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Adsorption of critical and supercritical fluids
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We develop a crossover theory for critical adsorption of pure fluids in a semi-infinite system. In our
previous publication@Phys. Lett. A251, 212 ~1999!# we applied the theory to the analysis of
experimental data for adsorption of liquid SF6 on the critical isochore only. In this article we extend
the theory on the noncritical isochores and present a comparison of the theoretical predictions for the
surface excess~Gibbs! adsorption with experimental data for CO2/silica and SF6/graphite systems.
Good representation of experimental data is achieved in the range of temperatures from the saturated
temperature up to 1.15Tc and densities 0.5rc<r<1.5rc . The optimization of the model to the
excess isotherms in both systems indicates that they have surface critical behavior in the universality
class ofnormal transition. However, in this case model does not reproduce the excess adsorption
data for SF6/graphite system at temperaturest5T/Tc21<0.02 atr5rc . Analysis of the excess
adsorption data along the critical isochore in SF6/graphite system indicates that the surface fieldh1

vanishes linearly witht as T→Tc , which corresponds to theordinary transition. © 2000
American Institute of Physics.@S0021-9606~00!50406-1#
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I. INTRODUCTION

A characteristic feature of critical phenomena in fluids
the presence of long-range fluctuations in the density.
intensity of these fluctuations diverges as the critical poin
approached. As a consequence, the thermodynamic su
of a fluid exhibits a singularity at the critical point which ca
be described in terms of the universal scaling laws with u
versal exponents and universal scaled functions.1,2 The
physical adsorption of fluids under critical and supercriti
conditions onto solid surfaces also exhibits the effects
long-range density fluctuations. The surface excess,
Gibbs, adsorption of pure fluids on the surface is defined

G5E
0

`

~r~z!2r!dz, ~1!

wherer(z) is the density of fluid at a distancez from the
surface, andr5r(`) is the bulk density of the fluid. When
a fluid bounded by a surface approaches its critical point
r5rc and reduced temperaturesutu5uT/Tc21u!Gi (Tc is
the critical temperature andGi is the Ginzburg number! the
adsorptionG exhibits singular behavior,3 just as the bulk
properties.1,2 This phenomenon is known as critical adsor
tion. The classical theories of adsorption, such as the La
muir and BET theories,4 and the recently developed loc
density model5–7 give a reasonable representation of the
sorption data far away from the critical point. However,
these analytical theories fail to reproduce the nonanalyt
singular behavior of the adsorption in the vicinity of the bu

a!Author to whom all correspondence should be addressed. Electronic
skiselev@mines.edu
3370021-9606/2000/112(7)/3370/14/$17.00
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critical point. The local density model,5–7 for example, based
on the empirical Peng–Robinson equation of state, cont
mean-field values of the asymptotic critical exponents. J
as the Peng–Robinson equation of state gives a singul
for the isobaric heat capacity, the local density model5–7 also
yields a singularity for the excess adsorption in t
asymptotic critical region, but with wrong critical exponen
Therefore, this engineering model cannot be applied to
analysis of critical adsorption data in the vicinity of the bu
critical point. The more rigorous integral equatio
approaches8,9 also fail in the critical region, because th
equations cannot be closed.

In order to reproduce the nonanalytical singular behav
of the adsorption in the critical region, the scaled expressi
for the density r(z), or more generally for the order
parameter profilem(z), in Eq. ~1! should be used. The sca
ing hypothesis for the order-parameter in semiinfinite s
tems was first formulated by Fisher and de Genne3

According to their hypothesis, the order-parameter pro
m(z) near a surface for a system in zero external fieldh
50 can be represented in the universal form

m~z!5m0tbP6~z!, ~2!

where z5z/jb>0 is the dimensionless distance from th
surface,jb5j0t2n is the correlation length in the bulk fluid
m0 andj0 are the system-dependent critical amplitudes, a
b50.325 andn50.625 are universal critical exponents.
the disordered phase@T.Tc , mb5m(`)50], the scaled
function has the asymptotes

P1
FdG~z!5H P0z2b/n, for z!1,

P`e2z, for z@1,
~3!il:
0 © 2000 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereP0 andP` are universal constants.
During the last two decades the bulk properties of

system near the second-order phase transition, including
crossover from critical scaling to analytical classical beh
ior, have been studied in detail.10–14 During the same time
the theory of boundary critical phenomena has focused o
on the study of the asymptotic critical region~for a review,
see Ref. 15!. Theoretical expressions for the scaling functi
P6(z) ~Refs. 16–19! have been obtained to first order ine
(e542d, whered is the dimensionality!, give incorrect val-
ues of the critical exponents, and do not crossover into
classical mean-field equations whenGi!utu!1. All these
expressions have been obtained only for the zero exte
field h50 (r5rc for pure fluids!, and cannot be extrapo
lated to the entire critical region.

For zero external field, the crossover expressions for
order-parameter profile and the critical adsorption obtai
to first order ine and their phenomenological generalizatio
have been discussed in detail in our previo
publications.20,21 In this work, we develop a crossover e
pression for the order-parameter profile in nonzero exte
field and apply this expression to the analysis of the surf
excess adsorption data of supercritical CO2 on the octadecyl-
bonded silicia22,23 and of near-critical SF6 on a graphite
substrate.24

In Sec. II we review the mean-field theory results for t
critical adsorption. The crossover expression for the ord
parameter profile is described in Sec. III. A comparison
the crossover model with the surface excess adsorption
is presented in Sec. IV, and we discuss the results in Sec

II. MEAN-FIELD THEORY

The mean-field~MF! approach to critical phenomena
semiinfinite systems in zero external field has been stud
by many authors and its results are well-known.25–27 There-
fore, here we give only a brief description of the MF a
proach and derive the mean-field expressions for the or
parameter profile, surface order parameter, and adsorptio
the arbitrary nonzero external field.

A. Order–parameter profile

A field-theoretical description for the critical adsorptio
starts from the Landau–Ginzburg–Wilson effective Ham
tonian for the scalar order parameterm5m(z) in a semi-
infinite system26,25

H5
1

VE dxW uu E
0

`

dz~a0m21u0m41c0~¹m!22hm!, ~4!

where V is the total volume of the system,xW uu is
(d21)-dimensional vector parallel to the wall atz50, h is
the external ordering field,a05a0t, and a0 ,u0 ,c0.0 are
the system-dependent coefficients.

Using translational invariance parallel to the surface,
mean-field order-parameter profilem(z) is found from the
equation

dH

dm
50, ~5!
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which for the effective Hamiltonian as given by Eq.~4! is
equivalent to the Euler–Lagrange equation

2c0S d2m

dz2 D 52a0tm14u0m32h, ~6!

with the boundary conditions:

m~z50!5m1 , m~z→`!5mb ,
~7!S d2m

dz2 D
z→`

5S dm

dz D
z→`

50.

