data for carbon dioxide1ethane mixtures~Refs. 128, 131,
208, 209! ~symbols! in comparison with values calculated with the GCS-F
model~solid curves! and with the parametric crossover EOS by Kiselev a
Kulikov—Ref. 68 ~dot-dashed curves!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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is independent CS parameters, but for nonionic and nonp
meric fluids we expressed Gi as a simple function of
classical CS parameters,v andZc , and the molecular weigh
Mw , thus formally reducing the number of the input para
eters in the GCS model to two. Unlike all other ‘‘globa
crossover models developed before, the GCS model was
mulated in the closed analytical form and at temperatureT
,Tc can be extended into the metastable region for rep
senting analytically connected van der Waals loops. This
lowed us to develop on the basis of the GCS model and
density functional theory a generalized CS-DFT model
the volumetric properties, VLE-surface, and surface tens
The GCS-DFT model requires only the critical paramet
Tc , Pc , rc , and the accentric factorv as input, but repre-
sents thePrT and VLE data, as well as the surface tensi
of one-component fluids~polar and nonpolar! in a wide
range, including the nearest vicinity of the critical point, wi
a high accuracy. In the critical region, the GCS-DFT mo
reproduces all theoretical scaling laws for the liquid–vap
densities, surface tension, and the Sugden parameter.

In spite of the obvious advantage of the GCS model o
all other ‘‘global’’ EOS developed earlier, it also has a sho
coming in describing the saturated liquid densities for stro
polar and associating fluids at low temperatures. We fo
that for these fluids the crossover SAFT EOS developed
our previous papers76–79 yields better results than the GC
model. However, we need to note that the problem appea
the range of temperatures and densities where the cross
function Y>1 and, therefore, is not specific to the GC
model only, but is rather a ‘‘genetic’’ defect of all cubic EO
in general. At low temperatures, the crossover SAFT EOS
agreement with experimental data yields an almost lin
temperature-dependence for the saturated liquid dens
while the CR LCS, similar to all classical cubic EOS, gives
parabolic-like dependence. Therefore, in order to impro
the representation of the low-temperature liquid-densi
data for strong polar and associating fluids, the refere
cubic EOS in the GCS model should be replaced on
SAFT EOS, as the most promising one.

In this work, we also extended the GCS model to bina
mixtures. Using the principle of the critical point universali
we developed the GCS-FV model with all system parame
expressed as functions of the field variablex̃. We compare
this model with experimental data for methane1ethane and
carbon dioxide1ethane mixtures and with the GCS-X
model formulated in terms of compositionx. The GCS-FV
model developed in this work reproduces the VLE surface
binary in the critical region with the same accuracy as
CREOS-97,66 and far away from the critical point th
GCS-FV model reproduces the VLE data with the same
curacy as the GCS-XV model, while the GCS-XV mod
fails to reproduce the critical locus of mixture with expe
mental accuracy and predicts in the critical region system
cally higher values of pressure than experimental ones.

We should point out that the goal of this work was not
develop a new, more accurate EOS for some particular m
tures, and the methane1ethane and carbon dioxide1ethane
mixtures have been chosen only as examples. The majo
jective of this work was to develop a generalized but s
Downloaded 12 Oct 2003 to 138.67.128.2. Redistribution subject to AI
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simple CS model, which is able to predict the thermod
namic surface and interface in pure fluids and fluid mixtu
with high accuracy. Therefore, for the coefficientã1( x̃) we
used the simplest linear relation~6.10! with the parameters
determined from the low-temperature low-pressure VLE d
for each mixture. In this case, the GCS-FV gives in the o
phase region atr>1.65rc systematically lower values o
pressure than experimental data, and we anticipate that
simple linear relation for the mixing coefficientã1( x̃) can
also cause some problems in the extension of the GCS
model to multicomponent and more complex mixtures w
volatile and nonvolatile components. As an example we c
sidered here the surface tension in CO21n-butane mixture
~see Fig. 13!. At low temperatures and compositions th
GCS1DFT model does predict systematically lower valu
of the surface tension than experimental ones. This can
partially explained because the critical locus by Kiselev a
Rainwater67 does not correspond exactly to the experimen
critical locus by Hsuet al.,132 and because Eq.~6.10! for this
system should be replaced with other more accurate corr
tion. The isomorphic corresponding-states expression for
lated in terms of the excess compressibility fac
DZc( x̃)66,70 is a good candidate for this replacement, amo
other options.

The GCS-DFT model is based on the renormalizatio
group and density functional theories and, therefore, exc
for the reference EOS, does not contain any restriction on
application to other systems with the scalar order parame
This generality of the GCS model allows us also to apply t
model for the analysis of the phase behavior of much m
complex systems than simple fluids and their binary m
tures. Recently Elliott and co-workers134 presented experi-
mental ISiS data for the excited nuclei, which have be
interpreted by the authors as the liquid–vapor equilibrium
finite neutral nuclear matter. Comparisons of experimen

FIG. 13. The surface tension data~Ref. 132! for CO21n-butane mixtures
~symbols! with predictions of the GCS-FV1DFT model~solid curves! and
the TSFU model~dashed curves! by Sahimi and Taylor~Ref. 133!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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data obtained by Elliottet al.134 with the predictions of the
GSM model are shown in Fig. 14. The shaded area in Fig
marks the region, which corresponds to ‘‘normal’’ fluids wi
v>0. As one can see, withv520.25 andZc50.3 extracted
from the experimental data,134 and with the Ginzburg num
ber Gi50.1, which was considered in this case as an in
pendent CS parameter, the predictions of the GCS mode
in excellent agreement with experimental data. We cons
this result as additional conformation of the conclusion ma
by Elliott and co-workers134 that experimental data in th
excited nuclei can be really treated as liquid–vapor equi
rium of finite neutral nuclear matter, but with enormous
small, negative accentric factorv.

