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The thermal conductivity of molten sodium chloride and potassium chloride has been computed
through equilibrium molecular dynamics Green–Kubo simulations in the microcanonical ensemble
(N,V,E). In order to access the temperature dependence of the thermal conductivity coefficient of
these materials, the simulations were performed at five different state points. The form of the
microscopic energy flux for ionic systems whose Coulombic interactions are calculated through the
Ewald method is discussed in detail and an efficient formula is used by analogy with the methods
used to evaluate the stress tensor in Coulombic systems. The results show that the Born–Mayer–
Huggins–Tosi–Fumi potential predicts a weak negative temperature dependence for the thermal
conductivity of NaCl and KCl. The simulation results are in agreement with part of the experimental
data available in the literature with simulation values generally overpredicting the thermal
conductivity by 10%–20%. ©2004 American Institute of Physics.@DOI: 10.1063/1.1691735#

I. INTRODUCTION

The experimental measurement of the thermal conduc-
tivity of high-temperature molten salts is very difficult be-
cause of their high melting temperatures and chemical activ-
ity. It is not surprising, therefore, that there are substantial
disparities in the reported experimental results for these ma-
terials. These disparities are normally attributed to convec-
tive and radiative effects in some experimental methods. For
the particular case of molten alkali halides, part of the ex-
perimental data available in the literature show an increase of
thermal conductivity with temperature,1 a behavior consid-
ered to be anintrinsic characteristic of molten salts.1,2 The
experiments of Nagasakaet al.3 on the thermal diffusivity of
molten alkali halides, however, show a weak negative tem-
perature dependence for the thermal conductivity. Further,
their values for the thermal conductivity are significantly
lower than those obtained by Smirnovet al.1

Molecular dynamics~MD! simulations avoid the experi-
mental problems referred to previously and provide an alter-
native to obtain the thermal conductivity of molten salts. The
objective of this work is to investigate the temperature de-
pendence of the thermal conductivity of the Born–Mayer–
Huggins–Tosi–Fumi~BMHTF! potential4 for molten alkali
halides using Green–Kubo equilibrium molecular dynamics
~EMD! simulations.

The thermal conductivity of molten alkali halides has
been simulated by EMD before, but the results were incon-
clusive as to whether the temperature dependence predicted
by the BMHTF potential is positive or negative. Sindzingre
and Gillan5 performed EMD simulations using the Green–

Kubo method in the canonical ensemble (N,V,T) of the ther-
mal conductivity of solid NaCl and KCl, but only one state
point was reported for the liquid state. Fuchiwaki and
Nagasaka6 reported EMD (N,V,E) simulations of the ther-
mal conductivity for different molten alkali halides. The re-
sults of those simulations underpredict the thermal conduc-
tivity and were inconclusive regarding the temperature
dependence of the thermal conductivity. In particular, the
values reported from those simulations show positive and
negative changes for the thermal conductivity of NaCl and
KCl as the temperature is increased. Takaseet al.7 reported
extensive EMD (N,V,E) calculations for the thermal con-
ductivity of a number of molten alkali halides. Their results
overpredict the thermal conductivity and again for almost
every substance, including NaCl and KCl, an alternating
positive and negative temperature dependence of the thermal
conductivity is observed within 100 K temperature intervals.

Because of the abnormal behavior reported in these
simulations, we investigate here the temperature dependence
of the thermal conductivity for molten sodium and potassium
chloride. We note that Takaseet al.7 have used an Ewald-
energy flux expression derived by Bernu and Vieillefosse8

for the particular case of the one-component plasma model.
In this work we give an expression for the energy flux of a
binary ionic system by analogy with the expression for the
stress tensor elements derived by Nose and Klein9 and Heyes
~NKH!.10 This formula is very efficient, eliminating the
double sum over particles inside the Fourier space vectors
sum in analogy with the case of the potential energy and
forces.11

Nonequilibrium molecular dynamics~NEMD! simula-
tions for the thermal conductivity and cross coefficients have
also been reported for ionic systems,12–14 but not for molten
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alkali halides. We note that even though NEMD has been the
preferred method in the most recent studies of thermal trans-
port coefficients, neither it nor EMD have been explored to
any great extent for the case of ionic fluids.

