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An expression is derived for the first quantum correction to the second dielectric virial coefficient of
interacting rare-gas atoms. It is shown that this correction is not large enough to account for the experi-
mently determined negative values of this quantity for helium and neon. Based on this result, along with
a previously established argument, it is concluded that the point-dipole approximation is the likely cause
of the discrepancy between the theoretical and experimental results.

I. INTRODUCTION

It is well known that at high pressures nonpolar gases
show slight deviations from the Clausius—~Mossotti
relation

(e—1)/(et+2) = (4ma/3)p,

where & is the mean atomic polarizability. These devia-
tions are due to intermolecular interactions and have
been discussed in considerable detail.’=® The normal
theoretical treatment for dense gases is to expand the
Clausius—Mossotti relation in terms of the number
density p, viz.,

(e—1)/(e+2) = (4n3/3) p+ Bpp*+ Cpp*++ + +,

where Bp, Cp,*++ are the second, third,---, etc.,
dielectric virial coefficients. For spherical molecules it
cant be shown in general that

Bp= 8%2 /: drr*a(r) exp <“ ?L(L)) ’

i (1

where ¢(7) is the intermolecular potential and «(r) is
the spherical average polarizability increment

a(r) =3[ay(r)+2a.(r) 1-2a, (2)

with a1(7) and a)/(r) being the transverse and longi-
tudinal components of the polarizability at an inter-
nuclear separation #. In the commonly used point-
dipole approximation, a(r) becomes 4a% 5, which
always vields a positive second dielectric virial co-
efficient. Prompted by the negative experimental value
of Bp obtained by Orcutt and Colef for helium and neon,
Levine and McQuarrie’ suggested that the use of the
point-dipole approximation in Eq. (1) wasn’t adequate
and that the more general form (2) must be used for
the polarizability in Eq. (1). Later, DuPré and
McTague,® using the 3T state of Hy, as a model for
colliding pairs of rare-gas atoms, demonstrated that
a(r) can indeed become negative at intermediate inter-
nuclear separations, thereby making it theoretically
plausible for Bp to be a negative quantity.

One remaining question is that of the possible exis-
tence of anomalously high quantum corrections to the
dielectric virial coefficients for He and Ne. In this paper,
the first quantum correction is evaluated using the
formalism of Kirkwood® and techniques presented

earlier by Isihara and Hanks."9 Rather than using the
exact form for a(r), we use the point-dipole approxi-
mation. The reason for doing this is that we are looking
for abnormally large corrections and at worst, the point-
dipole approximation should only be off by a factor of
2 or 3. This error weighed against the resulting simplifi-
cation of the problem makes it an appropriate choice.

II. FORMULATION

If we consider an imperfect gas in a parallel plate
capacitor, we can express the ordinary (pressure)
virial coefficients! as functions of the electric displace-
ment D as

B.(T, D)=B,®(T)+B,®(T)D*+B,®(T)D*+- - -,

where we have realized that the coefficients must be
even functions of D. To obtain the second dielectric
virial coefficient Bp, we make use of imperfect gas
theory to obtain Bs®(T) and then use the relation®

Bp(T)=—(87kT/3) B.@(T) 4 (327%2%/9), (3)

where k is the Boltzmann constant and T is the tem-
perature.

Following the development of Kirkwood, we may
write the canonical partition function as

OQn(V, T, D)= (NWN)='[- - [ exp(—BHx)

X [Z 7vl(r7 P, 6) ﬁl]drdpy
=0

where # is Planck’s constant divided by 27, 8=1/kT,
r and p stand for the set of all N spatial coordinates and
conjugate momenta, and

N
drdp= 1] dr.dp..
=1
It can be easily shown that the contributions to Qn
resulting from the terms in the sum which are odd in [

vanish, and it is also easily seen that wy,=1. Keeping
only terms through %%, we have

Ov(V, T, D)=(N1N)7 ... [ exp(—BHx)
X [14+wihit4 O (54) Yirdp.  (4)

