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We develop a crossover theory for critical adsorption of pure fluids in a semi-infinite system. In our
previous publicatior[Phys. Lett. A251, 212 (1999] we applied the theory to the analysis of
experimental data for adsorption of liquid 60 the critical isochore only. In this article we extend

the theory on the noncritical isochores and present a comparison of the theoretical predictions for the
surface exces&Gibbg adsorption with experimental data for Gf6ilica and SE/graphite systems.

Good representation of experimental data is achieved in the range of temperatures from the saturated
temperature up to 1.1I6. and densities 0 <p=<1.50.. The optimization of the model to the
excess isotherms in both systems indicates that they have surface critical behavior in the universality
class ofnormal transition. However, in this case model does not reproduce the excess adsorption
data for Sk/graphite system at temperatures T/T,—1=<0.02 atp=p.. Analysis of the excess
adsorption data along the critical isochore ing@Faphite system indicates that the surface figld
vanishes linearly withr as T—T., which corresponds to therdinary transition. © 2000
American Institute of Physic§S0021-9606)0)50406-]

I. INTRODUCTION critical point. The local density mod&t; for example, based
. . ) .. on the empirical Peng—Robinson equation of state, contains

A characteristic feature of critical phenomena in fluids iSpeanfield values of the asymptotic critical exponents. Just
the presence of long-range fluctuations in the density. Theq e peng—Robinson equation of state gives a singularity
intensity of these fluctuations diverges as the critical point i, the isobaric heat capacity, the local density mddedlso
approached. As a consequence, the thermodynamic surfagg,4s a singularity for the excess adsorption in the
of a fIU|d_exh|t_)|ts a singularity aF the crmcal_pomt wh|c_h can_ asymptotic critical region, but with wrong critical exponent.
be described in terms of th(—;- universal scaling Iavys with UNiTherefore, this engineering model cannot be applied to the
versal exponents and universal scaled functfohsthe analysis of critical adsorption data in the vicinity of the bulk
physical adsorption of fluids under critical and supercr|t|calcritica| point. The more rigorous integral equation

conditions onto solid surfaces also exhibits the effects OBpproachegsg also fail in the critical region, because the
long-range density fluctuations. The surface excess, 9%quations cannot be closed. ’

Gibbs, adsorption of pure fluids on the surface is defined as * |, order to reproduce the nonanalytical singular behavior

w of the adsorption in the critical region, the scaled expressions

Tzf (p(z)—p)dz, (1) for the density p(z), or more generally for the order-

0 parameter profilen(z), in Eq. (1) should be used. The scal-
where p(z) is the density of fluid at a distancefrom the ing hypothesis for the order-parameter in semiinfinite sys-
surface, angh= p() is the bulk density of the fluid. When tems was first formulated by Fisher and de Genrhes.
a fluid bounded by a surface approaches its critical point, afccording to their hypothesis, the order-parameter profile
p=pc and reduced temperatureg=|T/T,—1|<Gi (T is  m(z) near a surface for a system in zero external field
the critical temperature an@i is the Ginzburg numbgthe =0 can be represented in the universal form
adsorptionI’ exhibits singular behavict,just as the bulk s
properties-? This phenomenon is known as critical adsorp- m(z)=mor"P({), )
tion. The classical theories of adsorption, such as the Langyhere /=2/£,=0 is the dimensionless distance from the
muir and BET theorie$,and the recently developed local surface¢,=&,7 " is the correlation length in the bulk fluid,
density modet” give a reasonable representation of the adm, and ¢, are the system-dependent critical amplitudes, and
sorption data far away from the critical point. However, all 3=0.325 andv=0.625 are universal critical exponents. In

these analytical theories fail to reproduce the nonanalyticahe disordered phasgr>T,, m,=m(«)=0], the scaled
singular behavior of the adsorption in the vicinity of the bulk function has the asymptotes

Pol Plv,  fori<1,
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whereP, andP., are universal constants. which for the effective Hamiltonian as given by E@) is
During the last two decades the bulk properties of theequivalent to the Euler—Lagrange equation

system near the second-order phase transition, including the )

crossover from cr|t|gal s.callng to analyycal classical t_>ehav- 2¢, a'm =2agrm+4u,m3—h, 6)

ior, have been studied in detdff-}* During the same time d7

the theory of boundary critical phenomena has focused onl¥v_ N

on the study of the asymptotic critical regidfor a review, ith the boundary conditions:

see Ref. 15 Theoretical expressions for the scaling function m(z=0)=m;, m(z—w°)=m,,

P.({) (Refs. 16—19 have been obtained to first order én 7
(e=4—d, whered is the dimensionality give incorrect val- 012_m _ d_m _
ues of the critical exponents, and do not crossover into the d2 S \dz , -

z— —®

classical mean-field equations wh&i<|r/<1. All these
expressions have been obtained only for the zero externdlhe equation of state for the bulk fluid, with the bulk order-
field h=0 (p=p. for pure fluidg, and cannot be extrapo- parametem,, in this case has the form
lated to the entire critical region.

For zero external field, the crossover expressions for the
order-parameter profile and the critical adsorption obtained The first integral of Eq(6) can be written as
to first order ine and their phenomenological generalizations m\ 2
havg peen d|scu§sed in detail in our previous Co(_> = agr(m?—m2) + Uo(m*—mg) —h(m—my).
publications?®?! In this work, we develop a crossover ex- dz
pression for the order-parameter profile in nonzero external ©
field and apply this expression to the analysis of the surfac&sing Eq.(8), it is easy to show that
excess adsorption data of supercritical QD the octadecyl-
bonded silicid®?® and of near-critical SfFon a graphite
substraté’

In Sec. Il we review the mean-field theory results for the =Ug(m—my)?
critical adsorption. The crossover expression for the order-
parameter profile is described in Sec. Ill. A comparison ofand, after integration of Eq9), we obtain for the order-
the crossover model with the surface excess adsorption dagmrameter profile in the MF approximation
is presented in Sec. IV, and we discuss the results in Sec. V.

h=2aqrm,+4u,m;. (8

ao7(M2—m3) + up(m*—mg) —h(m—m)

2
a07'+ 3U0mb
M2+ 2mpm-+ —————|, (10
0

2\/fexp(?+?0)
m(z)zmbi — — /\/:2 ’ (11)
IIl. MEAN-FIELD THEORY (exp(z+20) +2my /)~ 1
where the top sign§' +” and “ —") correspond to the de-