This paper is organized as follows: First the expressions
used in the calculation of the thermal conductivity through
EMD with the Green–Kubo method are given. Special atten-
tion is given to the form of the microscopic energy flux for
ionic systems for which the Coulombic interactions are cal-
culated through the Ewald method. The nonpairwise nature
of the reciprocal space forces in this method forces the dy-
adic product between force and distance to be computed as a
whole in the Fourier space in analogy with the potential term
of the stress tensor of an ionic system. This expression is
given here by analogy with the case of the stress tensor ele-
ments and it is suitable for the MD simulation of the thermal
conductivity of ionic and dipolar fluids modeled with partial
charges. The details of the simulations are then discussed and
the results are compared with available experimental data
and previous simulation results. Finally the conclusions of
this study are given.

II. THERMAL CONDUCTIVITY RELATIONS

Since the electroneutrality condition for a Coulombic
system implies a constant composition, the Gibbs phase rule
says that pure molten salts are one-component systems~only
one chemically independent species!. From this definition of
a molten salt no thermal diffusion is expected to occur for a
pure molten salt in analogy with the case of a one-
component neutral system. Consistency with this definition
was reported by Bresmeet al.13 where the thermal diffusion
of a binary system was calculated through NEMD as a func-
tion of the charge strength of the species, and the range of
the ionic potential using Coulombic and Yukawa long-range
tails, in the limits of a two-component mixture~zero charged
species! and a one-component system~unit charged species!.
The results of this investigation showed thermal diffusion to
decrease with increasing charge strength from a positive
value to a negative, close to zero value~within statistical
uncertainty!, for a Coulombic long-range tail. For pure mol-
ten salts, however, coupled thermo-electric effects occur. The
coupling of heat and charge currents in a molten salt lead to
a treatment of these systems analogous to that followed for
real mixtures and in this work molten NaCl and KCl were
treated as binary ionic mixtures.

Thus, the relations discussed in the following are given
for a binary system for which no viscous forces, external
magnetic fields, or electronic current occurs and no chemical
reactions take place between its components.

A. Phenomenological relations

The linear phenomenological relations that express the
transport of heat and charge in a ‘‘binary’’ ionic system can
be given by5,8,15

JZ52LZZXZ2LZQXQ ,
~1!

JQ52LQZTXZ2LQQXQ ,

where JZ and JQ are the charge flux and the heat flux,
Lab (a,b5Z,Q) are the phenomenological coefficients, and
XZ and XQ are the thermodynamic forces, which are given
by

XZ5¹T~mZ!,
~2!

XQ5¹T.

In Eq. ~2! mZ5(m1
Z2m2

Z)/(z12z2) wheremk
Z is the electro-

chemical potential of componentk, mk
Z5mk1zkf ~com-

posed by a chemical partmk and the electric potentialf; zk

is the charge per unit of mass of componentk! and the gra-
dient is to be taken at isothermal conditions.

From the Onsager reciprocal relations16 for the cross co-
efficients,LZQ5LQZ , and therefore only three independent
coefficients are involved in Eq.~1!. Elimination ofXZ in the
equation forJQ and usingXQ5¹T, permits one to rewrite
the heat flux relation in the following form:8

JQ5TLQZJZ /LZZ2l¹T, ~3!

wherel is the thermal conductivity corresponding toJZ50
and is given by

l5LQQ2LQZ
2 T/LZZ . ~4!

Notice that forJZ50, Eq.~3! becomes the well-known Fou-
rier law of heat conduction. Further,LZZ can be identified as
being the electrical conductivitys, defined as the ratio of the
electric current density,JZ , and the negative gradient of the
electrochemical potential at constant temperature.5 Notice
that if the chemical potential is constant then Ohm’s law,
JZ5sE, is obtained by separating the electrochemical po-
tential into its chemical and electrical parts.

For simulation purposes it is preferred to define the ther-
mal conductivity in terms of the energy flux rather than the
heat flux, because the latter is more difficult to calculate as
discussed in the following. The two are related by

JQ5JE2 (
k51

2

hkJk5JE2~h12h2!J1

5JE2
~h12h2!

