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The viscosity and thermal conductivity coefficients of dense fluid argon have been calculated using
the modified Enskog theory and the equilibrium statistical mechanical perturbation theory of Barker
and Henderson. Agreement with experimental transport data is shown to be, in general, quite good.
The results of these calculations are also compared to those obtained using the modified Enskog
theory and an experimental equation of state. In this case, the results are seen to be excellent, which
indicates that this approach provides us with a method of predicting transport properties of simple

dense fluids from fundamental molecular theory.

. INTRODUCTION

In the derivation of the Boltzmann equation, there are
two primary assumptions made: (1) Only binary colli-
sions are important, and (2) the molecular diameter of
the molecules, ¢, is small compared to the mean free
path of the gas. Both of these assumptions are applic-
able to a dilute gas but not to a dense system. As the
density of the system is increased, two effects become
important because the molecules have a nonzero size,
The first of these two effects can be associated with a
positional correlation, which will appear in the form of
the radial distribution function, g(#). Since g(v) is great-
er thanunity whenthe molecules are close together, i.e.,
whenr= ¢, there is an increaseintherate of collisions,
Secondly, collisional transfer of flux becomes important,
In a dilute gas, the most important mechanism for the
transport of flux is the movement of a molecule through
a plane. In a dense system, on the other hand, it is
possible for a molecule on one side of a plane to collide
with a molecule on the other side of the plane and trans-
fer some momentum or energy even though neither mole-
cule actually crosses through the plane., This manner
of flux transport is called collisional transfer., Of
course, this mechanism is also present in dilute gases,
but it does not become important until the density be-
comes large. In liquids, in fact, collisional transfer of
flux is more important than molecular transfer.

Enskog has modified the Boltzmann equation in an ap-
proximate manner to include the above effects."5 The
two mainfactors that distinguish the Enskog theory from
the Boltzmann equation are that the frequency of colli-
sions in a dense system is greater than in a dilute gas,
and that collisional transfer of flux is accounted for.

It. THEORY

The results of the Enskog theory that we shall use
here are that?®

1/Mybep=1/Y +0.800+0.761Y (1)

and

A Ay p=1/Y+1.200 +0.755Y . @)
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In the first of the two equations, 7 represents the vis-
cosity of the hard sphere fluid, 7, the viscosity of a
dilute hard sphere gas, b,=2703/3, where o is the hard
sphere diameter, and Y = b, pg(s), where p is the num-
ber density and g(o) is the two-body hard sphere radial
distribution function at contact. This last quantity is
related to the hard sphere equation of state by?

p/PkT=1+bypglo) . 3)

In addition, the first approximation of the Chapman—~
Enskog theory gives®

5 (mmbT)!/?2 '
M= 16 mola ax (4)

where Q*2* is the reduced viscosity collision integral
which is unity for hard spheres.

In Eq. (2), X and A, are the thermal conductivity of
the dense hard sphere fluid and the dilute gas, respec-
tively. In this case®
25 (wmkT)'/? (C )

A= an

32 ZQ 2,2 (5)

where C, is the constant volume specific heat for the
translational degrees of freedom and Q*#* is unity.

The molecular dynamics rigid sphere transport coef-
ficients have recently been calculated by Alder, Gass,
and Wainwright.® They identify the first terms in Eqgs.
(1) and (2) with the kinetic contribution, the third term
with the potential contribution, and the middle terms
with a cross term contribution. These are all presented
separately in their paper, and one can see from there
that the agreement with molecular dynamics results is
quite good except for densities approaching the solid
phase (v/vy=1.5).

In spite of the fact that the Enskog theory is strictly
a rigid sphere theory, Enskog showed how the results
could be applied to real systems.»® He suggested that
instead of relating ¥ to the actual pressure of the sys-
tem through Eq. (3), i.e

Y=p/pkT-1, (6)

one should introduce the so-called “thermal pressure,”
T(Bp/& T)y. The justification for this is that the pressure
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experienced by a single molecule is made up of two
parts, the external pressure, p, due to the walls of the
container, and the “internal pressure,” (8E/8V);, which
represents the force of cohesion of the molecules. The
sum of these is related to the thermal pressure by the
thermodynamic relation

T(op/8T)y=(8E/8V )p +p . (7)
Therefore, we write for v:

_ 1 8.2”
1+Y—ka [T(aT A

_L> a(p)_ (az)
= (L) =z+7(2%) | 8
(ka “Ter\per ), 72T 8T ), ®)

where we have introduced the compressibility factor Z.
Hanley ef al.? call this the modified Enskog theory
(MET). Furthermore, since ¥/p— b, as p—0, we must
have

by=B(T) + TdB/dT, (9)

where B(T) is the second virial coefficient.

