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We present the results of extensive new molecular dynamic (MD) simulations in the one-phase

region for square well fluids with well widths �¼ 1.10, 1.15, 1.20, 1.25, 1.375, 1.50, 1.75, 1.90,

2.0, and 2.10. These data have been used in developing a crossover equation of state (CR EOS)

for square-well fluids with well widths 1.1� �� 2.1. The CR EOS incorporates non-analytic

scaling laws in the critical region, and in the limit of low densities yields the exact second

and third virial coefficients. Also in the high-temperature region, it reproduces first-order

perturbation theory results. The CR EOS was tested against our new MD simulations, and

earlier MD and Monte-Carlo (MC) simulations reported by other authors as well. Excellent

agreement between calculated values and simulation data for all SW fluids is observed.

In combination with the density-functional theory, the CR EOS is also capable of reproducing

surface tension simulations with high accuracy. Application of the CR EOS for solid–liquid

equilibrium calculations in combination with the Lennard–Jones and Devonshire cell model

for the solid phase, is also discussed.
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Vapor–liquid equilibria (VLE)

1. Introduction

One of the fundamental problems in statistical

mechanics is to calculate the thermodynamic and

interfacial properties of fluids resulting from the

interactions between their molecules. The square-well

(SW) potential model is the simplest model that

incorporates both repulsive and attractive interactions,

and has been extensively studied over the last few

decades by computer simulations. The interaction

energy u(r) between two square-well molecules separated

by a distance r is given by

uðrÞ ¼
1 r � �

�" �<r � ��

0 r>��

8><
>: ð1Þ

where � is the diameter of the hard-core repulsive

interaction, " is the strength of the attractive

interaction, and � characterizes the width of the
attractive interaction. Because of its simplicity, the
SW fluid also has been chosen as a reference system
in many different theoretical models. However, as we
pointed out in our previous work [1], in spite of its
importance, no accurate equation of state for the SW
fluids with variable well widths has been developed
so far. In this paper, we continue the study initiated
in our previous work which dealt with �¼ 1.5, 2.0,
and 3.0 [1], and present new computer simulations
and a new global, crossover equation of state for SW
fluids with 1.1� �� 2.1. We proceed as follows: In
section 2, we provide the details for our new
molecular dynamics simulations. In section 3, we
describe a classical Helmholtz free energy for SW
fluids, and in section 4 we describe its crossover
formulation. A comparison of the new crossover EOS
with simulation results for thermodynamic properties
and surface tension is presented in section 5.
Examples of using the CR EOS for solid–liquid
equilibria (SLE) calculations and obtained results are
discussed in section 6.*Corresponding author. Email: skiselev@mines.edu
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2. Simulations details and results

Molecular dynamics simulations were performed in the

microcanonical (NVE) ensemble for 1–3 ns of simulated

time. Packing fractions of 0.2 or less were simulated for

3 ns and higher packing fractions were simulated for

1 ns. Estimating the simulated time at each temperature

requires assumptions about the mass and energy of the

model potentials. The mass was taken as 16 amu and the

values of "/kB were taken as 312, 288, 266, 247, 194, 146,

106, 73, 73, and 73K, for �¼ 1.1, 1.15, 1.20, 1.25, 1.375,

1.5, 1.75, 1.9, 2.0, and 2.1, respectively. Simulations for

a given potential model along a given isochore were

initialized with FCC cells in accordance with the number

of atoms (N) simulated in each system. Subsequent

simulations along the same isochore were initialized

from the final configuration of the preceding simulation

with velocities rescaled to reduce the temperature. In our

new simulations, the system size was set at 500 molecules

in every case, except that additional simulations were

performed with 2048 molecules at near critica packing

fractions for �¼ 1.25 and 1.375. Packing fractions

generally ranged from 0.05 to 0.45 except for the cases

of �¼ 1.9 and 2.1, where they stop at y¼ 0.30. The heat

capacity of the system was estimated by regressing the

values of internal energy Ur with a third-order poly-

nomial and computing the derivative. Note that the

fluctuations in compressibility factor were relatively

small compared to fluctuations in temperature or

internal energy. This happens because higher local

temperatures induce higher local pressures. Since the

pressure is in the numerator of the compressibility factor

and temperature is in the denominator, their fluctua-

tions tend to cancel. Our simulation results along the

near critical isochores in SW fluids with �¼ 1.25, 1.375,

1.75, and 2.1 with are given in the appendix. The

complete set of the simulation data is available from the

authors upon request.