~z12z2!
JZ5JE2hZJZ , ~5!

wherehk is the partial specific enthalpy of componentk, J1

is the flux of ions of species 1 in the center of mass frame,zk

is the charge per unit mass of componentk and the fact that
for a binary mixtureJ152J2 and JZ5J1(z12z2) were
used.15 Using this we can re-derive the phenomenological
laws in terms of the fluxes of charge and energy.5,8 The new
expressions are given by

JZ52LZZXZ
02LZEXQ ,

~6!
JE52LEZTXZ

02LEEXQ

in which XQ has not been changed butXZ
0 is now given by
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XZ
05T¹S mZ

T D . ~7!

This transformation leaves all physical results unchanged al-
though a different form for the entropy production is
obtained.15 For a binary mixture this transformation, Eq.~5!,
excludes the enthalpy flux contribution associated with the
interdiffusion of one species through the other from the en-
ergy current.15 The following thermodynamic relation was
used:

T¹S mZ

T D5¹TmZ2
hZ

T
¹T ~8!

and the relations between the two sets of coefficients are
given by

LQQ5LEE22LEZhZ1
LZZ

T
hZ

2,

~9!

LQZ5LEZ2hZ

LZZ

T
.

Notice that the form of the phenomenological laws is un-
changed under the transformation and the following expres-
sion can be obtained for the thermal conductivity:

l5LEE2LEZ
2 T/LZZ . ~10!

Alternatively this expression can be obtained simply by sub-
stitution of Eq. ~9! into Eq. ~4!. For the simulation of the
thermal conductivity of solid alkali halides it has been
shown5 that this transformation causes a problem in that the
autocorrelation function of the energy current shows an os-
cillatory behavior arising from the fluctuations of the electric
current at the transverse optic frequency. This problem dis-
appears in the liquid state and the thermal conductivity can
be calculated from Eq.~10!.

Finally the transport coefficients involved in Eq.~10!
can be computed through EMD in conjunction with the
Green–Kubo method. The Green–Kubo formulas that ex-
press these three transport coefficients as time integrals of
the correlation functions of microscopic fluxes are

LZZ5
1

3VkTE0

`

^ jZ~ t !"jZ~0!&dt,

LEZ5
1

3VkT2 E0

`

^ jE~ t !"jZ~0!&dt, ~11!

LEE5
1

3VkT2 E0

`

^ jE~ t !"jE~0!&dt,

whereLZZ(5s) is the electrical conductivity,LEZ is a cross
thermoelectric coefficient, andLEE would correspond to the
thermal conductivity of a neutral one-component fluid.

B. Microscopic fluxes

The microscopic fluxes of chargejZ and heatjQ can be
given by

jZ5(
i 51

N

Zievi~ t !,

~12!

jQ5
d

dt (i 51

N

r i~Ei2h!

with

~Ei2h!5H 1

2
min i

21
1

2 (
j Þ i

N

ui j ~r i j !J 2h, ~13!

wherevi is the velocity of particlei, u(r i j ) the pair potential
between particlesi and j, r i the position vector of particlei,
andh is the enthalpy per particle.17

Taking the time derivative of Eq.~13! gives the follow-
ing result for the heat flux:

jQ5(
i

N

viEi1
1

2 (
i

N

(
j Þ i

N

r i j ~Fi j "vi !2(
i

N

vih. ~14!

If the total linear momentum in a single component system is
zero, the last term of this expression is also zero. For a binary
mixture the expression must be extended as follows:18

jQ5 (
a51

2

(
i

Na

~Eia2ha!via

1
1

2 (
a51

2

(
b51

2

(
i

Na

(
j Þ i ~a5b!

Nb

r ia, j b~Fia, j b"via!, ~15!

whereha is the partial enthalpy per particle of speciesa. The
enthalpy term cannot be dropped for a binary mixture be-
cause of the different masses of the two species. The fluxes
jZ andjQ have been written for a zero~‘‘barycentric’’! center
of mass velocityu, given by15

u5S (
a51

2

(
i 51

Na

miaviaD Y (
a51

2

(
i 51

Na

mia . ~16!