The mean-fieldMF) approach to critical phenomena in
semiinfinite systems in zero external field has been studie
by many authors and its results are well-knot®r?’ There-
fore, here we give only a brief description of the MF ap-
proach and derive the mean-field expressions for the orde
parameter profile, surface order parameter, and adsorption in ;=(a/07'+ 6uom§)/u0=2537+ 6mﬁ=2l\72+ 6m§,
the arbitrary nonzero external field. (12

A. Order—parameter profile whereM =my72 andmy= \/ay/2U, is the amplitude of the
A field-theoretical description for the critical adsorption PUlk order parameter on the coexistence curve in the mean-
starts from the Landau—Ginzburg—Wilson effective Hamil-field approximatior{see Eq(8) ath=0 andr<0]

For)lgn for the 6sztéalar order parameta=m(z) in a semi- ECXS: iﬁo|r|1’2 at T<T.. (13)
infinite system®

creasing order-parameter profilmm{=m=m,) and the bot-
H)m signs (“ =" and “+") to the increasing order-
parameter profile r;<m=m,), respectively. The
Parameter

1 B The dimensionless distancesand z, in Eq. (11) are given
H= Vj d)?HJO dz(agm?+uom?*+co(Vm)2—hm), (4) by

- —z — I 1 m,
where V is the total volume of the systemy is ==, Zzg===In W \/f+ 2\/—,:Aml
(d—1)-dimensional vector parallel to the wall 2£0, h is &b &b 1 K
the external ordering fieldag= g7, and ag,Uq,Co>0 are (14)
the system-dependent coefficients. T \/A m2+4mpAm; + « | |,
Using translational invariance parallel to the surface, the

mean-field order-parameter profite(z) is found from the — = — ==
equation where Am;= my—m, and '§b= \/co/uoxf fo\/Zmo/K is
the bulk correlation length in MF approximation. The bulk
order parametem, is determined, at fixea andh, from the
equation of state as given by E@). For the zero external

5H_0 .
5m_ 1 ()
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field (h=0 at7=0) m,=0, and Eq(11) is transformed into the same as described above, and one can obtain again the
the well-known MF expression for the order-parameter pro-Euler—Lagrange equation E@6), but with the boundary

file in the semi-infinite systeff condition at the surfacez(~0)
M2 (dm(O)) (dml)
mz)=ft———, 15 2Col —— | = ——|=2bsm;—h;. (22)
(2) Sinh(z+20) (15) ol 74 ol 4z 1imy—hy
where dimensionless distancesndz, are At z—co the boundary conditions are the same as given by

— o Eq. (7). Writing m(0)=m, and using the boundary condi-
— —  — M M tion Eq.(22) in Eq. (9) we obtain an equation of state for the
z=27"9¢,, zozln( \/1+2 ]+ \/Em—l) (18  surface.

1

and &,=/Co/ay is the amplitude of the bulk correlation 4uoCo(M;—my)2[ M7+ 2mym; + agr/ug+3m3]
Ien_gth in the zero external fieldat h=0 and 7>0) §&,
=¢o7  Y2in the mean-field approximation. In the case of the

infinite adsorptionm; —<, EQq. (15) can be rewritten the in  or, using the notation introduced in the previous section, we
the universal form obtain

=(2bymy—hy)?, (23

m(z)=moP . (2), (17) hy,  2b,

- — = : = —=——=my+2(mMy—my)
where P (z)=\2/sinhg) is a MF prototype of the scaling VUgCo  VUqCq

function P, (¢).

The adsorption is given by X [mé+2mymy + k—3mp] 12, (24)
» my dm| 1! For a zero external fieldh,=0 and Eq.(24) is transformed
I'= fo (m(z) —m())dz= fm (m=mp)| | dm, into expression obtained earlier by Bray and Motke,
1
1 _
18 hy=2m;[b; + JueCo(m2+2M?)12]
which after substitution of Eq(15) and integration can be
written in the form =2my[ by + e agr+ugm?) ¥, (25)
- 2 a2, ]2
_ EoMo, | Myt My Vmi-+ 2mym, — 3m + ll. CROSSOVER THEORY
2 2m,+ Vi . . .
(19 The MF approach is valid only in the temperature region

Gi<|7|<1, where the effect of the fluctuations of the order-
'sarameter on the thermodynamic behavior is negligibly
small and all thermodynamic properties exhibit analytical
classical behaviot* At reduced temperaturels| <Gi the
long-range fluctuations of the order parameter affect the ther-

which coincides with corresponding expression obtained ea
lier by MarconiZ®

In the zero external fieldh=0 (m,=0 at 7=0), Eq.
(19) is transformed into

EH m m\ 2 m?2 modynamic properties of a system and cause them to exhibit
=222 |n(T1 274 —| + Tl+1) universal scaling behavior.
V2 Mo Mo mg In order to include the effect of the long-range fluctua-
_ 5 tions on the critical adsorption, we will use the renormaliza-
_ §0m0|n My 24 My n ﬂ+1 (20) tion group(RG) method and the-expansion within the self-
V2 M M M2 ’ consistent approach proposed by Rudnick and Jashdmv.

this approach, one starts from the Landau—Ginzburg—Wilson
effective HamiltoniarH as given by Eq(4) where the order-
parameter is represented as the sum of the average and fluc-
tuation parts

and adsorption has a weak logarithmic divergence
«In(1/7) as the bulk critical point is approached-{ +0).

B. Surface order-parameter m(z,X) =M+ ¢(z,X)). (26)

In order to analyze the surface order-parameter on&he Gibbs distribution averaged value of the fluctuation part
needs to consider the Landau-Ginzburg—Wilson effectives equal to zero(d)(z,)?H)):O, such that
Hamiltonian containing extra “surface” contributioffs® )
(m(z,x)))=m(z)=m, (27

1 - (*
_ - 2 4 2__
H= f dx||fo dZ(ap7m"+ upM™+ Co(Vm)“—hm and the surface value of the average part is given by

Y,
+b,8(z)m2—h,8(z)my), (21) m(z=0)=my, m(z—®)=my. (28)

whereb; is a surface constant aihg is the surface field. The After substitution of Eq(26) in Eq. (4) the effective Hamil-
procedure of minimizing of the Hamiltonidt in this case is  tonian can be written in the form
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2
=ag(m?—m2) +ug(m*—m{) —h(m—m,),

(36)

where the equilibrium value of the order parameter at given
where mg is a renormalized value of the order-parametertemperaturer and the ordering fielti is determined from the
obtained after the integration of E(f) over the wave vec- crossover equation of state for the bulk phase
tors 0<|g| <A (WhereA, is the cutoff wave numbgrH 3.
is the vacuum part of the effective Hamiltonian which does
not depend ommg. Further calculations are analogous to After substitution Eq(37) into Eq. (36) we obtain
those used for infinite system%?°33The renormalized co- dm\ 2
efficientsag andug to the first order ofe are given by Co(—) =ugAm?[m?+2m,m+ (ag/ug) +3m?2], (38)

. 1 - dm
HHHR=vfg°dzfdxH(aRm§+uRm§+CR(VmR)2 co(

dz

—hmg)+HEY., (29

h=2agm,+4ugm;.