3. Classical free energy

The classical residual Helmholtz free energy of square-

well fluids can be represented as a sum of the repulsive

hard-sphere contribution AHS and a contribution from

the attractive interactions Aatt [1]

AresðT, vÞ ¼ AHSðT, vÞ þ AattðT, vÞ ð2Þ

where for AHS we use the Carnahan-Starling EOS [2],
which accurately represents the thermodynamic proper-

ties of HS fluids at high densities and also gives the

exact HS second and third virial coefficients in the

low-density limit. For the attractive part Aatt we use the
semi-empirical expression proposed in our previous
work [1]

Aatt

NkBT
¼ �A0 lnð1þ A1�þ A2�

2 þ A3�
3Þ ð3Þ

where N is the number of the particles in the system,
kB is the Boltzmann constant, and �¼ exp["/(kBT)]� 1,
and the functions A0, A1, A2, and A3 are given by Pade
approximants [1]

A0 ¼ a
ð0Þ
0 þ a

ð2Þ
0 y2 þ a

ð3Þ
0 y3 þ a

ð5Þ
0 y5

1þ b
ð2Þ
0 y2

ð4Þ

A1 ¼ 1

A0

a
ð1Þ
1 y

1þ b
ð1Þ
1 yþ b

ð2Þ
1 y2 þ b

ð3Þ
1 y3

" #
ð5Þ

A2 ¼ a
ð2Þ
2 y2 þ a

ð3Þ
2 y3

1þ b
ð1Þ
2 yþ b

ð2Þ
2 y2 þ b

ð3Þ
2 y3

ð6Þ

A3 ¼ a
ð2Þ
3 y2 þ a

ð3Þ
3 y3

1þ b
ð1Þ
3 yþ b

ð2Þ
3 y2 þ b

ð3Þ
3 y3

ð7Þ

where y¼���3/6 is the packing fraction of the spheres,
�¼N/V¼ 1/v is the number density of spheres. For the
coefficients a

ð1Þ
1 , b

ð1Þ
1 , a

ð2Þ
2 , and a

ð2Þ
3 we use the same

relations as obtained earlier by Kiselev et al. [1]

a
ð1Þ
1 ¼ 4ð�3 � 1Þ, ð8Þ

b
ð1Þ
1 ¼ 5

4

f1ð�Þ
ð�3 � 1Þ , ð9Þ

a
ð2Þ
2 ¼ 1

a
ð0Þ
0

8ð�3 � 1Þ þ 1

a
ð0Þ
0

5f2ð�Þ
" #

, ð10Þ

a
ð2Þ
3 ¼ 1

a
ð0Þ
0

5f3ð�Þ, ð11Þ

where the functions fi(�) are given by

f1ð�Þ ¼

0, for � � 1

1

5
ð�6 � 18�4 þ 32�3 � 15Þ, for 1<� � 2

17

5
, for 2<�

8>>>>><
>>>>>:

ð12Þ
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f2ð�Þ ¼

0, for � � 1

2

5
ð�6 � 18�4 þ 16�3 � 9�2 � 8Þ, for 1<� � 2

1

5
ð�32�3 þ 18�2 þ 48Þ, for 2<�

8>>>><
>>>>:

ð13Þ

f3ð�Þ ¼

0, for � � 1

6

5
ð�2 � 1Þ3, for 1<� � 2

1

5
ð5�6 � 32�3 þ 18�2 þ 26Þ, for 2<�:

8>>>><
>>>>:

ð14Þ

This formulation provides a condition that in the limit

of low densities equation (3) exactly reproduces Kihara’s

analytical expressions [3] for the second and third virial

coefficients for the square-well fluids

B2ðTÞ ¼ BHS
2 ½1� ð�3 � 1Þ�� ð15Þ

B3ðTÞ ¼ BHS
3 ½1� f1ð�Þ�� f2ð�Þ�2 � f3ð�Þ�3�: ð16Þ

The coefficients b
ð2Þ
1 and b

ð3Þ
1 in equation (5) determine

the behavior of the residual internal energy Ur in the SW

fluids, or, equivalently, the coefficient A0
1 ¼ A0A1 in the

limit �� ¼ "/kBT! 0 [1]. Therefore, the coefficients b
ð2Þ
1

and b
ð3Þ
1 can be found from a fit of equations (2)–(5) to

the simulation data. In this work, we employ the same

expressions for the coefficients b
ð2Þ
1 and b

ð3Þ
1 as in our

previous work:

b
ðiÞ
1 ¼ b

ðiÞ
1, 0 þ

X4
k¼1

b
ðiÞ
1, k��k, i ¼ 2 and 3 ð17Þ

where the expansion parameter is given by

�� ¼ �� 1:5, for � � 2

�� 3:0, for � � 2

�
ð18Þ

and the coefficients b
ðiÞ
1, k for each region are listed in

table 1.

4. Crossover equation of state

To obtain a crossover formulation of the classical free

energy equation (2), we will follow the phenomenologi-

cal procedure originally developed by Kiselev [4] as

generalized recently by Kiselev and Ely [5]. This general

approach has been successfully applied for the cubic
[4–6, 17, 18], SAFT [19–24], and SAFT-BACK [25]
equations of state. Also, in our previous work [1], we
used this approach to develop a high accuracy semi-
empirical EOS for square-well fluids with �¼ 1.5, 2.0,
and 3.0. An advantage of this approach as compared to
the more rigorous ‘‘microscopic’’ hierarchical reference
theory (HRT) [7–11] and the ‘‘globalized’’ renormaliza-
tion-group (RG) procedure [12–16] is that the crossover
expression for the Helmholtz free energy can be written
in a closed analytical form that allows analytical
formulation of all derivatives.

In this procedure, we first express the dimensionless
Helmholtz free energy �AðT, vÞ ¼ AðT, vÞ=NkBT in the
form

�AðT, vÞ ¼ � �Að�T,�vÞ þ �AbgðT, vÞ ð19Þ

where the critical part of the Helmholtz free energy is

� �Að�T,�vÞ ¼ � �Aresð�T,�vÞ �� �Aresð�T, 0Þ
� lnð�vþ 1Þ þ�v �P0ð�TÞ ð20Þ

and the background contribution is given by

�AbgðT, vÞ ¼ ��v �P0ðTÞ þ �Ares
0 ðTÞ þ �AidðTÞ: ð21Þ

In equations (19)–(21), �T¼T/T0c� 1 and
�v¼ v/v0c� 1 are dimensionless distances from the
classical critical temperature T0c and molar volume v0c,
respectively, �P0ðTÞ ¼ PðT, v0cÞv0c=RT is the dimension-
less pressure, �Ares

0 ðTÞ ¼ �AresðT, v0cÞ is the dimensionless
residual part of the Helmholtz energy along the critical
isochore v¼ v0c, and �AidðTÞ is the dimensionless
temperature-dependent ideal-gas contribution.

Table 1. Coefficients b
ðiÞ
1, k in equation (17).

Coefficient �� 2 �4 2

bð2Þ1, 0 1.5093018500 0.4697011630

b
ð2Þ
1, 1 0.9673047240 �4.604133228

bð2Þ1, 2 6.3087619550 �26.67612171

b
ð2Þ
1, 3 �0.709455318 �43.58375157

bð2Þ1, 4 �20.27785515 �19.76736755

b
ð3Þ
1, 0 0.5077587980 �0.528853757

b
ð3Þ
1, 1 �0.771042541 5.1546638240

bð3Þ1, 2 �20.76688587 40.508756730

b
ð3Þ
1, 3 �12.04372937 72.750520860

bð3Þ1, 4 61.302467810 35.181735840
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In the next step, we replace the classical values of �T
and �v in the critical part � �Að�T,�vÞ with the
renormalized values