The equation of state for the bulk fluid, with the bulk orde
parametermb , in this case has the form

h52a0tmb14u0mb
3 . ~8!

The first integral of Eq.~6! can be written as

c0S dm

dz D 2

5a0t~m22mb
2!1u0~m42mb

4!2h~m2mb!.

~9!

Using Eq.~8!, it is easy to show that

a0t~m22mb
2!1u0~m42mb

4!2h~m2mb!

5u0~m2mb!2Fm212mbm1
a0t13u0mb

2

u0
G , ~10!

and, after integration of Eq.~9!, we obtain for the order-
parameter profile in the MF approximation

m~z!5mb6
2Ak̄exp~ z̄1 z̄0!

~exp~ z̄1 z̄0!72mb /Ak̄ !221
, ~11!

where the top signs~‘‘ 1’’ and ‘‘ 2 ’’ ! correspond to the de
creasing order-parameter profile (m1>m>mb) and the bot-
tom signs ~‘‘ 2 ’’ and ‘‘ 1’’ ! to the increasing order
parameter profile (m1<m<mb), respectively. The
parameter

k̄5~a0t16u0mb
2!/u052m̄0

2t16mb
252M̄216mb

2 ,
~12!

whereM̄5m̄0t1/2, andm̄05Aa0/2u0 is the amplitude of the
bulk order parameter on the coexistence curve in the me
field approximation@see Eq.~8! at h50 andt,0]

m̄cxs56m̄0utu1/2 at T<Tc. ~13!

The dimensionless distancesz̄ and z̄0 in Eq. ~11! are given
by

z̄5
z

j̄b

, z̄05
z0

j̄b

5 lnF 1

uDm1u SAk̄12
mb

Ak̄
Dm1

1ADm1
214mbDm11k̄ D G ,

~14!

where Dm15m12mb , and j̄b5Ac0 /u0k̄5 j̄0A2m̄0
2/k̄ is

the bulk correlation length in MF approximation. The bu
order parametermb is determined, at fixedt andh, from the
equation of state as given by Eq.~8!. For the zero externa
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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field (h50 att>0) mb50, and Eq.~11! is transformed into
the well-known MF expression for the order-parameter p
file in the semi-infinite system16

m~z!56
M̄A2

sinh~ z̄1 z̄0!
, ~15!

where dimensionless distancesz̄ and z̄0 are

z̄5zt1/2/ j̄0 , z̄05 lnSA112S M̄

m1
D 2

1A2
M̄

m1
D , ~16!

and j̄05Ac0 /a0 is the amplitude of the bulk correlatio
length in the zero external field~at h50 and t.0) j̄b

5 j̄0t 21/2 in the mean-field approximation. In the case of t
infinite adsorption,m1→`, Eq. ~15! can be rewritten the in
the universal form

m~z!5m̄0t1/2P̄1~ z̄!, ~17!

where P̄1( z̄)5A2/sinh(z̄) is a MF prototype of the scaling
function P1(z).

The adsorption is given by

G5E
0

`

~m~z!2m~`!!dz5E
m1

mb
~m2mb!S dm

dz D 21

dm,

~18!

which after substitution of Eq.~15! and integration can be
written in the form

G5
j̄0m̄0

A2
lnFm11mb1Am1

212mbm123mb
21k̄

2mb1Ak̄
G 2

,

~19!

which coincides with corresponding expression obtained
lier by Marconi.28

In the zero external fieldh50 (mb50 at t>0), Eq.
~19! is transformed into

G5
j̄0m̄0

A2
lnS m1

tm̄0

A2t1S m1

m̄0
D 2

1
m1

2

tm̄0
2

11D
5

j̄0m̄0

A2
lnS m1

M̄
A21S m1

M̄
D 2

1
m1

2

M̄2
11D , ~20!

and adsorption has a weak logarithmic divergenceG
} ln(1/t) as the bulk critical point is approached (t→10).

B. Surface order-parameter

In order to analyze the surface order-parameter
needs to consider the Landau–Ginzburg–Wilson effec
Hamiltonian containing extra ‘‘surface’’ contributions29,30

H5
1

V E dxW uu E
0

`

dz~a0tm21u0m41c0~¹m!22hm

1b1d~z!m1
22h1d~z!m1!, ~21!

whereb1 is a surface constant andh1 is the surface field. The
procedure of minimizing of the HamiltonianH in this case is
Downloaded 15 Oct 2002 to 138.67.32.126. Redistribution subject to A
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the same as described above, and one can obtain agai
Euler–Lagrange equation Eq.~6!, but with the boundary
condition at the surface (z→0)

2c0S dm~0!

dz D52c0S dm1

dz D52b1m12h1 . ~22!

At z→` the boundary conditions are the same as given
Eq. ~7!. Writing m(0)5m1 and using the boundary cond
tion Eq.~22! in Eq. ~9! we obtain an equation of state for th
surface,

4u0c0~m12mb!2@m1
212mbm11a0t/u013mb

2#

5~2b1m12h1!2, ~23!

or, using the notation introduced in the previous section,
obtain

h1

Au0c0

5
2b1

Au0c0

m112~m12mb!

3@m1
212mbm11k̄23mb

2#1/2. ~24!

For a zero external fieldmb50 and Eq.~24! is transformed
into expression obtained earlier by Bray and Moore,30

h152m1@b11Au0c0~m1
212M̄2!1/2#

52m1@b11Ac0~a0t1u0m1
2!1/2#. ~25!

III. CROSSOVER THEORY

The MF approach is valid only in the temperature regi
Gi!utu!1, where the effect of the fluctuations of the orde
parameter on the thermodynamic behavior is negligi
small and all thermodynamic properties exhibit analytic
classical behavior.31 At reduced temperaturesutu!Gi the
long-range fluctuations of the order parameter affect the th
modynamic properties of a system and cause them to ex
universal scaling behavior.

In order to include the effect of the long-range fluctu
tions on the critical adsorption, we will use the renormaliz
tion group~RG! method and thee-expansion within the self-
consistent approach proposed by Rudnick and Jasnow.32 In
this approach, one starts from the Landau–Ginzburg–Wil
effective HamiltonianH as given by Eq.~4! where the order-
parameter is represented as the sum of the average and
tuation parts

m~z,xW uu!5m1f~z,xW uu!. ~26!

The Gibbs distribution averaged value of the fluctuation p
is equal to zero,̂f(z,xW uu)&50, such that

^m~z,xW uu!&5m~z!5m, ~27!

and the surface value of the average part is given by

m~z50!5m1 , m~z→`!5mb . ~28!