In these equations Hy is the complete classical Hamil-
tonian for the system of rare-gas atoms, which, using
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the notation of McQuarrie and Levine,* can be written
as

Hy= 22 +¢N(’)“ D-a-(1-a-T)!-D
k=1

=K(p)+U(n),

where ¢x (7) is the potential energy without the external
field, e is a supermatrix whose elements are the polariz-
ability tensors of the molecules 1 through N, and T is a
supermatrix whose elements are the dipole-dipole
interaction tensors given by

Tup(ris) = (3rijatiie—1:ii*0ap) /7i,

with r,; being the vector distance between the sth and
4th particles.
The first quantum correction to Qv (V, T, D), i.e.,
10y, 1s given by
2

B N N N
o= = L v w0 (e wi]
2m k=1 k=1 k=1

62 N
+ - > pk-VkU)2} .
m =1

If we restrict ourselves to consider terms of order D? or
less, we can write

wy=10, 0+ wp® D+ 0 (D)
and

Ox(V, T, D)=Qx®(V, T)+Qv®(V, T) D4+0(D*).
(5)

Since we are only interested in the second virial co-
efficients, we only need to evaluate Q1 and Q. It can
easily be shown that?

OV, T, D)= (V/8*) [1+3% (Ba) D*+O(D) ], (6)

where A is the de Broglie thermal wavelength. To
evaluate (Q,, we express the Hamiltonian for two
particles as

H,=H,;O+u(r)D?

where we have chosen the z direction to be parallel with
the electric displacement so that

u(r)=—[a+aT.,.+a&T,, T+ 03],

and it is to be understood that all greek subscripts are
to be summed. We now expand the part of the Boltz-
mann factor in Eq. (4) depending on D. This procedure
yields
Q:O(V, T)=(1/2k%) [[ || exp(—BH>®)

X [14 A%+ O (%) Jdrdp
and

02 (V, T) =~ (1/24%) [fJf exp(—BH)

X [Bu(r) +Bh2u{r)w,® — h20,® Jdrdp.  (7)
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Using Egs. (5) and (6) with D=0, we are directly led
to the well-known result!?

0 h?
Bg(T, D=0)=—27r/0 ({N’Zf(f)“}—m

X f i drlre' (r) I exp[—Be(r) ],

0

where Ng is Avogadro’s number and f(r) is the Mayer
f function. The prime indicates differentiation with
respect to the argument. The D? term gives

B, (T) = (BaA>/V)Q:O(V, T) — (A/V)Q:®(V, T).
(8)

Upon substituting into Eq. (7) for #, 0, and %@ and
then using Eq. (8), we find that
ha

BO(T) = 2drmkA T

32(2)01( T) —

X [t (0P expl—8o() 1~ 1(T) — 1 (D),

0

where B,®@<(T), I(T), and J(T) are given by

4 2
B,®l(T) = 3_7}':% _ 4ma / drr—4 exp[—Bé(r) ],
X er[—ﬂ¢(r)]
Sk a?
- —6
m."-kQTzf drr ekp[ ﬂ¢(f)]+ mak3 T3
X /w drr=5 exp[ — B¢ () J¢' (7),
0
and

J(T) = (*/48x*mk3T*) [ds[ Vip—3B(V$- V) Ju(r)

X exp[—B(r) ).
The expression J(7') reduces to

W | )P e[

T = = el T

ah? © ~
Mfo drr—i¢"2(r) exp[ —Be(r)]

a*h?

T mksTS

/ drr—5¢’ (r) exp[—Be(7)].
Combining these terms we obtain

—3 2
/ drr—¢'*(r)

B,®(T)= mEA T

B2(2)cl<T)_+_

—32

mk*T?