�� ¼ �Y��=2�1 þ ð1þ �Þ��cY
2ð2��Þ=3�1 ð22Þ

�’ ¼ ’Yð��2�Þ=4�1 þ ð1þ ’Þ�vcY
ð2��Þ=2�1 ð23Þ

where �¼ 0.11, �¼ 0.325, �¼ 2� 2���¼ 1.24, and
�1¼ 0.51 are universal non-classical critical exponents
[26], �¼T/Tc� 1 is a dimensionless deviation of the
temperature from the real critical temperature Tc, ’¼
v/vc� 1 is a dimensionless deviation of the molar volume
from the real critical molar volume vc, ��c¼ (Tc�T0c)/
T0c� 1 and �vc¼ (vc� v0c)/v0c� 1 are dimensionless
shifts of the critical temperature and volume, respec-
tively, which can be represented as functions of the
Ginzburg number Gi

��c ¼ � 	�Gi

1þ Gi
, �vc ¼ � 	’Gi

1þ Gi
ð24Þ

where the coefficients 	� and 	’ are supposed to be
system-independent parameters. In our previous study,
we found [1], that parameter 	� in equation (24) for SW
fluid with �¼ 1.5 is extremely small (	�’ 10�3� 1) and
existing simulation data do not allow us to determine it
with a higher accuracy. Therefore, in this work we set
	�¼ 0 (or ��c¼ 0 in equation (22)), thus implementing a
condition Tc¼T0c. The coefficient 	’ is considered to be
a �-independent parameter.
In equations (22) and (23), Y(q) denotes a crossover

function, for which we use the phenomenological
expression used previously [1]

YðqÞ ¼ qð1þ qÞ
1þ qþ q2

� ��1

, q ¼ r

Gi
: ð25Þ

In this work, the renormalized distance to the critical
point r is determined from the recently developed
analytical sine-model (ANS) equation [27]

r¼
4ððb=m0Þj’jÞ1=�þ2�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4ððb=m0Þj’jÞ1=�þ2��2þ12�2

q
6

,

ð26Þ

where the coefficients m0 and v1 are the system-
dependent parameters, and b2¼ (�� 2�)/[�(1� 2�)]ffi
1.359 is a universal linear-model parameter [28, 29].
Since the ANS model does not require a numerical
solution of a transcendental equation for the

parameter q, this modification makes calculation of all

derivatives of the crossover function Y(q) with respect to

the temperature and density much simpler than in the

EOS developed earlier [1]. Otherwise, the crossover

models presented here and in our previous work [1] are

physically equivalent.
In order to complete the transformation, one needs to

add in equation (19) the kernel term

Kð�Þ ¼ 1

2
a20

�

1þ �

� �2

ðY��=�1 � 1Þ ð27Þ

which provides the correct scaling behavior of the
isochoric heat capacity Cv ¼ �Tð@2A=@T2Þv¼vc

/
a20 �j j�� along the critical isochore v¼ vc asymptotically

close to the critical point at j�j�Gi [1]. Finally, the

crossover expression for the Helmholtz free energy can
be written in the form [1]

�AðT, vÞ ¼ �Aresð ��, �’Þ � �Aresð ��, 0Þ � lnð �’þ 1Þ þ �’ �P0ð ��, 0Þ

��v �P0ðTÞ þ �Ares
0 ðTÞ þ �AidðTÞ � Kð�Þ:

ð28Þ

Equations (19)–(28), together with equations (2)–(7)
for the classical Helmholtz free energy, completely

determine the crossover formulation for the

Helmholtz free-energy in SW fluids. The crossover

equations for the pressure P(T, v)¼�(@A/@v)T and the
internal energy U(T, v)¼AþTS¼AþT(@A/@T)v can be

obtained from the crossover expression (28) by differ-

entiation with respect to volume and temperature,

respectively.

5. Comparisons with simulation data

5.1. Thermodynamic properties

In order to develop a crossover EOS for the SW fluid

of interest one needs to specify the original classical

parameters a
ðiÞ
j and b

ðiÞ
j in equations (4)–(7), as

well the crossover parameters a20, Gi, m0 and v1 in
equations (24)–(28). In this work, in developing a