(37

dz

_ —1/3_ -1/3 _ -1 _
ar=aoTY @Y T UR=UoY L Cr=Co- (B0 pere Am=m-m, and the boundary condition is(z
The crossover functiolY in the first order ofe is written in ~ =0)=m;.
the form The details of integration of E(38) are given in Ap-
e pendix A. The final phenomenological generalization of the
—1_ KR crossover expression for the order-parameter profile can be
Y=1-Qgo+ - , !
aoGi represented in the form
31
Kr=ag+ BUR(M—mMy)?+ BUgm, 3 _ 2m2
Z=§OY(”’ﬁ)’A -
where K
9 kgl 2le | K+ 2mpAm+ \k(Am?+4m,Am+ k) R
Gi=| ———— n -Ry,
82 eag’cd /? Am(2my+ ) °
(39

is the Ginzburg numbekg is the Boltzman’s constant, and
9o=Gi’/(£yA,)€ is a parameter dependent on the cutoff
wave numberA,. Since this parameter only renormalizes
the background part of the isochoric specific heat=aGi

and does not change the crossover behavior of the system in

_ [2m2
Ro= on(lv A
K1

K1+ 2mpAmy + k1 (AmZ+4mAm; + k1)

the critical region'® we set the parametey, equal to zer@® xIn ,
o &4 Amy(2m +\/K— )
. 1 b 1

A. Crossover order-parameter profile (40

The equilibrium order—parameter profite(z), similar .
to the MF theory, is found from Ed5), which for the effec- k=2ma7rYE=2B)/A ¢ m2
tive Hamiltonian Eq(29) takes the form v | @26y

SAR =i2M2<Y—b) +wamp, (41)

—=0. (32

om

R K1= ZESTY(llfz'B)/A+ w3m§

Using the translational invariance g -direction and inde- v, | (1-28)/a
pendence ofir, ug, andH{ on mg, we obtain from Eq. = +2M 2<Y_l) + wgm?, (42)
(32) b

SOR 1 = 42m where the signs +” and “ =" correspond to the_higha(

= _J dz( 2aRmR+4uRm§—2co( R) —h) >0) and low (r<0) temperature region, respectively. The

omg L Jo dz crossover function¥, Y, andY, are given by

=0, 33 2
39 Y=1-go+ Yw—zﬁw{i Y288 4 g, A_—m>
which is equivalent to the equation Gi Mo
dsz My 2\ 1-Aly
2¢, 7 =2agmg+4ugm3—h, (34) + w; — : (43
o
with the boundary conditions 2
g , Y1=1—go+Y(1y_25)’7{é YA ) Amy
d mR dmR mO
mg(z—°)=m, and ( 02 ) :(E) =0. (35 IREIRR
o) Z— 00
z | = 1 . (44

Integration of Eq.(34) yields Mo
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Yo=1—go+ ngf 2p8)1y m,/(myGif)=10
2 —A/ . .
(1-2B)/A my, 7 3 1/Gi=0.01 3 UGi=50
X|=| 7Yy +wy| = (45 gy
mo 2 \\Q\\'\,
TSe
1 %,

In Egs. (39-(45), M=mg|r|¥2y{~2A"24=my|7|F
X (| 7]2Yp) (1~2B)/25 is the order-parameter at the coexistence
curve; 7=1/Gi is the rescaled temperaturemg
=myGiY? % is the asymptotic critical amplitudey=1.24,

3
i
i
{
3
i
[}

B=0.325, andA=0.51 are the current best estimates of the : 2| T oessover

. . . T orossover H —- Liu and Fisher (1989)
no_nclassmal critical exponents, ang (i :_1,2,3) are the 3l g:rzzgtzlrs:te;ﬂ?ggg) e Carperter et al. (1999) ‘\
universal constants. In the zero external field the bulk order- -+ mean field e+ mean field \
parametem,=0, and Eqs.(39)—(45) are transformed into -4 s 2 1 o ‘1 -44 s 1 5 ;
the crossover expressions for the order parameter profile and log ¢ log &

the crossover functions obtained earlier by Belyakov
et aI.,2°’21 and the constantw;=w=0.51. The crossover FIG. 1. Scaling functiorP. for the order-parameter profile as a function of

; ; the dimensionless distanée The solid curve calculated with the crossover
eque.ltlon of state EqS?) and the bulk crossover functldfb Eq. (48), the long-dashed curve was generated with the Liu and Fisher
as given by EQ(45) exactly correspond to ones in the Cross- yoge|(Ref. 35, the dotted-dashed curve represents an empirical model of
over Leung-Giriffiths modet* and the constantv,=\,/2 Carpenteret al. (Ref. 36, and the short-dashed curve corresponds to the
=4.39 is directly related to the universal constaptin Ref. =~ mean-field approximation.
34. In the temperature regidBi<7r<1 atm,=0 and the

density regiorm,Gi#<|my|<1 at =0 the crossover func- . . . .
tions Y and Y, tend to one Y=Y, =1) and crossover Egs. mean-field behavior. At distance€s> ¢, the scaling func-