Because of the difficulty of calculating the partial enthal-
pies in MD simulations the energy flux is used instead~this
is possible under the transformation previously performed on
the phenomenological laws and also possible for the micro-
scopic currents!, which is given by Eq.~15! except for the
enthalpy term. Notice further that for the case of pure molten
salts partial thermodynamic quantities cannot be defined in
the same way they are defined for neutral binary mixtures
because of the fixed composition imposed by the electroneu-
trality condition.

For the case of a molten alkali halide it is preferred to
use the energy flux in the following form:

jE5
1

2 (
i 51

N Fmin i
21(

j Þ i

N

u~r i j !Gvi1
1

2 (
i 51

N

(
j Þ i

N

~r i j Fi j !"vi . ~17!

The mixture notation has been dropped for sake of simplicity
with the understanding that the sums are to be performed for
two different species with different masses. In Eq.~17! the
term r i j Fi j is a dyad given by
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SI5S Si j
xx Si j

xy Si j
xz

Si j
yx Si j

yy Si j
yz

Si j
zx Si j

zy Si j
zz
D ~18!

with

Si j
ab5(

n
Fi j

a~r i j 2nL !~r i j
b 2nbL !, ~19!

whereL is the length of the side of the MD box andn is the
periodic boundary conditions translational vector~n50,61,
62,...!. The sum over the lattice vectorsn has been explicitly
included in Eq.~19! to point to the fact that for an ionic
system treated with the Ewald sum, the separation of the
force in a real space part and a reciprocal space part, requires
the sum @(nFi j

F,a(r i j 2nL)(r i j
b 2nbL)# to be treated as a

whole in the Fourier space (Fi j
F,a is thea component of the

reciprocal space force between particlei and j and all its
images considered within the chosen truncation scheme for
the Fourier lattice!. If the forces were calculated isolated in
the Fourier space and then multiplied by the distances be-
tween particles in the MD box, these would not correspond
to the interactions accounted for in the reciprocal space lat-
tice. This problem was first encountered by Bernu and
Vieillefosse,19 who have shown that even though the Green–
Kubo relations for the transport properties of nonionic fluids
could also be applied to case of a one-component plasma,
some care had to be taken in defining the microscopic cur-
rents to avoid divergences. Their derivation was given ex-
plicitly for the case of the one-component plasma using the
Ewald method given by Nijboeur and De Wette.20 The prob-
lem was later considered for the case of viscosity9,10 and an
efficient expression proposed for the product of the distances
with the reciprocal space part of the force for monatomic and
polyatomic systems, for the particular case of the stress ten-
sor. These same expressions are to be used in the simulation
of the viscosity of any dipolar fluid for which partial charges
are added and the interactions computed through the Ewald
method~e.g., liquid methanol21!. Recently the authors have
given a detailed discussion on this calculation for the case of
the stress tensor elements for an ionic system for which the
Ewald sum is used to calculate the Coulombic long-range
forces.22

The motivation for writing the energy flux in the form
given by Eq.~17! is that the sum( j Þ i

N r i j Fi j is equal to the
sum that arises in the definition of the stress tensor and the
NKH expression to evaluate this product can be used in the
thermal conductivity calculations. The final expression for
the microscopic energy flux of an ionic system treated with
the Ewald sum is then

jE5
1

2 (
i 51

N Fmin i
21(

j Þ i

N

u~r i j !Gvi

1
1

2 (
i 51

N

(
j Þ i

N

~r i j Fi j
R!"vi1

1

2 (
i 51

N

(
j 51

N

vi "SIi j ~20!

with

Si j
ab5

4p

L3 (
kÞ0

`

Bab

1

k2
e2k2/4a2

ZiZj cos~k"r i j ! ~21!

and for theab component of the tensorB~k!,10

Bab5dab2
2ukauukbu

uku2
2

ukauukbu

2a2
, ~22!

FIG. 1. LEE coefficient for the different state points simulated for sodium
chloride.

FIG. 2. LZZ coefficient for the different state points simulated for sodium
chloride.