crossover EOS for SW fluids with varying well width

(similar to the parameters b
ðiÞ
1 ði ¼ 2, 3Þ) the classical

parameters a
ð0Þ
0 , a

ð2Þ
0 , a

ð3Þ
0 , a

ð5Þ
0 , a

ð3Þ
2 , a

ð3Þ
3 , b

ð2Þ
0 , b

ð2Þ
2 , and b

ð3Þ
2

(denoted as cm) have been expressed by truncated Taylor

expansions

cmð�Þ ¼ cm, 0 þ
X4
k¼1

cm, k��k ð29Þ
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where (unlike equation (18)) ��¼ �� 1.375. The
coefficient v1 in equation (26) appears to be small and
statistically irrelevant (v1¼ 7.7� 10�8	 2.2� 10�6). For
all SW fluids we have set 	’¼ 0.2, while the amplitude
a20 in the kernel term equation (27), the inverse
Ginzburg number g¼Gi�1, and coefficients m0,
designed as ki, have been expressed as simple linear
functions of ��

ki ¼ ki, 0 þ ki, 1��: ð30Þ

The coefficients cm,n and ki,j in equations (29) and (30)
have been found from a fit of equation (28) to the new
MD results for SW fluids obtained in this work, as well
the molecular dynamic (MD) and Monte-Carlo (MC)
simulations results obtained earlier [1, 31]. The numer-
ical values of the coefficients cm,n and ki,j ( j¼ 0, 1) for
fluids with 1.1� �� 2.1 are listed in tables 2 and 3. The
results of our calculations for various thermodynamic
properties are shown in figures 1–5. As one can see, the
only systematic deviations between the MD simulation
Ur� �� and Z� �� data in the case where
�¼ 1.75 at y4 0.45 (or y4 3yc) and �� 5 1.0 (or
T�
c<0:556). As discussed below, one of the possible

explanations for these deviations is that these points
actually belong to the solid, rather than liquid phase.
Otherwise, excellent agreement between simulation data
and the crossover EOS for both the one and two-phase
regions is observed for all SW fluids with 1.25� �� 2.1.
In the entire density and temperature regions shown in
figures 1–3, the crossover EOS reproduces the compres-
sibility factor with an average absolute deviation (AAD)
of about 1.25% and residual internal energy with an
AAD of about 0.85%.
As we mentioned above, the kernel term K(�) was

introduced in equation (28) to provide a correct

asymptotic scaling behavior of the isochoric heat
capacity in the critical region. In figures 6 and 7, we
show comparisons between the MD and MC CV-data
for the SW fluids with �¼ 1.5 and 2.0 and the values of
the isochoric heat capacity calculated with the CR EOS.
For the SW fluid with �¼ 1.5 and N¼ 2048 (the biggest
system) excellent agreement is observed between the MC
results and the predicted values over the entire range
05�� 5 0.8 (or T� � 1:025T�

c ). For the SW fluid with
�¼ 2.0, only qualitative agreement between the MD
simulations and calculated values is observed. As we
discussed in our previous work [1], asymptotically close
to the critical point the MD simulations are not very
reliable, while the CR EOS at j�j! 0 does reproduce
the theoretically well established scaling behavior
CV/ j�j�/.

Because of finite size effects, the determination of the
critical parameters of SW from the VLE MD and MC
simulations is a challenging task [32, 33]. Therefore, it is
interesting to compare the critical parameters obtained
for SW fluids with 1.1� �� 2.1 by different methods.
The values of the critical parameters T�

c , yc, and P�
c , the

critical compressibility Zc¼Pc/R�cTc, and acentric
factor ! ¼ � log ðPS=PcÞjT¼0:7Tc

� 1 (where PS is a
vapor pressure) as functions of the well-width �
calculated with the CR EOS and obtained by other

Table 2. Coefficients cm,n in equation (29) for the classical parameters a
ð jÞ
i and b

ð jÞ
i in the attractive part of the Helmholtz free

energy equation (3) for the square-well fluids with 1.1� �� 2.1.