After substitution of Eq.~26! in Eq. ~4! the effective Hamil-
tonian can be written in the form
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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H→ĤR5
1

V
*0

`dz*dxW uu~aRmR
21uRmR

41cR~¹mR!2

2hmR!1HVC
R , ~29!

where mR is a renormalized value of the order-parame
obtained after the integration of Eq.~4! over the wave vec-
tors 0,uqW u,L0 ~whereL0 is the cutoff wave number!, HVC

R

is the vacuum part of the effective Hamiltonian which do
not depend onmR . Further calculations are analogous
those used for infinite systems.10,20,33The renormalized co-
efficientsaR anduR to the first order ofe are given by

aR5a0tY21/35a0tY21/3, uR5u0Y21, cR5c0 . ~30!

The crossover functionY in the first order ofe is written in
the form

Y512g01S kR

a0Gi D
2e/2

,

~31!
kR5aR16uR~m2mb!216uRmb

2 ,

where

Gi5S 9

8p2

kBTcu0

ea0
e/2c0

22e/2D 2/e

is the Ginzburg number,kB is the Boltzman’s constant, an
g05Gie/2/( j̄0L0)e is a parameter dependent on the cut
wave numberL0 . Since this parameter only renormaliz
the background part of the isochoric specific heat att@Gi
and does not change the crossover behavior of the syste
the critical region,12 we set the parameterg0 equal to zero.20

A. Crossover order-parameter profile

The equilibrium order–parameter profilem(z), similar
to the MF theory, is found from Eq.~5!, which for the effec-
tive Hamiltonian Eq.~29! takes the form

dĤR

dmR
50. ~32!

Using the translational invariance inxW uu-direction and inde-
pendence ofaR , uR , andHVC

R on mR , we obtain from Eq.
~32!

dĤR

dmR
5

1

L E
0

`

dzS 2aRmR14uRmR
322c0S d2mR

dz2 D 2hD
50, ~33!

which is equivalent to the equation

2c0S d2mR

dz2 D 52aRmR14uRmR
32h, ~34!

with the boundary conditions

mR~z→`!5mb and S d2mR

dz2 D
z→`

5S dmR

dz D
z→`

50. ~35!

Integration of Eq.~34! yields
Downloaded 15 Oct 2002 to 138.67.32.126. Redistribution subject to A
r

s

f

in

c0S dm

dz D 2

5aR~m22mb
2!1uR~m42mb

4!2h~m2mb!,

~36!

where the equilibrium value of the order parameter at giv
temperaturet and the ordering fieldh is determined from the
crossover equation of state for the bulk phase

h52aRmb14uRmb
3 . ~37!

After substitution Eq.~37! into Eq. ~36! we obtain

c0S dm

dz D 2

5uRDm2@m212mbm1~aR /uR!13mb
2#, ~38!

where Dm5m2mb and the boundary condition ism(z
50)5m1 .

The details of integration of Eq.~38! are given in Ap-
pendix A. The final phenomenological generalization of t
crossover expression for the order-parameter profile can
represented in the form

z5 j̄0Y(n2b)/DA2m̄0
2

k

3 lnFk12mbDm1Ak~Dm214mbDm1k!

Dm~2mb1Ak!
G2R0 ,

~39!

R05 j̄0Y1
(n2b)/DA2m̄0

2

k1

3 lnFk112mbDm11Ak1~Dm1
214mbDm11k1!

Dm1~2mb1Ak1!
G ,

~40!

k52m̄0
2tY(122b)/D1v3mb

2

562M2S Y

Yb
D (122b)/D

1v3mb
2 , ~41!

k152m̄0
2tY1

(122b)/D1v3mb
2

562M2S Y1

Yb
D (122b)/D

1v3mb
2 , ~42!

where the signs ‘‘1’’ and ‘‘ 2 ’’ correspond to the high (t
.0) and low (t,0) temperature region, respectively. Th
crossover functionsY, Y1 , andYb are given by

Y512g01Y(g22b)/gF 1

Gi S tY(122b)/D1v1S Dm

m̄0
D 2

1v2S mb

m̄0
D 2D G2D/g

, ~43!

Y1512g01Y1
(g22b)/gF 1

Gi S tY1
(122b)/D1v1S Dm1

m̄0
D 2

1v2S mb

m̄0
D 2D G2D/g

, ~44!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Yb512g01Yb
(g22b)/g

3F 1

Gi S tYb
(122b)/D1v2S mb

m̄0
D 2D G2D/g

. ~45!

In Eqs. ~39!–~45!, M5m̄0utu1/2Yb
(122b)/2D5m0utub

3(u t̄uDYb)(122b)/2D is the order-parameter at the coexisten
curve; t̄5t/Gi is the rescaled temperature;m0

5m̄0Gi1/22b is the asymptotic critical amplitude;g51.24,
b50.325, andD50.51 are the current best estimates of t
nonclassical critical exponents, andv i ( i 51,2,3) are the
universal constants. In the zero external field the bulk ord
parametermb50, and Eqs.~39!–~45! are transformed into
the crossover expressions for the order parameter profile
the crossover functions obtained earlier by Belyak
et al.,20,21 and the constantv15v50.51. The crossove
equation of state Eq.~37! and the bulk crossover functionYb

as given by Eq.~45! exactly correspond to ones in the cros
over Leung–Griffiths model,34 and the constantv25l1/2
54.39 is directly related to the universal constantl1 in Ref.
34. In the temperature regionGi!t!1 at mb50 and the
density regionm0Gib!umbu!1 at t50 the crossover func
tions Y andY1 tend to one (Y>Y1>1) and crossover Eqs
~39!–~42! with v356 are exactly transformed in the MF ex
pressions~12!–~14!.

In the zero external field Eqs.~39! and ~40! can be rep-
resented in universal form,21

m~z!5m0tbP̂1~x!, ~46!

where

x5
z

jb
S Yb

Y D ~2n21!/2D

5zS Yb

Y D ~2n21!/2D

,

~47!

x05
R0

jb
S Yb

Y D ~2n21!/2D

,

and the universal order-parameter profile crossover func

P̂1~x!5~ t̄DY!~122b!/2D
A2

sinh~x1x0!
~48!

@unlike the universal functionP1(z) in Eq. ~2!# is not a
universal function of the parameterz alone, even in the criti-
cal regime att!Gi. The detailed analysis of the asymptot
behavior of the crossover functionP̂1(x) is given in Ref. 21.
The main result of this analysis is that in case of infin
adsorption (m1→` and x050), near the wall at distance
0<z!j0Gi2n ~or 0<z!z0 , wherez05 t̄n is a characteris-
tic length! the scaling functionP̂1(x) exhibits the mean field
behavior

P̂1~x!5 P̄0z̄21. ~49!