FIG. 3. LEZ coefficient for the different state points simulated for sodium
chloride.
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wherea is the convergence parameter of the Ewald sum, and
dab is the Kronecker delta. In Eq.~20! Fi j

R represents the
short-range forces and the real part of the Ewald–Coulomb
forces, both computed in the real space.

This formula is suitable for simulation of both binary
‘‘mixtures’’ of positive and negative ionic particles and dipo-
lar systems modeled with partial charges. For the case of
dipolar molecules or polyatomic ions an additional term
should be taken into account, which handles the product of
the distances and the intramolecular forces. Notice further
that the Fourier part of this expression, Eq.~19!, can be
transformed into a much more efficient form~not given
here!, in the same way as the potential energy,11 which elimi-
nates the double loop over particles inside thek-space triple
sum.

We note that the expressions used in this work are con-
sistent with the expressions used by Bresmeet al.13 for the
productFi j r i j in the real and reciprocal space but not with
the formula used by Motoyamaet al.14 for the computation
of the thermal conductivity of UO2.

III. SIMULATIONS

The simulations reported here have been performed for a
cubic sample of 216 ions~108 cations and 108 anions! in the
microcanonical ensemble using periodic boundary conditions
and the minimum image convention. The rigid ion Born–
Mayer–Huggins–Tosi–Fumi potential model has been used.
The model has the following form:

f i j ~r !5ZiZj

e2

r
1Ai j exp@B~s i1s j2r !#2

Ci j

r 6
2

Di j

r 8
, ~23!

where the first term represents the Coulomb interaction, the
second the Born–Huggins exponential repulsion, with pa-
rameters obtained by Tosi and Fumi,4 and the third and
fourth terms correspond to the dipole–dipole and dipole–

quadrupole dispersion energies, with parameters obtained by
Mayer.23 The Ewald-sum method was used to calculate the
Coulombic potential energy and forces,11,24 with the value
a55.6/L for the convergence parameter~L is the length of
the side of the MD box!. The real-space part of the Ewald–
Coulomb potential and the short-range interactions were
truncated forr c5L/2 and the Fourier part of the force and
potential energy was summed up to the vectoruhumax

2 527,
with thek-space vector given byk52ph/L. The positions at
time zero were defined as those corresponding to the face-
centered cubic lattice of solid NaCl with the cations occupy-
ing octahedral holes, and the zero time velocities were ran-
domly assigned and scaled to ensure a zero total linear
momentum. The Verlet ‘‘leap-frog’’ algorithm has been used
to solve Newton’s equations of motion24 with a time step of
1 fs. The system was equilibrated around the desired tem-
perature through scaling of the velocities, during the equili-
bration part of the simulation, 150 ps. The production stage
was run for 5 ns for every point and the values of the charge
and energy flux accumulated every time step. The correlation
functions were built and integrated to give the values of the
three transport coefficients given by Eq.~11!.

IV. RESULTS

Figures 1–3 show the coefficientsLEE , LZZ , and LEZ

obtained from the integration of the energy and charge auto-
correlation functions and energy and charge cross correlation
function for the different state points simulated for the case
of sodium chloride. The variation of the coefficients with
time is given only for the first 1.5 ps but the average values
have been computed up to 5 ps. The cross correlation func-
tion between the energy and charge currents was found to be
the most difficult to accurately calculate because in spite of
its fast convergence to zero, large fluctuations persist for
some state points for the entire five million time origins used
in the computation of the coefficients.

TABLE I. Results for the Green–Kubo coefficients of NaCl. The correlation
functions were evaluated from 5 ns production runs (53106 time origins!
and a time window of 5 ps.

T (K) ^T& (K) r ~g cm23! LEE (W/m K6s) LZE
2 T/LZZ (W/m K)

1100 1091 1.5420 0.79860.009 0.189
1200 1217 1.4878 0.7760.01 0.19
1300 1339 1.4335 0.7360.01 0.18
1400 1413 1.3793 0.68660.005 0.181
1500 1495 1.3250 0.68060.009 0.187

TABLE II. Results for the Green–Kubo coefficients of KCl. The correlation
functions were evaluated from 5 ns production runs (53106 time origins!
and a time window of 5 ps.