(39—(42) with w5=6 are exactly transformed in the MF ex- tion P, (x) obeys the Fisher—deGennes scaling hypothesis as

pressiong12)—(14). given by Eq.(3). '
In the zero external field Eq§39) and (40) can be rep- "1 Fig. 1 we show a comparison of our crossover func-
resented in universal forAt, tion P, for the case of strong adsorptiom,/(myGi?)
=10, with the Pade approximate for the scaling function
m(z)=mer?P. (x), (46) PR proposed by Liu and Fish&and with the empirical

scaling function obtained recently by Carpenegral® As

one can see, in the scaling regimerat10~ 2 the character-
istic length 7,=5.6x10"2 and at {<5.6x10 2 (log¢

where

z (Y, (2v—1)/2A Yy (2v—1)/2A !
X= —(7) =§<7) , <-1.25) our crossover functioR, (x), unlike the scaling
&b functions of Liu and Fishéf and of Carpenteet al,*® does
R. (Y. (2v-1)28 (47) exhibit the MF behavior. At distances>5.6x10 2 (log¢
ong—o 7") 7 >—1.25) all three scaling functions practically coincide. At
b

rescaled temperatur§=50, the characteristic lengtld,

and the universal order-parameter profile crossover functiorr 115 and the MF behavior of the order-parameter profile is
observed into the entire region< < 10.
V2

P+(X)=(TAY)(172E>IZAM

(48) B. Critical adsorption

In the case of the crossover order-parameter profile as
given by Eqs(39) and(40), the integral on the right side of
Eq. (18) for the adsorption cannot be expressed as a finite
combination of elementary functions. Therefore, no rigorous
, ) o ! 4 analytic expression for the adsorption can be obtained in this
The mqln result of this analysis is that in case pf 'nf'n'tecase. In our previous wotk2! we discussed a reasonable
adsorption (n,— andx,=0), near the wall at distances ,na\vtic approximation for the adsorption for the zero exter-
0=z<§,Gi™" (or 0={<{o, Where{o= 7" is a characteris- ng| field, atm,=0. Here we have generalized this expression
tic length the scaling functiorP ., (x) exhibits the mean field for nonzero external field.

[unlike the universal functiorP, ({) in Eq. (2)] is not a
universal function of the parametéralone, even in the criti-
cal regime atr<Gi. The detailed analysis of the asymptotic

behavior of the crossover functidh, (x) is given in Ref. 21.

behavior In order to analyze the adsorption analytically it is better
R o to start from Eq(18). The minimum of the free-energy func-
P,(x)=Pyz L. (49 tional of the system with the effective Hamiltonian EQ9)

) ] . ) . __corresponds to the negative root of E§8)
This result has a simple physical explanation. Since the infi-

nite adsorption corresponds to the conditior— [see Eq. d_m _ /%(m— me) \/m2+2m e %+3m2
(25)], the surface field suppresses the fluctuations of the dz/| Co b b Ug b
order-parameter near the wall, causing them to exhibit the (50)
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After substitution of Eq(50) into Eq.(18) with the boundary Gi=0.01
conditionm(z=0)=m, we have for the adsorption 2.0 m,=0 0.3 220.01
r=~/% 16
Uo 3 02
J‘Aml YY2d(m—my) EO bl
\/(m—mb)2+4mb(m—mb)+2507Y2/3+ 6m? 0.8 o
(51

analytical; Eq. (54)
=== numerical; Eq. (56)

Equation(51) can also be integrated rigorously only numeri-
cally, but we can obtain a good approximation for this inte- ‘ ‘ 0.0
gral. The analytical estimate of the integral at the right side 0.00 0.02 0.04 0.06 0.08 0.10 -06-04-02 00 0.2 0.4 06
of Eq. (51) obtained in the first order of and its phenom- =TT Mg

enOIOglcal generallzatlon are glven in Append|x B. FIG. 2. Adsorption as a function of the dimensionless temperatu(teft)

Flna”y’ the crossover EXpreSS'On for the adsorp'uon Callng as a function of the bulk order- paramatey (right). The solid curves

be written in the form correspond to the values calculated with E§2) and the dashed curves
represent the values obtained with a numerical integration of &t).

. mogoY(V o, My +my+ M2+ 2mym; —3m2+ «;
mo\/z"l/" temperaturest=0.01, some quantitative discrepancy be-
—— tween numerical integration and values calculated from Eq.
(1-2p)12A
_ ngOYb —BIA |n (Y1> M , (52) (52 is observed. Therefore, in order to avoid a possible mis-
V2 Yo MoV 2k /K interpretation of the experimental data, our analysis of the
h critical adsorption data will be performed using numerical
where integration of Eq.(54).
ZZESTYEJPZB)/A-F w3mﬁ= +2M?%+ w3m§. (53

IV. COMPARISON WITH EXPERIMENTAL DATA

In the zero external field at=0 the bulk order-parameter ) ) , .
(1-2B)/A In order to use this model for a comparison with experi-

_ o2 \(1=2B)A_ g2 o

mb—Oz, Kb_Z(TB;;()E)A Alt=2m?, _K1= (Zyn_]%'/l(l mental data for the surface excess, or Gibbs, adsorption, one
=2M<(Y1/Yy) , the productmyéoYy, =M%, needs to know the bulk critical parameters of the syst&m,
and Eq.(52) exactly correspond to the crossover expressionyng ,, - for pure fluids, the asymptotic critical amplitude of
for the adsorption obtained earlier by Kiseleval™ In the 4,5 coexistence curvey,, and of correlation lengtky, and

zero external field, atm,=0, 7<Gi (r<1), and m;  the Ginzburg numbe6i. All these parameters can be ob-
=const, the adsorption diverges &s<¢,Me7 ""# ap-  tained from the independent analysis of the bulk properties
proaching the critical temperatuféln the MF regime Gi  of the system in the critical region. The corresponding MF

<r<1atm,=0, andGi’<|my|<1 at7=0), the Crossover citical amplitudesm, and &, in Eqgs.(39) and (40) can be
functionsY;—1 andY,—1, the parameterg,—« and«;  calculated using relations

—«, and the crossover E¢52) is transformed into the MF B-12 T _ s -1l
expression Eq(19). mo moGi + §0= &Gl ' (59

It is interesting to compare the values for the adsorptionThe surface appears in Eq&9) and (40) only through the
calculated with Eq.(52) with the result of the numerical surface order-parameten,. Therefore, in addition to the
integration of Eq(18). For this aim it is useful to rewrite Eq. bulk properties of the system, one needs also to know the