Currently there is a growing interest in modeling of t

FIG. 14. The vapor pressure~top! and saturated density~bottom! data for-
finite neutral nuclear matter—Ref. 134~symbols! with predictions of the
GCS model ~solid curves! and Guggenheim model—Ref. 134~dashed
curves!. The dot-dashed curve represents the values of saturated pres
calculated with the GCS model for argon (v520.004) and the shaded are
corresponds to ‘‘normal’’ fluids withv>0.
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thermodynamic surface, interface properties, and wet
transitions in such systems as polymers and polymer s
tions, surfactants, and micro emulsions. We do believe
successful solution of this problem is possible only af
comprehensive understanding of the physical nature of th
phenomena and developing an adequate model for their
scribing. We are not aware of any other theoretical mod
with the same degree of simplicity, physical self-consisten
and accuracy of representation of the thermodynamic
surface properties of fluid systems close in and far bey
the critical region as the GCS-DFT model. Therefore,
consider this work as an important step in this directio
Research toward the application of the GCS model to
bulk properties and interface, as well as adsorption and w
ting transitions in more complex fluid systems is now
progress and the results will be presented in future publ
tions.
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APPENDIX A: PATEL–TEJA EQUATION OF STATE

The Patel–Teja~PT! EOS109,110 can be written in the
form

P5
RT

n2b
2

a

n~n1b!1c~n2b!
, ~A1!

whereP is the pressure,n51/r is molar volume, andR is
the universal gas constant,

a~T!5Va

R2T0c
2

P0c
aa~T!5a0caa~T!,

~A2!

b5Vb

R2T0c

P0c
, c5Vc

RT0c

P0c
,

where aa(T)5aa(Tr) is a function of the dimensionles
temperatureTr5T/T0c with an asymptotic valueaa(1)51,
the coefficientsVa , Vb , andVc are functions of the critical
compressibility Z0c , and the classical critical paramete
T0c , P0c , andn0c that can be found from the condition

S ]P

]n D
T0c

50, S ]2P

]n2 D
T0c

50,
P0cn0c

RT0c
5Z0c<

1

3
. ~A3!

In the dimensionless form, the PT EOS is given by74

P̄5
Pn0c

RT
5

1

n r2~Vb /Z0c!
2

Va

Z0cTr

aa~Tr !

~n r1V̂1!~n r1V̂2!

~A4!

and the residual Helmholtz free energy

res
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Ā0
res~T!52 lnS n r2

Vb

Z0c
D 1

Va

Z0c

aa~Tr !

Tr

lnS n r1V̂1

n r1V̂2

D ,

~A5!

whereTr5T/T0c , n r5n/n0c , the parametersVa , V̂1 , and

V̂2 , are given by

Va53Z0c
2 13~122Z0c!Vb1Vb

21Vc ,
~A6!

Vc5123Z0c ,

V̂15~Vc1Vb2V!/2Z0c , V̂25~Vc1Vb1V!/2Z0c ,

~A7!

V5AVc
21Vb

216VcVb, ~A8!

andVb is the smallest positive root of the cubic equation

Vb
31~223Z0c!Vb

213Z0c
2 Vb2Z0c

3 50. ~A9!

Along the critical isochore,n r51, the pressure

P̄0~T!5
1

12~Vb /Z0c!
2

Va

Z0cTr

aa~Tr !

~11V̂1!~11V̂2!
, ~A10!

and the residual Helmholtz free energy

Ā0
res~T!52 lnS 12

Vb

Z0c
D 1

Va

Z0c

aa~Tr !

Tr

lnS 11V̂1

11V̂2

D .

~A11!

APPENDIX B: CRITICAL POINT CONDITIONS
IN BINARY MIXTURES

At N5const the critical point conditions in binary mix
tures are given by15

S ]m2

]x D
P,T

50, S ]2m2

]x2 D
P,T

50, S ]3m2

]x3 D
P,T

.0. ~B1!

The chemical potentials of the mixture components

m15f2xS ]f

]x D
P,T

, m25f1~12x!S ]f

]x D
P,T

, ~B2!

wheref5F/N is the Gibbs energy per mole, the derivativ
(]f/]x)P,T5(]A/]x)T,n5m, and the first equality in Eq
~B1! takes the form

S ]m2

]x D
P,T

5S ]2f

]x2 D
P,T

5S ]2A

]x2 D
T,n

1S ]2A

]x]n D
T
S ]n

]xD
P,T

5S ]m

]x D
T,n

1S ]P

]x D
T,n

2 S ]n

]PD
T,x

50. ~B3!

Using the thermodynamic relations (]m/]x)T,n

5(]P/]x)T,n(]n/]x)T,m and (]P/]n)T,m5(]P/]n)T,x

1(]P/]x)T,n(]x/]n)T,m one can rewrite Eq.~B3! in the
form

S ]m

]x D
T,n

S ]n

]PD
T,x

S ]P

]n D
T,m

5S ]n

]xD
P,T

S ]n

]xD
T,m

S ]P

]n D
T,m

50, ~B4!
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or the same (]P/]n)Tc ,mc
50. Similarly, one can show tha

the second equality in Eq.~B1! is equivalent to the condition
(]2P/]n2)Tc ,mc

50.
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