T (K) ^T& (K) r ~g cm23! LEE (W/m K6e) LZE
2 T/LZZ (W/m K)

1050 1053 1.5236 0.46060.006 0.015
1100 1133 1.4945 0.44460.003 0.0063
1200 1219 1.4362 0.44260.004 0.010
1250 1231 1.4070 0.42660.007 0.0088
1300 1357 1.3779 0.39060.005 0.011

TABLE III. Comparison of the simulated electrical conductivity~s! and
thermal conductivity~l! of NaCl with experimental data.

^T&
~K! r ~g cm23!

sMD/
(V cm)21

sexpt/
(V cm)21

lMD

~W/m K!
lexpt

~W/m K!

1091 1.5420 3.50 3.63 0.609 0.516
1217 1.4878 3.95 3.93 0.58 0.493
1339 1.4335 4.21 4.17 0.55 0.471
1413 1.3793 4.25 4.31 0.505 0.458
1495 1.3250 4.23 4.44 0.493 0.443

TABLE IV. Comparison of the simulated electrical conductivity~s! and
thermal conductivity~l! of KCl with experimental data.

^T&
~K! r ~g cm23!

sMD/
(V cm)21

sexpt/
(V cm)21

lMD

~W/m K!
lexpt

~W/m K!

1053 1.5236 2.40 2.19 0.445 0.387
1133 1.4945 2.61 2.38 0.438 0.374
1219 1.4362 2.80 2.56 0.432 0.359
1231 1.4070 2.80 2.59 0.417 0.357
1357 1.3779 3.03 2.84 0.379 0.336
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Tables I and II give the values of the two terms of Eq.
~10! involved in the calculation of the thermal conductivity
of sodium and potassium chloride. It can be seen that the
term in Eq.~10! involving the electrical conductivity and the
cross term are much higher for NaCl for which the masses of
the two ions are relatively different, than for KCl for which
the masses of K1 and Cl2 are very similar. This results from
the fact that for KCl the cross term involving the charge and
energy currents is much lower than for NaCl. Notice that the
electrical conductivity, which is in the denominator, is lower
for KCl than for NaCl and that is correctly predicted from
the simulation results. Tables III and IV compare the values
of the electrical conductivity and thermal conductivity with
experimental data. The experimental results for the electrical
conductivity are from Janz25 and the thermal conductivity
values are from Nagasakaet al.3 The electrical conductivity
for NaCl is in very good agreement with the experimental
data. For KCl the results are still satisfactory. The thermal
conductivity is shown to agree relatively well with the ex-
perimental data in general within 10%–20%. The predicted
temperature dependence is weakly negative in agreement
with the results of Nagasakaet al.3 Figures 4 and 5 give a
general comparison of the simulation results of this work
with different sets of experimental data and with the simula-
tion results of Sindzingre and Gillan.5 It can be seen that the

difference between the different sets of experimental data is
rather large and an opposite temperature dependence is pre-
dicted.

The simulation results obtained in this work clearly
show that the BMHTF potential overpredicts the thermal
conductivity of NaCl and KCl and a well-defined negative
temperature dependence is predicted.

V. CONCLUSIONS

Equilibrium MD simulations in the microcanonical en-
semble have been performed to investigate the temperature
dependence of the thermal conductivity of molten NaCl and
KCl. A weak negative temperature dependence was found for
the thermal conductivity of molten NaCl and KCl in agree-
ment with the experimental results of Nagasakaet al.3

The results obtained are in satisfactory agreement with the
available experimental data, generally overpredicted within
10%–20%.

A discussion on the form of the reciprocal space part of
the potential part of the energy flux for ionic systems for
which the Ewald sum is used to handle the long-range forces
has been given. The expression used is relatively efficient
thus permitting one to run relatively long simulations—a

FIG. 4. Comparison of the simulated thermal conduc-
tivity at different state points with experimental and
simulation data for sodium chloride.

FIG. 5. Comparison of the simulated thermal conduc-
tivity at different state points with experimental and
simulation data for potassium chloride.
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condition normally required in the use of the Green–Kubo
method to obtain a good statistical precision of the calculated
correlation functions.