(18) in the form equation of state for the surface. Since in the case of the
" 0 strong adsorptiortat m;>myGi#) in the limit z—0 we al-
F=J Amdz:Amzig“—J’ z(Am)dAm ways have the MF behavior of the order-parameter profile,
0 Amy we can use Eq24) for this purpose. The parameters, «g,
Amy andc in this equation related to the parameteys, &, and
=J; z(Am)dAm, (54) Gi as
. 9 kgT. o
where for the order-parameter profd@Am) one can use the Up= S i a0=2m§G|zﬁ U,
phenomenological generalization as given by 8§). For a 327% myéGith—s”

comparison we choose a system wiB1=0.01, my=m, (56)
=1, and ¢;=0.2 nm. The values of adsorption calculated
from Eq. (52) in comparison with results of numerical inte- In addition, we assume that the system-dependent parameter
gration of Eq.(54) for this case are shown in Fig. 2. Quali- b;=b;g/uUgcy, Whereby; is a temperature independent con-
tatively, both methods give similar behavior of the adsorp-stant, while the surface field, is treated as an analytic func-

tion in the critical region. However, foim,|<0.2 at tion of temperature

- /
Co=aoGit 2 (ptPey)2.
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co,

hy

VUpCo

=hio+Zi_1hy 7, (57) 5 ®

20 ¢
whereh,; are the system-dependent constants. Thus, in order
to describe experimental data for the Gibbs adsorption in real
systems, one needs to know the bulk properties and the sur-
face parameters;g andhq; (i=0,1,...).

The first system, to which the crossover model was op- 10T
timized, is supercritical carbon dioxide on octadecyl-bonded
silicia. The surface excess adsorption in this system has been
measured by Strubinger and Paréfext different pressures
along three isotherm$= 303.15, 313.15, and 323.15 K. In
order to trans_form these data |n'fo—p coordinates we used 05 06 07 08 08 10 14 12 13 14 15
the parametric crossover equation of std®S for CO, oo
developed by Kiselev and Kulika¥. This crossover EOS, ¢
similar to our crossover model for adsorption, reproduces theiG. 3. Surface excess adsorption of £an octadecyl-bonded silicia at
singular behavior of the thermodynamic properties in thel=313.15 and 323.15 K as a function of density. The empty symbols rep-
critical region aﬂ 7'|<Gi and at| 7|>Gi is transformed into ~ "€Sent experimental data of Strubinger and Paréhéne filled symbols

- ) . correspond to data from Ref. 23 and the curves represent the values calcu-

the classical .mean—flelc'i EOS. Good representation of thgted with the crossover model.
thermodynamic properties of pure G@ith the crossover
EOS was achieved in the range of temperatures and densities
bounded by’

32315 K

T/pmol-m

details see Refs. 40, {1For the asymptotic critical ampli-
tude of the coexistence curve, and the Ginzburg number

0.995T <T<1.4T;, 0.3p.<p=<1.65. (589  Gi we obtained

k
In contrast to our crossover model, the crossover EOS of 0~ (b2—1)8’
Kiselev and Kuliko’ contains additional terms which take
into account an asymmetry of real fluids with respect to theG_ B b2—1
critical isochore®® Therefore, we expect that our symmetric 1=9 2 n1-28)°
crossover model, similar to the symmetric scaled EOS for 2A2(b" =)+ (2y= D)2 a)ly(1-al] 61)

pure fluids, can be applied in the range of temperatures and ] ] .
densities not wider thah whereb? is a universal linear-model parameter.

For pure CQ we adopt the same critical parameters,

— — -1
0.995T,<T<1.15T,, 0.5p.<p=<1.5p. (59) Tc=304.136 K, pc=10.625 molL ",
P.=7.3773 MPa, (62)

After this elimination, only six points from the experimental and the values of the bare correlation lengghand rectilin-
data of Strubinger and Parchéron two isotherms ear diameter amplitude,,

(T= 313.15 and 323.15 Kwere left. These points, together
with additional five points on th&=313.15 K isotherm ob- §o=0.15nm, d,=-0.9221, (63
tained in Ref. 23, are shown in Fig. 3. As one can see, thergs reported by Kiselev and KulikaV,while the parameters
is some discrepancy between two data setg@t>1; there- ,
fore, for further numerical analysis we used here only data me=1.708 and Gi=0.115, (64)
reported in Ref. 22. were calculated from Eqgs(61) with the parametersk

In the critical region aGi< r<1, the parametric cross- =1.2245 andg=0.1477 taken from Ref. 37. Six points on
over model employed by Kiselev and Kulikbvexactly cor-  two isotherms are not enough for the statistical optimization
responds to the MF EOS as given by E8). with the order-  procedure. Therefore, initially we skbt,=1 andh,,= 10, to
parameter provide a conditionm, /(myGi®#)=2, while the parameter
h,;=—39.51 was found from a fit of our model to the excess
adsorption data of Strubinger and ParctfeEomparison of
the experimental data with the values of the Gibbs adsorption
calculated with the crossover model is given in Fig. 3. Good
whereAp=pl/p.—1, d, is a rectilinear diameter amplitude agreement between experimental data and the predicted val-
of the coexistence curve, the external field is a dimensionlessges is observed in the range of temperatures and densities as
chemical potential of the fluit?** Therefore, the parameters given by Eq.(59).
ag andug in the MF EOS are directly related to the param- In principle, the range of the validity of the model can be
etersk, a, and g in the parametric crossover motfelfor ~ extended. A theoretically consistent way of extending of the

m,=Ap—d;7, (60)
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FIG. 6. Surface excess adsorption ofgSf graphitized carbodeft) and
FIG. 4. Surface excess adsorption of {@h octadecyl-bonded silicia along  the surface fieldh, (right) along the critical isochore as a function of tem-
isotherms in the extended density region. The symbols represent experimeperature. The symbols represent experimental data of Thoetesls(Ref.
tal data of Strubinger and Parctiérthe dashed curves correspond to the 24) and the curves represent the values calculated with the crossover model.
values obtained from Ed54) with h,,=10, and the solid curves represent

the values calculated with E¢54) with the parameterh,q and hy, found
from a fit to the experimental data.