This result has a simple physical explanation. Since the i
nite adsorption corresponds to the conditionh1→` @see Eq.
~25!#, the surface field suppresses the fluctuations of
order-parameter near the wall, causing them to exhibit
Downloaded 15 Oct 2002 to 138.67.32.126. Redistribution subject to A
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mean-field behavior. At distancesz@z0 , the scaling func-
tion P̂1(x) obeys the Fisher–deGennes scaling hypothesi
given by Eq.~3!.

In Fig. 1 we show a comparison of our crossover fun
tion P̂1 for the case of strong adsorption,m1 /(m0Gib)
510, with the Pade approximate for the scaling functi
P1

FdG proposed by Liu and Fisher35 and with the empirical
scaling function obtained recently by Carpenteret al.36 As
one can see, in the scaling regime att̄51022 the character-
istic length z055.631022 and at z!5.631022 (logz

!-1.25) our crossover functionP̂1(x), unlike the scaling
functions of Liu and Fisher35 and of Carpenteret al.,36 does
exhibit the MF behavior. At distancesz@5.631022 (logz
@21.25) all three scaling functions practically coincide.
rescaled temperaturet̄550, the characteristic lengthz0

511.5 and the MF behavior of the order-parameter profile
observed into the entire region 0,z,10.

B. Critical adsorption

In the case of the crossover order-parameter profile
given by Eqs.~39! and~40!, the integral on the right side o
Eq. ~18! for the adsorption cannot be expressed as a fi
combination of elementary functions. Therefore, no rigoro
analytic expression for the adsorption can be obtained in
case. In our previous work20,21 we discussed a reasonab
analytic approximation for the adsorption for the zero ext
nal field, atmb50. Here we have generalized this express
for nonzero external field.

In order to analyze the adsorption analytically it is bet
to start from Eq.~18!. The minimum of the free-energy func
tional of the system with the effective Hamiltonian Eq.~29!
corresponds to the negative root of Eq.~38!

S dm

dz D52AuR

c0
~m2mb!Am212mbm1

aR

uR
13mb

2.

~50!

FIG. 1. Scaling functionP1 for the order-parameter profile as a function
the dimensionless distancez. The solid curve calculated with the crossov
Eq. ~48!, the long-dashed curve was generated with the Liu and Fis
model ~Ref. 35!, the dotted-dashed curve represents an empirical mode
Carpenteret al. ~Ref. 36!, and the short-dashed curve corresponds to
mean-field approximation.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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After substitution of Eq.~50! into Eq.~18! with the boundary
conditionm(z50)5m1 we have for the adsorption

G5Ac0

u0

3E
0

Dm1 Y1/2d~m2mb!

A~m2mb!214mb~m2mb!12m̄0tY2/316mb
2

.

~51!

Equation~51! can also be integrated rigorously only nume
cally, but we can obtain a good approximation for this in
gral. The analytical estimate of the integral at the right s
of Eq. ~51! obtained in the first order ofe and its phenom-
enological generalization are given in Appendix B.

Finally, the crossover expression for the adsorption
be written in the form

G5
m̄0j̄0

A2
Y1

~n2b!/D lnFm11mb1Am1
212mbm123mb

21k1

m̄0A2k1 /k̄
G 2

2
m̄0j̄0

A2
Yb

~n2b!/D lnF S Y1

Yb
D ~122b!/2D 2mb1Akb

m̄0A2k1 /k̄
G 2

, ~52!

where

kb52m̄0
2tYb

(122b)/D1v3mb
2562M21v3mb

2 . ~53!

In the zero external field att>0 the bulk order-paramete
mb50, kb52m̄0

2tYb
(122b)/D52M2, k152m̄0

2tY1
(122b)/D

52M2(Y1 /Yb)(122b)/D, the productm̄0j̄0Yb
(n2b)/D5Mjb ,

and Eq.~52! exactly correspond to the crossover express
for the adsorption obtained earlier by Kiselevet al.21 In the
zero external field, atmb50, t!Gi ( t̄!1), and m1

5const, the adsorption diverges asG}jbM}t2n1b ap-
proaching the critical temperature.21 In the MF regime (Gi
!t!1 atmb50, andGib!umbu!1 att50), the crossover
functionsY1→1 andYb→1, the parameterskb→k̄ and k1

→k̄, and the crossover Eq.~52! is transformed into the MF
expression Eq.~19!.

It is interesting to compare the values for the adsorpt
calculated with Eq.~52! with the result of the numerica
integration of Eq.~18!. For this aim it is useful to rewrite Eq
~18! in the form

G5E
0

`

Dmdz5Dmzu0
`2E

Dm1

0

z~Dm!dDm

5E
0

Dm1
z~Dm!dDm, ~54!

where for the order-parameter profilez(Dm) one can use the
phenomenological generalization as given by Eq.~39!. For a
comparison we choose a system withGi50.01, m05m1

51, and j050.2 nm. The values of adsorption calculat
from Eq. ~52! in comparison with results of numerical inte
gration of Eq.~54! for this case are shown in Fig. 2. Qua
tatively, both methods give similar behavior of the adso
tion in the critical region. However, forumbu<0.2 at
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temperaturest<0.01, some quantitative discrepancy b
tween numerical integration and values calculated from
~52! is observed. Therefore, in order to avoid a possible m
interpretation of the experimental data, our analysis of
critical adsorption data will be performed using numeric
integration of Eq.~54!.

IV. COMPARISON WITH EXPERIMENTAL DATA

In order to use this model for a comparison with expe
mental data for the surface excess, or Gibbs, adsorption,
needs to know the bulk critical parameters of the systemTc

and rc for pure fluids, the asymptotic critical amplitude o
the coexistence curve,m0 , and of correlation length,j0 , and
the Ginzburg numberGi. All these parameters can be ob
tained from the independent analysis of the bulk proper
of the system in the critical region. The corresponding M
critical amplitudesm̄0 and j̄0 in Eqs. ~39! and ~40! can be
calculated using relations

m̄05m0Gib21/2, j̄05j0Gin21/2. ~55!

The surface appears in Eqs.~39! and ~40! only through the
surface order-parameterm1 . Therefore, in addition to the
bulk properties of the system, one needs also to know
equation of state for the surface. Since in the case of
strong adsorption~at m1.m0Gib) in the limit z→0 we al-
ways have the MF behavior of the order-parameter profi
we can use Eq.~24! for this purpose. The parametersu0 , a0 ,
andc0 in this equation related to the parametersm0 , j0 , and
Gi as

u05
9

32p2

kBTc

m0
4j0

3Gi4b23n
, a052m0

2Gi2b21u0 ,

~56!
c05a0Gi122n~rc

1/3j0!2.