In analogy with the case of the shear viscosity it is ex-
pected that the inclusion of a polarization model improves to
some degree the accuracy of the results. The use of polariza-
tion shell models have however the problem of greatly in-
creasing the time of computation. This fact highly limits the
applicability of shell models for the calculation of thermal
conductivity for which long simulations are needed.

ACKNOWLEDGMENTS

N.G. would like to acknowledge fellowship support
from Fundacao para a Ciencia e Tecnologia from Portugal
for a Ph.D. grant under the program PRAXIS XXI/BD/
19792/99, and to Colorado School of Mines, where part of
this work was developed, for the opportunity provided as a
visiting student. J.F.E. acknowledges support from the U.S.
Department of Energy, Office of Science, Grant No. DE-
FG03-95ER14568.

1M. V. Smirnov, V. A. Khokhlov, and E. S. Filatov, Electrochim. Acta32,
1019 ~1987!.

2J. McDonald and H. T. Davis, Phys. Chem. Liq.2, 119 ~1971!.
3Y. Nagasaka, N. Nakazawa, and A. Nagashima, Int. J. Thermophys.13,
555 ~1992!.

4M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids25, 45 ~1964!; F. G.
Fumi and M. P. Tosi,ibid. 25, 31 ~1964!.

5P. Sindzingre and M. J. Gillan, J. Phys.: Condens. Matter2, 7033~1990!.
6T. Fuchiwaki and Y. Nagasaka, Proceedings of the Third KSME-JSME,
Thermal Engineering Conference III-255~1996!.

7K. Takase and N. Othori, Electrochem.67, 581 ~1999!; K. Takase, I.
Akiyama, and N. Ohtori, Proc. Electrochem. Soc.99, 376 ~2000!.

8B. Bernu and J. P. Hansen, Phys. Rev. Lett.48, 1375~1982!.
9S. Nose and M. L. Klein, Mol. Phys.50, 1055~1983!.

10D. M. Heyes, Phys. Rev. B49, 755 ~1994!.
11M. J. L. Sangster and M. Dixon, Adv. Phys.25, 247 ~1976!.
12C. Pierleoni, G. Ciccotti, and B. Bernu, Europhys. Lett.4, 1115 ~1987!;

C. Pierleoni and G. Ciccotti, J. Phys.: Condens. Matter2, 1315~1990!.
13F. Bresme, B. Hafskjold, and I. Wold, J. Phys. Chem.100, 1879~1996!.
14S. Motoyama, Y. Ichikawa, Y. Hiwatari, and A. Oe, Phys. Rev. B60, 292

~1999!.
15S. P. de Groot and P. Mazur,Non-equilibrium Thermodynamics~New

York, 1984!.
16L. Onsager, Phys. Rev.37, 405 ~1931!.
17R. Zwanzig, Annu. Rev. Phys. Chem.16, 67 ~1965!; D. A. McQuarrie,

Statistical Mechanics~Harper & Row, New York, 1976!.
18C. Hoheisel, Theoretical Treatment of Liquids and Liquid Mixture

~Elsevier, Amsterdam, 1993!.
19B. Bernu and P. Vieillefosse, Phys. Rev. A18, 2345~1978!.
20B. R. A. Nijboer and F. W. De Wette, Physica~Utrecht! 23, 309 ~1957!.
21D. R. Wheeler, N. G. Fuller, and R. L. Rowley, Mol. Phys.92, 55 ~1997!.
22N. Galamba, C. A. Nieto de Castro, and J. F. Ely, J. Phys. Chem. B108,

3658 ~2004!.
23J. E. Mayer, J. Chem. Phys.1, 270 ~1933!.
24M. P. Allen and D. J. Tildesley,Computer Simulations of Liquids~Claren-

don, Oxford, 1997!.
25G. J. Janz, Database NIST Properties of Molten Salts Database~NIST

SRD 27, Boulder, 1992!.

8682 J. Chem. Phys., Vol. 120, No. 18, 8 May 2004 Galamba, Nieto de Castro, and Ely

Downloaded 15 Aug 2004 to 134.84.165.238. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