Gibbs adsorption of COcalculated at the critical isochore

model to a wider density range is to consider the asymmetrit‘f"ith the crossover_model with the \_/alues .calculated vyith the
terms in the effective Hamiltonian of the systeisee, for MF EQ- (20) and with the asymptotic scaling expression
example, Refs. 42, 43However, this approach needs addi-
tional theoretical study which is not the subject of the present
work. In the present article, we improved the model by fit-
ting both parameterdy; andh,;, to experimental data. Fi-
nally, for this system we adopt the values

'=Ar""F+B, (66)

whereA andB are the system dependent coefficients. Equa-
tions (20) and (66) were optimized to the Gibbs adsorption
data generated with the crossover modep atp. and 0.05
bio=1, hy=9.744, h;;=—-4.107. (65 <7=<0.1. As one can see, even thoughrat0.1 all three

The results of the fit are shown in Fig. 4. Except two poimsmodels practically coincide, the difference between them in-
creases dramatically as—0. In reality, the MF model opti-

marked in Fig. 4 by a cross, the model yields a good repre=

sentation of all experimental data in the range of densitied"2€d 10 experimental data far from the critical region is
0.3<plp.<1.7. unable to reproduce the Gibbs adsorption data in the region

There are no surface excess adsorption data for th hert_arso.l This is a reason why such aqalytical rr;ean—field
CO,/silicia system along the critical isochore of §COThere- ~ (€ories such as the BEr the local density modg!” can-
fore, in Fig. 5 we show a comparison of the values of thenot be extrapolated in the cr_|t|cal region &0 (T<G')' )
The second system, which has been considered here is
near-critical Sg on a graphite substrate. The detailed experi-
€02 mental critical adsorption data in this system have been ob-
400 [ p=p, tained by Thommest al?* not only along isotherms, but
also along isochores as a function of temperature. It makes
N this system extremely attractive for the testing of the theory.
001\ In addition, the anomalous behavior of the adsorption on the
U Crossouer theory critical isochore observed in the experiment presents a real
2001 N ———_asymptotic scaling challenge for the modét:
The experimental critical adsorption data obtained by
Thommeset al?* at the critical density of pure $Fare
shown in Fig. 6. Unlike the theoretical predictiésee Fig.
2), the adsorption in this system increases only down to re-
duced temperatures=0.01 (AT=2 K) but thenI" de-
creases sharply on approachifg. In the previous work we
log, (T/T 1) have shown that this anomalous behavior of the adsorption
along the critical isochore can be treated by supposing that

FIG. 5. Surface excess adsorption of O@h octadecyl-bonded silicia along the surface order-parameter profile vanishes linearly
the critical isochore as a function of temperature. The solid curve represen%ith r 21

the values generated with the crossover model, the short-dashed curve cor- o . .

responds to the MF Eq20), and the long-dashed curve represents the In this article, we analyzed experimental data of

values calculated with asymptotic E@6). Thommeset al?*in two steps. Firstly, we considered experi-

T/umol-m2

100
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FIG. 7. Surface excess adsorption ofsSf graphitized carbon along the FIG. 8. Surface excess adsorption ofSfh graphitized carbon along the
isotherms as a function of density. The solid curves represent the valugear-critical isothernT=319.34 K as a function of density. The solid curve

calculated with the crossover model with parameters as given ir{esy. represents the values calculated with the crossover model with the param-
the dashed curves correspond to the values calculated with parameters giveters given in Eq(69), the dashed curve corresponds to the values calcu-
in Eq. (70), and symbols represent experimental data of Thonetsal. lated with parameters given in E({0), and symbols represent experimental
(Ref. 24. data of Thomesst al. (Ref. 24.

deviations of the calculated values from experimental data
mental data at the critical isochore only. Similar to our pre-are observed which increase up to 50%-70% at the near-
vious work?! for the bulk Sk we adopt the parameters critical isothermT=319.34 K(see Fig. 8.
) In Fig. 9 we show a comparison of the experimental and
Gi=2.1x10"% my=1715 d,;=—-009488, (67 calculated values of the adsorption along the noncritical iso-

obtained by Ley-Koo and Gre#hparameters B. and chores. As one can see, the crossover theory in this case even
b in Ref. 44, for £,=0.2 nm, we adopt the r\nlegl,ueoo,btained qualitatively does not reproduce experimental data in the
- . l 0~ VY- ) . .

by Sengers and Levelt Sengéfswhile the surface order- near crr|1t(|jcalt reglvc\)ln ant d<f4r_t?1 K (;fr(r){olzf) ' '(I;Eerizlozr% as
parametem; was calculated from Eq24) with the surface a second step, we used for the external flejdhe a4

field (24). Similar to the CQ/silicia system, the parameters
b1g=2.07, hy;=4.47, hy;=1.39x 107,
hy="fot fifs(r/my), 68) 1 10 H 79
h;,= —1.05x 10°,

wheref(¥)= 9/(1+ ) is a function introduced in Ref. 21. _ i

From a fit of the crossover model to the experimental data a" SFe/draphite system were found from a fit of the cross-
the critical isochore only, we found that parameftgiis sta- over model only to the surface excess isotherms. The values
tistically irrelevant and can bet set equal zero, and the pac-’f the adsorption calculated with the crossover model with
rameters

by=2.67, f;=13.6, 7=1.35x10°2. (69) o 1 SFe
Vo vV plp=0.7

In Fig. 6 we show a comparison of experimental excess 45| ‘*‘ H o P/ch?g
adsorption data obtained at the critical isochore by Thommes _ 401 3 W . S§S§:1:2
et al?* with the values calculated with the crossover model. £ 33[ "\@%\\ M AR
Excellent agreement of the calculated values with experi- 2 30f %\ \
mental data is observed. In the same figure we show the g 25 w%\:
surface fieldh; as a function of the temperature difference 201 <
AT=T-T,. At AT=16 K (7=0.05), similar to the system 151
considered abovdj, /\ugcy=10. However, in contrary to 101
this system, at the surface field —0 as the critical tem-

perature is approaching. It is interesting to compare the pre-
diction of the theory in this case with other experimental data
obtained in Ref. 24. A comparison of the excess adsorption
isotherms obtained by Thommesal?* with the values cal- FIG. 9. Surface excess adsorption ofsSf graphitized carbon along the
culated with our crossover model is shown in Fig. 7. In theisochores as a function of temperature. The solid curves represent the values
density range 05 /p.<1.5 at temperature§=324 K (T calculated with the crossover model with parameters given in(&3), the

S PIPe= 2 . . dashed curves correspond to the values calculated with parameters given in
=0.02) the crossover theory gives a good representation