X exp[—p(r) ] = / drr= exp[— B (r) 1.
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Using Eq. (3), we have then, for the second dielectric TasLE IL Values of By*!(T*) and Bp*!(T*) and their
virial coefficient first quantum corrections.
32 0
BD(T) — BDCZ(T) _ 2a h f drr__4¢/2<r) T* Bz*cl(T*) B2,I*(T*) 103BD*CI(T*) 104BD,I*(T*)
mk3T3 J,
40a%% 75 —4.175842  0.868561 .367644  —3.205340
ol — o —6 80 —3.734150  0.729109 .296858 —2.711038
X e.xp[ B¢(r) :]+ 3m ka drr exp[ 64)(7)] 5 —3.363049 0.621888 .238647  —2.328668

o 00
<

—3.047065 0.537683
—2.774866  0.470332
—2.538039 0.415599
—2.330193  0.370495
—2.146349  0.332866
—1.982632 0.301127
—1.835939  0.274094

190075  —2.026646
149040  —1.783780
113996 —1.585435
.083787 —1.421241
.057531  —1.283688
034545  —1.167224
014292 —1.067673

If we use a zero field intermolecular potential of the
Lennard-Jones type, we may write this equation in
reduced form, viz.,

Bp*(T*)=Bp(T*) /b
= Bp*(T*)+A*®Bp *(T*)+0(A*),

N#—‘»—-OS\O
Qo wn w

where 25 —1.703769 0.250864  0.996343 —0.981846
30 —1.584103 0.230743 980355 —0.907275

by=2mo%/3, T*=kT/e, and AY¥=h*/o’me. 35  —1.475260 0.213189 966047  ~—0.842022

. 40 —1.375850 0.197772 953190  —0.784552

The undefined parameters are e and ¢ which correspond 45  —1.284724  0.184150 041502  —0.733635
to the Well-depth and hard-sphere diameter of the 50 —~1.200899  0.172048 031095 —0.688278
Lennard-Jones potential. Using these definitions with a 55  —1.123537 0.161240 021564 —0.647670
(6, 12) potential we obtain 60 —1.051929 0.151543 912886 —0.611146
® ¢* (x) 65 —0.985473  0.142805 904965 —0.578152

Bp*l(T*) = 24a* / dxx exp ( . > 70 ~0.923641 0.134898 897716  —0.548230

0 T 75 —0.865976  0.127717 891069 —0.520994

and 80 —0.812064 0.121172 884962 —0.496116
85 —0.761568 0.115187 879342  —0.473320

90 —0.714179  0.109698 874159  —0.452370

Bp,r*(T*) =~ zT*a /dx 12271~ 6279)* 95  —0.669627 0.104648  0.869375 —0.433061
00 —0.627664  0.099991 . 864951 —0.415218

o*(x)\ = 30a* &* () ~0.550677 0.091602  0.857062 ~0.383340

Xew<— T*) 2T%/ df*ﬂP( T+ ) 20 —0.481754 0.084531  0.850273 —0.355738
30 ~—0.419722  0.078300 .844414  —0.331643

where 40 ~0.363626 0.072837 .839342  —0.310453

(73
(=]

—0.312662 0.068016
~—0.266190  0.063734
—0.223647  0.059910
—0.184562  0.056477
—0.148563  0.053381
—0.115299  0.050577
—0.844757  0.048027
—0.558533  0.045699
—0.292114  0.043568
40  —0.434966  0.041609
188807  0.039804
406498  0.038136
610703  0.036591
802589  0.035156
983151  0.033820
115344  0.032573

.834946 —0.291694
.831130  —0.274985
827818  —0.260022
824945  —0.246553
822456  —0.234373
820304 —0.223312
818450 —0.213226
816861  —0.203998
815506  —0.195524
814361 —0.187720
813404 —0.180510
.812616  —0.173833
811979  —0.167632
.811479  —0.161859
811102 —0.156473
.810838  —0.151437
131412 0.031408 .810676  —0.146719
146612  0.030316 .810606  —0.142290
160987  0.029292 0.810620 —0.138125
174611  0.028330 0.810711  —0.134202

x=r/go, a*=a/c%, and ¢*(x)=4(x"2—x").

~T N
o o

This expression was evaluated numerically along with
the expression for the quantum corrected pressure
virial coefficient with D=0, the results of which are
presented in the next section.