In addition, we assume that the system-dependent param
b15b10Au0c0, whereb01 is a temperature independent co
stant, while the surface fieldh1 is treated as an analytic func
tion of temperature

FIG. 2. Adsorption as a function of the dimensionless temperaturet ~left!
and as a function of the bulk order-parametermb ~right!. The solid curves
correspond to the values calculated with Eq.~52! and the dashed curve
represent the values obtained with a numerical integration of Eq.~54!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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h1

Au0c0

5h101( i 51h1it
i , ~57!

whereh1i are the system-dependent constants. Thus, in o
to describe experimental data for the Gibbs adsorption in
systems, one needs to know the bulk properties and the
face parametersb10 andh1i ( i 50,1,. . . ).

The first system, to which the crossover model was
timized, is supercritical carbon dioxide on octadecyl-bond
silicia. The surface excess adsorption in this system has b
measured by Strubinger and Parcher22 at different pressures
along three isothermsT5 303.15, 313.15, and 323.15 K. I
order to transform these data intoT2r coordinates we used
the parametric crossover equation of state~EOS! for CO2

developed by Kiselev and Kulikov.37 This crossover EOS
similar to our crossover model for adsorption, reproduces
singular behavior of the thermodynamic properties in
critical region atutu!Gi, and atutu@Gi is transformed into
the classical mean-field EOS. Good representation of
thermodynamic properties of pure CO2 with the crossover
EOS was achieved in the range of temperatures and den
bounded by37

0.995Tc<T<1.4Tc , 0.35rc<r<1.65rc . ~58!

In contrast to our crossover model, the crossover EOS
Kiselev and Kulikov37 contains additional terms which tak
into account an asymmetry of real fluids with respect to
critical isochore.38 Therefore, we expect that our symmetr
crossover model, similar to the symmetric scaled EOS
pure fluids, can be applied in the range of temperatures
densities not wider than39

0.995Tc<T<1.15Tc , 0.5rc<r<1.5rc . ~59!

After this elimination, only six points from the experiment
data of Strubinger and Parcher22 on two isotherms
(T5 313.15 and 323.15 K! were left. These points, togethe
with additional five points on theT5313.15 K isotherm ob-
tained in Ref. 23, are shown in Fig. 3. As one can see, th
is some discrepancy between two data sets atr/rc.1; there-
fore, for further numerical analysis we used here only d
reported in Ref. 22.

In the critical region atGi!t!1, the parametric cross
over model employed by Kiselev and Kulikov37 exactly cor-
responds to the MF EOS as given by Eq.~8! with the order-
parameter

mb5Dr2d1t, ~60!

whereDr5r/rc21, d1 is a rectilinear diameter amplitud
of the coexistence curve, the external field is a dimension
chemical potential of the fluid.40,41Therefore, the parameter
a0 andu0 in the MF EOS are directly related to the param
etersk, a, and g in the parametric crossover model37 ~for
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details see Refs. 40, 41!. For the asymptotic critical ampli-
tude of the coexistence curvem0 and the Ginzburg numbe
Gi we obtained

m05
k

~b221!b
,

Gi5g21
b221

2@2~b221!1~2g21!~22a!!/g~12a!] 1/(122b)
,

~61!

whereb2 is a universal linear-model parameter.
For pure CO2 we adopt the same critical parameters,

Tc5304.136 K, rc510.625 mol•L21,

Pc57.3773 MPa, ~62!

and the values of the bare correlation lengthj0 and rectilin-
ear diameter amplituded1 ,

j050.15 nm, d1520.9221, ~63!

as reported by Kiselev and Kulikov,37 while the parameters

m051.708 and Gi50.115, ~64!

were calculated from Eqs.~61! with the parametersk
51.2245 andg50.1477 taken from Ref. 37. Six points o
two isotherms are not enough for the statistical optimizat
procedure. Therefore, initially we setb1051 andh10510, to
provide a conditionm1 /(m0Gib)>2, while the parameter
h115239.51 was found from a fit of our model to the exce
adsorption data of Strubinger and Parcher.22 Comparison of
the experimental data with the values of the Gibbs adsorp
calculated with the crossover model is given in Fig. 3. Go
agreement between experimental data and the predicted
ues is observed in the range of temperatures and densitie
given by Eq.~59!.

In principle, the range of the validity of the model can b
extended. A theoretically consistent way of extending of

FIG. 3. Surface excess adsorption of CO2 on octadecyl-bonded silicia a
T5313.15 and 323.15 K as a function of density. The empty symbols
resent experimental data of Strubinger and Parcher,22 the filled symbols
correspond to data from Ref. 23 and the curves represent the values c
lated with the crossover model.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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model to a wider density range is to consider the asymme
terms in the effective Hamiltonian of the system~see, for
example, Refs. 42, 43!. However, this approach needs add
tional theoretical study which is not the subject of the pres
work. In the present article, we improved the model by
ting both parameters,h10 andh11, to experimental data. Fi
nally, for this system we adopt the values

b1051, h1059.744, h11524.107. ~65!

The results of the fit are shown in Fig. 4. Except two poi
marked in Fig. 4 by a cross, the model yields a good rep
sentation of all experimental data in the range of densi
0.3<r/rc<1.7.

There are no surface excess adsorption data for
CO2/silicia system along the critical isochore of CO2. There-
fore, in Fig. 5 we show a comparison of the values of

FIG. 4. Surface excess adsorption of CO2 on octadecyl-bonded silicia alon
isotherms in the extended density region. The symbols represent exper
tal data of Strubinger and Parcher,22 the dashed curves correspond to t
values obtained from Eq.~54! with h10510, and the solid curves represe
the values calculated with Eq.~54! with the parametersh10 and h11 found
from a fit to the experimental data.

FIG. 5. Surface excess adsorption of CO2 on octadecyl-bonded silicia alon
the critical isochore as a function of temperature. The solid curve repres
the values generated with the crossover model, the short-dashed curv
responds to the MF Eq.~20!, and the long-dashed curve represents
values calculated with asymptotic Eq.~66!.
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Gibbs adsorption of CO2 calculated at the critical isochor
with the crossover model with the values calculated with
MF Eq. ~20! and with the asymptotic scaling expression

G5At2n1b1B, ~66!

whereA andB are the system dependent coefficients. Eq
tions ~20! and ~66! were optimized to the Gibbs adsorptio
data generated with the crossover model atr5rc and 0.05
<t<0.1. As one can see, even though att'0.1 all three
models practically coincide, the difference between them
creases dramatically ast→0. In reality, the MF model opti-
mized to experimental data far from the critical region
unable to reproduce the Gibbs adsorption data in the reg
wheret<0.1 This is a reason why such analytical mean-fie
theories such as the BET4 or the local density model5–7 can-
not be extrapolated in the critical region att→0 (t!Gi).