- - g. (70), and symbols represent experimental data of Thoreess. (Ref.
experimental data. However, at=321.57 K the systematic 24).
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these parameters correspond to the dashed curves in Figmnclusion. However, in this case theory fails to reproduce
7-9. Because of the absence of the tables with real experihe excess adsorption data forgBffaphite system at tem-
mental data in Ref. 24, the points in Figs. 7-9 represent thperaturesr<0.02 atp=p.. We found that an excellent
values obtained with a graphical interpolation from Figs. 1,agreement with excess adsorption data along the critical iso-
3, and 4 of Ref. 24. It explains some inconsistency betweerhore in Sk/graphite system is achieved, if the surface cou-
experimental data presented in Figs. 8 and 9-a819.34 K pling constanth;>0 and the surface field;—0 as7—0,
andp/p.=0.8. In general, with the parameters given in Eq.which corresponds to therdinary transition. However, in
(70), the crossover model, except the temperature®.02  this case the theory fails to reproduce the excess isotherms at
atp=p., yields a reasonably good representation of all ex{7|<0.02. We cannot say for sure what causes the
perimental data in the range of temperatures and densities &/graphite system to exhibit such anomalous behavior. To

given by Eq.(59). answer this question, the additional theoretical and experi-
mental study is needed.
V. DISCUSSION In developing crossover expressions for the order-

We developed the crossover theory for the surface eXparameter profile, we used a field-theoretical approach based
n the Landau-Ginzburg—Wilson effective Hamiltonian

cess adsorption of pure fluids on the solid surface. Similar t&" .
crossover theory for the bulk properti€s our crossover 91Ven by Ea.(21). This is a general approach, and the cross-
theory for the adsorption contains the Gin'zburg numaay,  OVer function for the semiinfinite system obtained in this

as a parameter. Along the critical isochore the crossover e)grticle(which is similar to the crossover function for the bulk
pression for the order-parameter profile can be written in throperties obtained earlier by Belyakov and co-worket

universal form proposed by Fisher and de Gerhizsthe can be applied to any system with a scalar order-parameter.
asymptotic critical region at dimensionless temperatiirgs Recent rgse_arch 'ndr%ates that such complex SVEE{E,;“S as
<Gi and distancesz>¢,Gi™ 7, the universal crossover agueous onic SQM'O polymers ._amd p_olymer t.)l.end -
function for the order-parameter profile exhibits singular be-2Nd microemulsioriS can be described in the critical region

havior and obeys the Fisher—deGennes scaling hypothesi .,ith thfz crossover fgnction obtained. by Belyakov and
At distances 6z<¢,Gi™ 7, and in the temperature range iselev, ” where the Ginzburg numbeGi, depends on the

Gi<|7|<1 the universal crossover function is transformedcompos't'on(for ionic solution3 or on the molecular weight

into the well-known MF expression for the order—parameter(for polymer. Therefore we expect that the crossover equa-

profile in the semiinfinite systedf tions obtained in this work can be also applied for the analy-

The crossover theory was tested against experimenté:’lis of critical adsorption data in binary liquid mixtures and in
data for adsorption of supercritical carbon dioxide cmcomplexfluids in general. Research toward the application of

octadecyl-bonded silicia measured by Strubinger anéms crossover approach to other systems is in progress, and

Parchef’ and against the surface excess adsorption data iwe results will be presented in future publications.

near-critical Sg on a graphite substrate obtained by Thom-

mes et al?* For the CQ/silicia system, a good agreement

between the theoretical predictions and experimental data ISKCKNOWLEDGMENTS

observed. For the SFgraphite system, only a moderate suc- ) _ o

cess was achieved. The main challenge for the modelling of ~The authors are indebted to M.E. Fisher for his interest

this system is an anomalous decreasing of the adsorptidR this work and constructive comments. The research was

along the critical isochore on approaching the bulk criticalSupported by the Office of Basic Energy Sciences of the U.S.

temperaturer, .24 Department of Energy under Grant No. DE-FGO03-
In our previous articlé! we have shown that this 9°ER14568.

anomalous behavior of the adsorption can be described ac-

curately in the framework of the crossover theory with the

surface order-parameter profile vanishing linearlyat0. In ~ APPENDIX A: CROSSOVER EXPRESSION FOR

this work, we calculated the surface order-parametgr ORDER-PARAMETER PROFILE

from the MF surface equation of stdteq. (24)]. A theoret-

ical study of this equation has been performed by Lubensky ~Equation(50) can be written in the integral form

and Rubii® and by Bray and Moor& It has been shown

that ath=0 andh;=0 Eqg. (24) gives three classes of the ml\ﬁ dx

surface phase transitioﬁ%?OThe_: ordinary transition occurs Jm Ur (x—mp) Xt 2mox + (aglug) + 30

at 7=0 andb,>0, the extraordinarytransition occurs at

=0 andb;<0, and these transitions are separated by the 0

specialtransition atr=0 andb;=0. In addition, thenormal = _j dz=z. (A1)

surface transition occurs on the surface as a resutt, &0 z

andb;>0.%% It has been arguédthat a fluid against a hard

wall has surface critical behavior in the universality class ofThe integral on the left side of EgA1) can only be evalu-

normal transition. The results of the optimization of the ated numerically. In order to estimate this integral analyti-

model to the excess isotherms in the fXiicia and in  cally let us introduce a notation=(x—m,)/(y2my). Then

SKs/graphite systems are in a complete agreement with thigq. (A1) reads
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Co In order to estimate the integral in EGA8) lets introduce an
f M auxiliary function

) 1+2up0+ VO*+dup0+1
G(#)=-In , (A11)
[C [ 1 O(1+2up)
—| —=dx
oK \/— and its differential