N = DO
OO Q0O

III. RESULTS AND DISCUSSION

(33
(=]

Table I gives the values of the Lennard-Jones param-
eters and A* for the various elements considered in this
calculation. Table II displays the results of the calcula-
tions for both the pressure virial coefficient with no field
and the second dielectric virial coefficient at various
reduced temperatures. It should be pointed out that
Table 6.5-1 in Ref. 12 is somewhat inaccurate. This was
confirmed by calculating the quantum correction by

8 S
=]

(o]
(=]
cooocoo000

TAaBLE I. Values of ¢/%, o, Noby, and A* for rare gases.

both the method presented in that reference and by the

Element 7 «/k Nobo At numerical integration indicated in this work.
- 2 556 10.22 21.065 2 677 We see that for helium at a reduced temperature of
e . . . ) 20/ ° L
Ne 2 749 3560 26.206 0,503 T*=30(~33 C°) that the first quantum correction is

-1 M k__ [+
A 3.405 119, 19 . approxlmatz?ly 1.'43%,and for neon with T —~9(f'V47 (0))
® 2799 0186 the correction is approximately 0.25%, which are
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approximately the same magnitude as the quantum
corrections to the pressure virial coefficients. Thus we
can conclude that anomalously low (even negative)
experimental values of the second dielectric virial
coefficients of rare gases are due to the use of the point-
dipole approximation for a(r).
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Recent experimental studies have reported anomalous and contradictory results for the absorption of
left and right circularly polarized light (LCPL and RCPL) by zinc and magnesjum coproporphyrins in the
presence of a magnetic field: for both compounds, the absorption bands for right and left circularly polarized
light have distinctly different shapes at room temperature; at 77°K unexplained shoulders appear in the ab-
sorption spectra for both polarizations for the magnesium but not for the zinc compound; the value of
the angular momentum of the lowest energy excited state computed from the separation of the peaks of
the LCPL and RCPL absorption bands differs from the value obtained from magnetic circular dichroism
(MCD) experiments by nearly 509%; no shape anomalies were observed in the MCD spectra. We derive
a general solution for the mixing of two states by a magnetic field and show that all of the anomalous experi-
mental data are explained if (a) the presumably degenerate pair of excited states are split in zero field by
an energy comparable to the Zeeman energy but less than the spectral bandwidths, and alse (b) the over-
lapping transitions have unequal intensities. Our results show that MCD should give better estimates of
excited state angular momenta while the direct measurement of LCPL and RCPL is superior in detecting

nondegeneracy.

INTRODUCTION

Malley' and Malley, Feher, and Mauzerall? recently
measured the Zeeman effect on the visible absorption
bands of zinc and magnesium coproporphyrin. Their
data for the absorption of right and left circularly
polarized light (RCPL and LCPL) by transitions to
the lowest excited states (Qq.0 band?®) of zinc copropor-
phyrin I are shown in Fig. 1. These data show asym-
metries between the LCPL and RCPL absorption curves
which are not predicted by simple theory®* and for
which Malley ef al’)? offered no explanation. In the
presence of a magnetic field, the RCPL band shifts to
lower energy, exhibits a higher peak intensity, and is
narrower than is the LCPL band. Significantly, the
areas under the two curves are equal. This result was
found for both isomers I and IIT of zinc coproporphyrin

(see Fig. 2) in a variety of solvents at room temperature
and at 77°K. At room temperature, the spectra of
magnesium coproporphyrin I were similar to the data
shown in Fig. 1. At 77°K, however, shoulders appeared
on both the LCPL and RCPL absorption bands, another
result which was not explainable.*?

Malley et al.' 2 calculated the angular momentum, M,
of the lowest excited state from the separation between
the peaks of the LCPL and RCPL absorption curves.
At room temperature they found about 9 units of
angular momentum for both isomers and both metals.
This value is in excellent agreement with the predictions
of simple free electron theory®#* but greater than the
value calculated from molecular orbital theory by about
a factor of 2.5 At 77°K the value of M, decreased to
about 6.4 for the zinc compound but increased for the
magnesium compound.
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