The second system, which has been considered he
near-critical SF6 on a graphite substrate. The detailed expe
mental critical adsorption data in this system have been
tained by Thommeset al.24 not only along isotherms, bu
also along isochores as a function of temperature. It ma
this system extremely attractive for the testing of the theo
In addition, the anomalous behavior of the adsorption on
critical isochore observed in the experiment presents a
challenge for the model.21

The experimental critical adsorption data obtained
Thommeset al.24 at the critical density of pure SF6 are
shown in Fig. 6. Unlike the theoretical prediction~see Fig.
2!, the adsorption in this system increases only down to
duced temperaturest.0.01 (DT.2 K! but then G de-
creases sharply on approachingTc . In the previous work we
have shown that this anomalous behavior of the adsorp
along the critical isochore can be treated by supposing
the surface order-parameter profile vanishes linea
with t.21

In this article, we analyzed experimental data
Thommeset al.24 in two steps. Firstly, we considered expe

en-

ts
or-

FIG. 6. Surface excess adsorption of SF6 on graphitized carbon~left! and
the surface fieldh1 ~right! along the critical isochore as a function of tem
perature. The symbols represent experimental data of Thomesset al. ~Ref.
24! and the curves represent the values calculated with the crossover m
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mental data at the critical isochore only. Similar to our p
vious work,21 for the bulk SF6 we adopt the parameters

Gi52.131022, m051.715, d1520.9488, ~67!

obtained by Ley-Koo and Green44 ~parameterstmax, B0 , and
-b in Ref. 44!, for j050.2 nm, we adopt the value obtaine
by Sengers and Levelt Sengers,45 while the surface order
parameterm1 was calculated from Eq.~24! with the surface
field

h15 f 01 f 1f s~t/t1!, ~68!

wheref s(q)5 q/(11q) is a function introduced in Ref. 21
From a fit of the crossover model to the experimental dat
the critical isochore only, we found that parameterf 0 is sta-
tistically irrelevant and can bet set equal zero, and the
rameters

b1052.67, f1513.6, t151.3531022. ~69!

In Fig. 6 we show a comparison of experimental exc
adsorption data obtained at the critical isochore by Thomm
et al.24 with the values calculated with the crossover mod
Excellent agreement of the calculated values with exp
mental data is observed. In the same figure we show
surface fieldh1 as a function of the temperature differen
DT5T2Tc . At DT516 K (t.0.05), similar to the system
considered above,h1 /Au0c0.10. However, in contrary to
this system, at the surface fieldh1→0 as the critical tem-
perature is approaching. It is interesting to compare the
diction of the theory in this case with other experimental d
obtained in Ref. 24. A comparison of the excess adsorp
isotherms obtained by Thommeset al.24 with the values cal-
culated with our crossover model is shown in Fig. 7. In t
density range 0.5<r/rc<1.5 at temperaturesT>324 K (t
>0.02) the crossover theory gives a good representatio
experimental data. However, atT5321.57 K the systematic

FIG. 7. Surface excess adsorption of SF6 on graphitized carbon along th
isotherms as a function of density. The solid curves represent the va
calculated with the crossover model with parameters as given in Eq.~69!,
the dashed curves correspond to the values calculated with parameters
in Eq. ~70!, and symbols represent experimental data of Thomesset al.
~Ref. 24!.
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deviations of the calculated values from experimental d
are observed which increase up to 50%–70% at the n
critical isothermT5319.34 K~see Fig. 8!.

In Fig. 9 we show a comparison of the experimental a
calculated values of the adsorption along the noncritical i
chores. As one can see, the crossover theory in this case
qualitatively does not reproduce experimental data in
near critical region atDT,4 – 6 K (t<0.02). Therefore, as
a second step, we used for the external fieldh1 the MF Eq.
~24!. Similar to the CO2/silicia system, the parameters

b1052.07, h1054.47, h1151.393102,
~70!

h12521.053103,

for SF6/graphite system were found from a fit of the cros
over model only to the surface excess isotherms. The va
of the adsorption calculated with the crossover model w

es

ven

FIG. 8. Surface excess adsorption of SF6 on graphitized carbon along the
near-critical isothermT5319.34 K as a function of density. The solid curv
represents the values calculated with the crossover model with the pa
eters given in Eq.~69!, the dashed curve corresponds to the values ca
lated with parameters given in Eq.~70!, and symbols represent experiment
data of Thomesset al. ~Ref. 24!.

FIG. 9. Surface excess adsorption of SF6 on graphitized carbon along the
isochores as a function of temperature. The solid curves represent the v
calculated with the crossover model with parameters given in Eq.~69!, the
dashed curves correspond to the values calculated with parameters giv
Eq. ~70!, and symbols represent experimental data of Thomesset al. ~Ref.
24!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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these parameters correspond to the dashed curves in
7–9. Because of the absence of the tables with real exp
mental data in Ref. 24, the points in Figs. 7–9 represent
values obtained with a graphical interpolation from Figs.
3, and 4 of Ref. 24. It explains some inconsistency betw
experimental data presented in Figs. 8 and 9 atT5319.34 K
andr/rc50.8. In general, with the parameters given in E
~70!, the crossover model, except the temperaturest<0.02
at r5rc , yields a reasonably good representation of all
perimental data in the range of temperatures and densitie
given by Eq.~59!.

V. DISCUSSION

We developed the crossover theory for the surface
cess adsorption of pure fluids on the solid surface. Simila
crossover theory for the bulk properties,12,13 our crossover
theory for the adsorption contains the Ginzburg number,Gi,
as a parameter. Along the critical isochore the crossover
pression for the order-parameter profile can be written in
universal form proposed by Fisher and de Gennes.3 In the
asymptotic critical region at dimensionless temperaturesutu
!Gi and distancesz@j0Gi2n, the universal crossove
function for the order-parameter profile exhibits singular b
havior and obeys the Fisher–deGennes scaling hypothe3

At distances 0<z!j0Gi2n, and in the temperature rang
Gi!utu!1 the universal crossover function is transform
into the well-known MF expression for the order-parame
profile in the semiinfinite system.16

The crossover theory was tested against experime
data for adsorption of supercritical carbon dioxide
octadecyl-bonded silicia measured by Strubinger a
Parcher22 and against the surface excess adsorption dat
near-critical SF6 on a graphite substrate obtained by Tho
mes et al.24 For the CO2/silicia system, a good agreeme
between the theoretical predictions and experimental da
observed. For the SF6/graphite system, only a moderate su
cess was achieved. The main challenge for the modellin
this system is an anomalous decreasing of the adsorp
along the critical isochore on approaching the bulk criti
temperatureTc .24