Equations (8) and (9), along with Eqs. (1) and (2) and
the dilute gas expressions for 7, and ), completely
specify the modified Enskog theory. One can calculate
the transport coefficients of a dense real system from
equation of state data alone. Tables 9.3-2 and 9.3-3 in
Hirschfelder, Curtiss, and Bird® and the article by
Hanley et al.* compare the modified Enskog theory to
experiment, One can see from the results that in spite
of the ad hoc nature of the theory, the agreement with
experiment is quite good, especially when one compares
the density variation of the transport coefficients at a
fixed temperature.

In a series of papers, Dymond and Alder® have pre-
sented an alternate extension of the Enskog theory to
real fluids. They argue on physical grounds that an ef-
fective hard core diameter can be found by plotting pv/
kT vs 1/T at constant volume. Recall that the van der
Waals equation can be written in the form

pv__v__ e @) 10
KT o-b krTo T T (10)
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FIG. 1. Isochoric and saturated argon viscosity. The solid
lines were calculated using Eqs. (8) and (9) and the statistical
mechanical perturbation theory equation of state. The symbols
represent smoothed experimental data taken from Ref, 12.
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FIG. 2. Isochoric and saturated argon thermal conductivities
in units of milliwatts per meter-°K. The lines were calculated
using the same method as was used for the viscosity and the
symbols represent smoothed experimental results taken from
Ref. 12,

Equation (10) predicts that the intercept of a plot of pv/
BT vs 1/ T should lead to a straight line with an inter-
cept at the hard sphere value of pu/k27T. Knowing the
molar volume p one can then determine an effective b,
or hard sphere diameter, since by=270%3. The value
for o should be independent of the density or », This in
fact turns out to be so. In practice, experimental data
lie on a slight curve and the value of the intercept de-
pends on the temperature at which the tangent to the
curve is drawn. This means that the effective diameter
o is temperature dependent, but still density indepen~
dent. In this way, one can obtain an effective hard core
diameter as a function of temperature., The result of
using this empirically determined quantity directly in
the Enskog theory yields good agreement with experi-
ment at high temperatures,

We present here a simple extension of the ideas of
Dymond and Alder and use one of the statistical mechan-
ical perturbation theory equations of state directly in
place of using the van der Waals equation to analyze ex-
perimental pvT data., We arbitrarily choose the Barker-
Henderson perturbation theory which under the macro-
scopic compressibility approximation” gives the follow -
ing expression for the Helmholtz free energy:

A A w
A A ,
NeT - NeT T2TPP fo gdly, Vulr)ridr

- WPB(%Z‘){J J:oga(y, re(r)ridr . (11)

In this equation A, is the Helmholtz free energy of a
system of hard spheres with diameter d, g,(y, ») is the
radial distribution function of the hard sphere system,
y=upd /6 and d is defined by the relation

d(T):_LV[e-u(r)/kT —1]d7’ , (12)

J. Chem. Phys., Vol. 60, No. 11, 1 June 1974

Downloaded 12 Jun 2007 to 138.67.32.126. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. F. Ely and D. A. McQuarrie: Dense fluid transport properties 4107

1500 ———— T [
ARGON 7
- Expt 1397 K\ /
- Expt 373K\
1000 ?
0© Cale. 373K~ [/
§ | Calc. 1397K /
(\) L qalc. \
o
:!: -
£ -
=
500 —
0 1 |

o] 025 050
DENSITY,g/cm?®

100

FIG. 3. Excess argon viscosity, An=n-75,. The solid lines
represent experimental results and the dashed lines show the
corresponding calculations. The shaded regions denote the
ranges p.~2p. and 2p, and above,

where u(y) is the intermolecular potential function. We
find the compressibility factor Z from the thermodynam-
ic relation

g P

After defining the reduced quantities d*=d/o, T*
=kT/€, and u*=4(x"*% - x"®), and going through some
amount of algebra, we find the following theoretical ex-~
pressions for 1+ ¥ and b [cf. Eqgs. (8) and (9)}

Zy(y, d*) _ 3yJ*(T¥)

1+Y:Z0(y)_ T*a T*
1 9 1 8
x{Dy( v} + F"a_y(zl - W)+ W@(ZZ - W,)}
(14)
and
2nd? 64 3T*(T*)
= - ) 15
bo==3 [1+105d*3T*2 T* (15)

Zo(v) is the compressibility factor for the hard sphere
reference system and Dy(y)=8Z,(y)/9y. The quantities
J*, Z;, and W, are defined by

8 L4
Zy(y, d*)y=-6y ——[yCO( y)f &Y, x)u*z(d*x)xadx],
9y 1/a
5 -1
a3 =(sz9])
1M *
J*(T*)=;i;f0 w(x) e /T dx ,
Z(y,d*)=12y iyfn gy, u*(d*x)x%dx ,
8y "y ra*

Wy=96y [ xgaly, 2{2(d*2)V/2 = (@*x) % xPax

and

Wy == 969Co(9) [k 24l 3, xhuX(d*x)
x{2(d*x) 12— (d*x)ySx2dx .