%o x x2+4mbx+ K

- - , (A2) 1 1
— — || —=|+1 =
1% &l ol
h 1 (dG 1 _[dx
where =— a0 — ~3/2G a0 de. (A12)
m=(m—my)/(V2mo), My =(m;—my)/(+/2m), Vi 2K
= /(\Be) (A3 supstituting the derivativesd@/d6) and dx/d6) in Eq.
in its analytic expressions one obtains
b o (A12) in | Iyt i btai
k=7Y23r6mp, k=Y lk=7Y"Y3remiy Tl (A4) 1
and to the first order oé the crossover function d FG - ?G[“— €(G1=Gz)]d¢
K K
1 IA<+6)A(2 el 1 1
Y=1-go+Y*“ Gi (A5) =—=G[1+0(¢)]do=—=G(0)d6, (A13)
Vx Ve
Let introduce a variabl(ﬂ:i/\/;, such that where
d{ x\ . 1 | xy ! 7zvy®#/dy 4 Y—-1+ 1-w
do=—| — |dx=—=dX| 1— —— ——| —| |, G,= .( gO). Ho .( )
dx\ x Vi 3 & \dx [1- (e/2) Q] Y (1+2pp) (1+w)
(A6) Y23 92
and substitute the derivativel ¢/dx) in Eq. (A6) with the . p ' (14662 '
expression obtained from EGAS5) to the first order ofe
3 (Y—=1+qgg)
1 G,= .
d0=?dx [1_(6/2)Q] Y
« ( 2 TY2’3) 1+2u,0+\VD] 62D
- 213 %2 | 1l-—=——|1In . ,
| 14 2e (¥ 1+90).T\i .A X _ 3 k 0(1+2up) | (1+667)
[1-(e/2)Q] Y k  (k+6X%) )
— — 2
1 1 = . D=VeP+4u,0+1.
= — dX(1+0(e)=——= d%, (A7) 1+\D
\/; \/; Using Eq.(A13) the integral at the right side of EGA8) can

be easily estimated, and the crossover expression for the

=(1— —1+ . . .
whereQ= (1~ 2ag/3xg) (Y =1+ go)/Y. Then Eq.(A2) can order-parameter profile takes a form

be represented in the form

C
m [ Co de m [ Co 2= fﬂl \/ —=G(6)do
- - - —2G(6)ds, o
m ok ONO*+4u,6+1 e agK
(A8) \ﬁ f

where we have introduced the notations

1+ 2upm+ N+ dupu+1

m m Mp Mp (A9) Co
M= 1T =, MpT T MplT T —, =\/——=In
\/; V Ky \/; VKq agK p(1+ 2Mb)
A s s B K+ 6m2 el B Co n 1+ 2ppypy + b+ g +1
Ki=7Y{ H6my,  Yi=1—got Y] Gi : QoK1 (14 2up)
(A10) (A14)
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In the terms of the variables,, m;, m,, «, and k;, Eq. Co (i Y24
(A14) reads r=1\/— f 1%
Y e — Uo/0  \/m2+4m,m+
_ \/; K+2mpym+ \/K(m2+4mbm+/<) A
z=&\/ =In —Ro, — o | My fvdn
% s 2m) =2mofo | V() din (BY)

(A15)

h h In order to estimate the integral in E@1) we introduce an
where the parameter auxiliary function

J— Y 1/3 o
Ro= &, \/;In (ﬁ) \ /_KA
Kq Y ZEgKl
(A16)

is analogous to the parametey in the MF approximation A A A A=
[see Eq(14)]. X (m+2my+ Vm*+4mym+ «)

The phenomenological generalization of the crossover _ _
expressiongA15) and (A16) obtained to the first order of ~ and the differential
can be obtained from EgAl) with the replacements d
1271 1/2f o
ap—agYT VA ye U YRN8 d[YYF]= d_Fn[Y Fldm

(A17)

Kq+ 2Mp My + \ kp (M2+ 4mymy + k7)

My (V Ry +2my)

’ F(m)=In

: (B2)

CO—> CR: CoY(2V7 A .

. . . . 12 dF) . 1 S 9Y
Formally reproducing the logic of the previous calculations, =Y Fn dm+§Y F E dm, (B3)
one can obtain in this case
wopyia [~ ~ a \/A . A A - where in firste-approximationx and fcl are given in Egs.
2=, Y n K+ 2mpm+ V x(m”+4mym-+ k) (12) and (A10). Replacing in Eq.(B3) the derivatives
=& N A A . . .
\/; m( \/;+2mb) (dY/d m)_and dF/dm) on their analytical expressions one
can obtain
—Ry, Al18 . -
° (AL8) d[YY2E]= YY2F[1— e(F1+F o+ F3)ldm, (B4)
(v=p)A
Ro= & Yi where the paramet&) is the same as in EqA7), while the
0750 \/;(— functionsF,, F,, F5, andF are given by
1
R A — — — — F _ 2 (Y_1+g0)
K1+ 2mpmy + \/Kl(m§+4mbm1+ K1) [1-(el2) Q] Y
XIn '
ml( \/K—1+ Zmb) ﬁ] 7_Y2/3 (BS)
(A19) (M+2Mm,+ Vm2+ 4mym+ ) (k+6m?)’
Y=1—go+ Y28y é(Ty(l—ZB)/A+wlr}l2 . 2 (Y=1+gy) mym?+4mym+ k
| 2= — . . = =
€ Y +6Mm2
- —Aly [1—§Q (e 6m%
1 3 (Y=1+go)
—1— (v=2p)y| __ (1-2p)/A 2 F.= .
+ - +
Yl 1 Yo Yl Gi (TYl wiMy 3 [1_ (6/2) Q] Y
—Aly R W
2 mym-+4mym+«x |
+ (,l)zmb) y (AZl) . _ _ . F(m),
o . . . (k+6m?)
k=7Y1"28)/A 4 w3m§, K1= TY(ll_zﬁ)/A-l- wgmg,
(A22) 1
) F=e——. (B7)
wherew,, w,, andws; are the universal constants. /rh2+4ﬁ1br?1+}
When m;=m=0, the functionsF,, F,, and F; have the
APPENDIX B: CROSSOVER EXPRESSION FOR final values (Const=F,+F,+F;=Cons}), therefore, with
ADSORPTION an accuracy of the amplitude corrections of orderfe)
_ . . one can write
After the substitution of Eq(50) in Eq. (18) and using A A A
the notations given in Eq$A3)—(A5) we have d[YY?F]=YYF[1-0O(e)]dm=YYFdm. (B8)
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After substituting Eq(B8) in Eq. (B1) and integrating

o Y 1/3
I'1—2mo&oYy2In (Y_l> \/ o=~ (2my+ \/—)

F:
(B9)
where
I'1=2meéoYY2In —=
moKl
X (My+ 2My+ VM2 +4mym; + k1) | (B10)

The crossover functiolt, to the first order ok is defined in
Eqg. (A10) andY, is given by

—€l2

sl (B11)

Yp=1-go+ YE’Z[
where

=7Y2R+6m:. (B12)

Kiselev, Ely, and Belyakov

Yo=1—go+Y?

—€l2
Gi} . Kkp=TYTPR L m2

(B17)
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