In our previous article,21 we have shown that this
anomalous behavior of the adsorption can be described
curately in the framework of the crossover theory with t
surface order-parameter profile vanishing linearly att→0. In
this work, we calculated the surface order-parameterm1

from the MF surface equation of state@Eq. ~24!#. A theoret-
ical study of this equation has been performed by Luben
and Rubin29 and by Bray and Moore.30 It has been shown
that ath50 andh150 Eq. ~24! gives three classes of th
surface phase transitions.29,30 The ordinary transition occurs
at t50 andb1.0, theextraordinary transition occurs att
50 and b1,0, and these transitions are separated by
specialtransition att50 andb150. In addition, thenormal
surface transition occurs on the surface as a result ofh1Þ0
andb1.0.46 It has been argued47 that a fluid against a hard
wall has surface critical behavior in the universality class
normal transition. The results of the optimization of th
model to the excess isotherms in the CO2/silicia and in
SF6/graphite systems are in a complete agreement with
Downloaded 15 Oct 2002 to 138.67.32.126. Redistribution subject to A
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conclusion. However, in this case theory fails to reprodu
the excess adsorption data for SF6/graphite system at tem
peraturest<0.02 at r5rc . We found that an excellen
agreement with excess adsorption data along the critical
chore in SF6/graphite system is achieved, if the surface co
pling constantb1.0 and the surface fieldh1→0 ast→0,
which corresponds to theordinary transition. However, in
this case the theory fails to reproduce the excess isotherm
utu,0.02. We cannot say for sure what causes
SF6/graphite system to exhibit such anomalous behavior.
answer this question, the additional theoretical and exp
mental study is needed.

In developing crossover expressions for the ord
parameter profile, we used a field-theoretical approach ba
on the Landau–Ginzburg–Wilson effective Hamiltonia
given by Eq.~21!. This is a general approach, and the cro
over function for the semiinfinite system obtained in th
article~which is similar to the crossover function for the bu
properties obtained earlier by Belyakov and co-workers12,14!
can be applied to any system with a scalar order-parame
Recent research indicates that such complex system
aqueous ionic solutions,34 polymers and polymer blends,48–52

and microemulsions53 can be described in the critical regio
with the crossover function obtained by Belyakov a
Kiselev,12 where the Ginzburg number,Gi, depends on the
composition~for ionic solutions! or on the molecular weigh
~for polymers!. Therefore we expect that the crossover eq
tions obtained in this work can be also applied for the ana
sis of critical adsorption data in binary liquid mixtures and
complex fluids in general. Research toward the application
this crossover approach to other systems is in progress,
the results will be presented in future publications.

ACKNOWLEDGMENTS

The authors are indebted to M.E. Fisher for his inter
in this work and constructive comments. The research w
supported by the Office of Basic Energy Sciences of the U
Department of Energy under Grant No. DE-FG0
95ER14568.

APPENDIX A: CROSSOVER EXPRESSION FOR
ORDER-PARAMETER PROFILE

Equation~50! can be written in the integral form

E
m

m1Ac0

uR

dx

~x2mb!Ax212mbx1~aR /uR!13mb
2

52E
z

0

dz5z. ~A1!

The integral on the left side of Eq.~A1! can only be evalu-
ated numerically. In order to estimate this integral analy
cally let us introduce a notationx̂5(x2mb)/(A2m̄0). Then
Eq. ~A1! reads
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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z5E
m̂

m̂1Ac0Y

a0

dx̂

x̂Ax̂214m̂bx̂1k̂

5E
m̂

m̂1

A c0

a0k̃
S 1

Ak̂
dx̂D

x̂

Ak̂
AS x̂

Ak̂
D 2

14S m̂b

Ak̂
D S x̂

Ak̂
D 11

, ~A2!

where

m̂5~m2mb!/~A2m̄0!, m̂15~m12mb!/~A2m̄0!,
~A3!

m̂b5mb /~A2m̄0!,

k̂5tY2/316m̂b
2 , k̃5Y21k̂5tY21/316m̂b

2Y21, ~A4!

and to the first order ofe the crossover function

Y512g01Ye/2F k̂16x̂2

Gi
G2e/2

. ~A5!

Let introduce a variableu5 x̂/Ak̂, such that

du5
d

dx̂
S x̂

Ak̂
D dx̂5

1

Ak̂
dx̂F12

x̂Y21

3
•

tY2/3

k̂
S dY

dx̂
D G ,

~A6!

and substitute the derivative (dY/dx̂) in Eq. ~A6! with the
expression obtained from Eq.~A5! to the first order ofe

du5
1

Ak̂
dx̂

3S 11
2e

@12~e/2!Q#
•

~Y211g0!

Y
•

tY2/3

k̂
•

x̂2

~ k̂16x̂2!
D

5
1

Ak̂
dx̂~11O~e!!.

1

Ak̂
dx̂, ~A7!

whereQ5(12 2aR/3kR)(Y211g0)/Y. Then Eq.~A2! can
be represented in the form

z5E
m

m1A c0

a0k̃

du

uAu214mbu11
5E

m

m1A c0

a0k̃
G~u!du,

~A8!

where we have introduced the notations

m5
m̂

Ak̂
, m15

m̂1

Ak̂1

, mb5
m̂b

Ak̂
,mb15

m̂b

Ak̂1

, ~A9!

k̂15tY1
2/316m̂b

2 , Y1512g01Y1
e/2F k̂116m̂1

2

Gi
G2e/2

.

~A10!
Downloaded 15 Oct 2002 to 138.67.32.126. Redistribution subject to A
In order to estimate the integral in Eq.~A8! lets introduce an
auxiliary function

Ĝ~u!52 lnF112mbu1Au214mbu11

u~112mb!
G , ~A11!

and its differential

dF 1

Ak̃
ĜG5

d

du F 1

Ak̃
ĜGdu

5
1

Ak̃
S dĜ

du
D du2

1

2k̃3/2
ĜS dk̃

du
D du. ~A12!

Substituting the derivatives (dĜ/du) and (dk̃/du) in Eq.
~A12! in its analytic expressions one obtains

dF 1

Ak̃
ĜG5

1

Ak̃
G@11e~G12G2!#du

5
1

Ak̃
G@11O~e!#du.

1

Ak̃
G~u!du, ~A13!

where

G15
4

@12 ~e/2! Q#
•

~Y211g0!

Y
•

mb

~112mb!
•

~12w!

~11w!

•

tY2/3

k̂
•

u2

~116u2!
,

G25
3

@12 ~e/2!Q#
•

~Y211g0!

Y

•S 12
2

3

tY2/3

k̂
D lnF112mbu1AD

u~112mb!
G • u2AD

~116u2!
,

w5
u

11AD
, AD5Au214mbu11.