Substitution of Eqs. (14) and (15) into Eqgs. (1) and (2)
yields the desired results, modified Enskog theory ex-
pressions for the viscosity and thermal conductivity of
a dense fluid in terms of the intermolecular potential,
which in this case is taken to be a Lennard-Jones 6~12
potential, u(»)=4€[(0/7)'?~(0/#)®]. Note that if the
small terms of order 1/T* and less are neglected, Egs.
{(14) and (15) simply specify that one use the Barker -
Henderson value of d(7) in the hard sphere equation of
state,

I1l. RESULTS AND DISCUSSION

As an illustration of this approach to dense fluid trans-
port, we have calculated the viscosity and thermal con-
ductivity of argon using the Carnahan-Starling® hard-
sphere equation of state Zy=(1+y+92—-53)/(1 - y)® and
the Wertheim—Thiele® solution for the Percus~Yevick
hard sphere radial distribution function, g,(y, ). The
temperature range covered was 85-375 K, with densi~
ties ranging from the dilute gas to approximately 1.25
g/cm3 (2, 5p.). The dilute gas viscosities and thermal
conductivities were evaluated by using Lennard-Jones
12-6 collision integrals in Eqs. (4) and (5).

Figure 1 displays the results thus obtained for the
isochoric and saturated argon viscosity. The results
are extremely good for temperatures above critical
(150.86 K) and densities below. approximately twice criti-
cal (p,=0,5235g/cm?). Asonewould expect, the results
for the saturated vapor are quite good but rather large
discrepancies are seen for the saturated liquid (approxi-
mately 40% near the triple point). This latter disagree-
ment can be explained by considering the primary physi-
cal assumption made in the statistical mechanical per-
turbation theory, viz., that the repulsive intermolecu~
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FIG. 4. Excess argon thermal conductivity, ax=A—=2x;,. The
solid lines are smoothed experimental results and the dashed
lines show the corresponding calculations.
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FIG, 5. Isochoric and saturated argon viscosity. The symbols
were calculated using a Benedict—~Webb—Rubin equation of state
for argon and the modified Enskog theory and the dashed lines
were calculated using the statistical mechanical perturbation
theory equation of state and the modified Enskog theory.

lar forces determine the fluid structure with attractive
forces providing an internal pressure which holds the
fluid together at some specified density. This assump-
tion, although generally valid, must break down along
the saturated liquid boundary where there are two phases
existing at virtually zero pressure.

Figure 2 shows the corresponding results for the ar-
gon thermal conductivity coefficient. In this case, the
results are satisfactory for temperatures above 225 K
and densities below 1.5p,. The deviations at the high-
est density considered are approximately 20% at 200 K.
Rather large deviations are observed below 175 K owing
to the failure of the MET to predict the critical point
anomaly in the thermal conductivity.!® It is interesting
to note that away from the critical point, the calculated
saturated liquid thermal conductivities are in much bet-
ter agreement with experiment than the corresponding
viscosity calculations. This agreement, however, must
be considered to be fortuitous due to the fact that the
modified Enskog theory tends to predict saturation ther-
mal conductivities which are too large.?

Figure 3 shows the excess viscosity, An=n-17, for
the 139.7 and 373 K isotherms. It can be seen that the
agreement with experiment is quite good over the entire
density range at the higher temperature and that the
agreement at 139.7 K, although not outstanding, is satis-
factory even at 2 p,.

Figure 4 shows the excess thermal conductivity, Ax
=X ~—2, along the 130 and 298 K isotherms. The agree-
ment in this case is not quite as good as for the viscosi-
ty, but again should be considered satisfactory.

It has been shown®!! that the modified Enskog theory
breaks down for densities above 2 p, and it is interesting
in this regard to compare our calculations with those
obtained using an equation of state based on experimen-

tal poT data in the MET, This not only effectively re-
moves the errors of the MET but also provides a good
check on the perturbation theory equation of state, Fig-
ure 5 displays the results of this comparison with the
symbols being calculated with the MET and a Benedict—
Webb~Rubin equation of state for argon!? and the solid
lines being calculated with the perturbation theory. The
results are seen to be extremely good over virtually the
entire surface which would imply that the perturbation
theory provides a very good representation of the ther-
mal pressure,

In summary, we have presented a simple method of
calculating argon viscosities and thermal conductivities
and have shown that the results thus obtained compare
very favorably with those obtained using experimental
pvT data. As compared to experiment, the results are
quite good except along the saturated liquid boundary,
where the equilibrium statistical mechanical perturba-
tion theory appears to break down, This approach pro-
vides us with a method of predicting transport proper-
ties of dense fluids using fundamental molecular theory.
The results thus obtained should be sufficiently accurate
for many technical applications. Work is currently in
progress to extend the technique to more complex mole-
cules (0, N,, etc.)and mixtures, for which relatively
little experimental data is available.
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