Using Eq.~A13! the integral at the right side of Eq.~A8! can
be easily estimated, and the crossover expression for
order-parameter profile takes a form

z5E
m

m1A c0

a0k̃
G~u!du

5Ac0

a0
E

m

m1
dF 1

Ak̃
ĜG

5A c0

a0k̃
lnF112mbm1Am214mbm11

m~112mb!
G

2A c0

a0k̃1

lnF112mb1m11Am1
214mb1m111

m1~112mb1!
G .

~A14!
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In the terms of the variablesm̂, m̂1 , m̂b , k̂, and k̂1 , Eq.
~A14! reads

z5 j̄0AY

k̂
lnF k̂12m̂bm̂1Ak̂~m̂214m̂bm̂1k̂ !

m̂~Ak̂12m̂b!
G2R0 ,

~A15!

where the parameter

R05 j̄0AY1

k̂1

lnF k̂112m̂bm̂11Ak̂1~m̂1
214m̂bm̂11k̂1!

m̂1~Ak̂112m̂b!
G ,

~A16!
is analogous to the parameterz0 in the MF approximation
@see Eq.~14!#.

The phenomenological generalization of the crosso
expressions~A15! and ~A16! obtained to the first order ofe
can be obtained from Eq.~A1! with the replacements

aR→a0Y(12g)/D, uR→u0Y(2b2g)/D,
~A17!

c0→cR5c0Y(2n2g)/D.

Formally reproducing the logic of the previous calculation
one can obtain in this case

z5 j̄0

Y(n2b)/D

Ak̂
lnF k̂12m̂bm̂1Ak̂~m̂214m̂bm̂1k̂ !

m̂~Ak̂12m̂b!
G

2R0 , ~A18!

R05 j̄0

Y1
(n2b)/D

Ak̂1

3 lnF k̂112m̂bm̂11Ak̂1~m̂1
214m̂bm̂11k̂1!

m̂1~Ak̂112m̂b!
G ,

~A19!

Y512g01Y(g22b)/gF 1

Gi
~tY(122b)/D1v1m̂2

1v2m̂b
2!G2D/g

, ~A20!

Y1512g01Y1
(g22b)/gF 1

Gi
~tY1

(122b)/D1v1m̂1
2

1v2m̂b
2!G2D/g

, ~A21!

k̂5tY(122b)/D1v3m̂b
2 , k̂15tY1

(122b)/D1v3m̂b
2 ,
~A22!

wherev1 , v2 , andv3 are the universal constants.

APPENDIX B: CROSSOVER EXPRESSION FOR
ADSORPTION

After the substitution of Eq.~50! in Eq. ~18! and using
the notations given in Eqs.~A3!–~A5! we have
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,

G5Ac0

u0
E

0

m̂1
Y1/2dm̂

Am̂214m̂bm̂1k̂

5A2m̄0j̄0E
0

m̂1
Y1/2F~m̂!dm̂. ~B1!

In order to estimate the integral in Eq.~B1! we introduce an
auxiliary function

F̂~m̂!5 lnF S Y1

Y D 1/3A k̄

2m̄0
2k̂1

3~m̂12m̂b1Am̂214m̂bm̂1k̂ !G , ~B2!

and the differential

d@Y1/2F̂#5
d

dm̂
@Y1/2F̂#dm̂

5Y1/2S dF̂

dm̂
D dm̂1

1

2
Y21/2F̂S dY

dm̂
D dm̂, ~B3!

where in firste-approximationk̄ and k̂1 are given in Eqs.
~12! and ~A10!. Replacing in Eq.~B3! the derivatives
(dY/dm̂) and (dF̂/dm̂) on their analytical expressions on
can obtain

d@Y1/2F̂#5Y1/2F@12e~F11F21F3!#dm̂, ~B4!

where the parameterQ is the same as in Eq.~A7!, while the
functionsF1 , F2 , F3 , andF are given by

F15
2

@12 ~e/2! Q#
•

~Y211g0!

Y

•

m̂

~m̂12m̂b1Am̂214m̂bm̂1k̂ !
•

tY2/3

~ k̂16m̂2!
, ~B5!

F252
2

F12
e

2
QG •

~Y211g0!

Y
•

m̂Am̂214m̂bm̂1k̂

~ k̂16m̂2!
,

~B6!

F35
3

@12 ~e/2! Q#
•

~Y211g0!

Y

•

m̂Am̂214m̂bm̂1k̂

~ k̂16m̂2!
•F̂~m̂!,

F5
1

Am̂214m̂bm̂1k̂
. ~B7!

When m̂1>m̂>0, the functionsF1 , F2 , and F3 have the
final values (Const1>F11F21F3>Const2), therefore, with
an accuracy of the amplitude corrections of order ofO(e)
one can write

d@Y1/2F̂#5Y1/2F@12O~e!#dm̂.Y1/2Fdm̂. ~B8!
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After substituting Eq.~B8! in Eq. ~B1! and integrating

G5G12A2m̄0j̄0Yb
1/2 lnF S Y1

Yb
D 1/3A k̄

2m̄0
2k̂1

~2m̂b1Ak̂b!G ,

~B9!

where

G15A2m̄0j̄0Y1
1/2 lnFA k̄

2m̄0
2k̂1

3~m̂112m̂b1Am̂1
214m̂bm̂11k̂1!G . ~B10!

The crossover functionY1 to the first order ofe is defined in
Eq. ~A10! andYb is given by

Yb512g01Yb
e/2F k̂b

Gi
G2e/2

, ~B11!

where

k̂b5tYb
2/316m̂b

2 . ~B12!

In order to obtain the phenomenological generalizat
of the expressions~B9!–~B12! one should replace the coe
ficients aR , uR , and c0 with their renormalized values a
given by Eq.~A17!. In this case the auxiliary function ha
the form

F̂~m̂!5 lnF S Y1

Y D ~122b!/2DA k̄

2m̄0
2k̂1

3~m̂12m̂b1Am̂214m̂bm̂1k̂ !G , ~B13!

where the crossover functionsY andY1 , and the parameter
k̂ and k̂1 are defined by Eqs.~A20!–~A22!. Following the
logic of the calculations used in the firste-approximation we
obtain

G5A2m̄0j̄0E
0

m̂1
Y~n2b!/DF~m̂!dm̂ ~B14!

5G12A2m̄0j̄0Yb
~n2b!/D lnF S Y1

Yb
D ~122b!/2D

3A k̄

2m̄0
2k̂1

~2m̂b1Ak̂b!G , ~B15!

where

G15A2m̄0j̄0Y1
~n2b!/D lnFA k̄

2m̄0
2k̂1

3~m̂112m̂b1Am̂1
214m̂bm̂11k̂1!G , ~B16!

and the crossover functionYb along with the parameterk̂b

are given by
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Yb512g01Yb
e/2F k̂b

Gi
G2e/2

, k̂b5tYb
(122b)/D1v3m̂b

2 .

~B17!
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