cm cm,0 cm,1 cm,2 cm,3 cm,4

a
ð0Þ
0 1.433616Eþ00 1.708540Eþ00 �9.488607E-01 5.980393E-02 0

a
ð2Þ
0 �4.378564Eþ00 �2.577181Eþ01 3.511119Eþ01 1.983882Eþ02 0

a
ð3Þ
0 2.394942Eþ01 1.411165Eþ02 3.864338Eþ01 �4.340290Eþ02 2.445365Eþ02

að5Þ0 �5.313752Eþ01 �2.659828Eþ02 9.110143Eþ00 1.282316Eþ03 �8.151838Eþ01

a
ð3Þ
2 2.408875Eþ01 1.202626Eþ02 1.407579Eþ02 �1.106967Eþ01 0

að3Þ3 �2.909988E-01 �1.675850Eþ01 �6.948178Eþ01 �6.297907Eþ01 0

b
ð2Þ
0 �6.339525E-01 9.255354Eþ00 2.411173Eþ01 3.283827Eþ01 0

bð2Þ2 �6.101644Eþ00 �4.546820Eþ01 5.103082Eþ01 6.825992Eþ01 �7.290768Eþ00

b
ð3Þ
2 2.477978Eþ01 1.362488Eþ02 �9.406375Eþ01 �1.382791Eþ02 �1.022288Eþ02

Table 3. Coefficients ki,j in equation (30) for the parameters
a20, g, m0, and 	’ for the square-well fluids with 1.1� �� 2.1.

ki ki,0 ki,1

a20 2.875229Eþ00 �9.327260E-01
g 1.395759Eþ00 6.680527E-01

m0 8.731365E-01 �2.207693E-03
	’ 2.0E-01 0
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Figure 1. Compressibility factor Z along various isochores as functions of the inverse temperature �� ¼ 1/T� or square-well fluids
with �¼ 1.25, 1.375, 1.75, 2.0. The symbols correspond to the molecular dynamics results and the lines represent the values
calculated with the crossover EOS.
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methods are shown in figures 8 and 9. The little

‘‘humps’’ observed at �
 1.4 for Pc and at �
 1.6 for

Zc are the result of the chosen parameterization and, in

principle, can be smoothed by adding the extra terms in

equations (29) and (30). However, even in the present

form a reasonably good agreement between the CR EOS

predictions, simulation results, and values obtained

by other authors is observed. The plus symbols in

figure 9 correspond to the values of Zc in some real

fluids considered earlier in our previous works [5, 34]. As

one can see, the real fluids in general do not match a

Zc�! path obtained for the SW fluids. Except for the

noble gases argon (Zc¼ 0.292; !¼�0.004) and krypton

(Zc¼ 0.288; !¼�0.002), and also light and heavy water

(Zcffi 0.229; !ffi 0.344), experimental values lie far from

the calculated curve Zc(!). For krypton and water, the

deviations of the saturated liquid densities calculated

with the CR EOS from experimental data are very large
(see figure 10). A better matching the binodal and vapor
pressure curve of krypton gives a value of �¼ 1.750
(see dotted-dashed lines in figure 10), but with smaller
Zc¼ 0.262 compared to the experimental value of 0.288.
This means that SW monomers may not be a good
choice as a reference system in the thermodynamic
perturbation theory (TPT) equation of state for real
fluids.

5.2. Surface tension

The crossover EOS not only yields an excellent
description of one-phase thermodynamic and VLE
properties for all SW fluids with 1.25� �� 2.1, but it
can be further extended into the metastable and unstable
regions, thus reproducing the continuous vdW loops.
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Figure 3. Compressibility factor Z (top) and residual internal energy Ur (bottom) along various isochors as functions of the inverse
temperature �� ¼ 1/T� for square-well fluids with �¼ 1.90 (left) and 2.10 (right). The symbols correspond to the molecular dynamic
results and the lines represent the values calculated with the crossover EOS.
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This allows us to apply it, in combination with the
density-functional theory (DFT), to surface tension
calculations. The crossover DFT formulation for the
surface tension on the planar liquid-vapor interface is
given by [5]

� ¼ c1=20

Z �L

�V

½�Âð�Þ�1=2d� ð31Þ

where �Âð�Þ ¼ �RT� �AðT, �Þ ¼ ÂbðT, �Þ � �
ðT, �V,LÞ
is an excess part of the Helmholtz free energy density
calculated with the crossover EOS (28), and

(T, �V,L)¼ (@�A/@�)T is a chemical potential of the
bulk fluid along the saturated curve �¼ �V,L(T). The
temperature dependence appears in the crossover DFT
model (31) through the excess free-energy density �Âð�Þ
and the parameter c0. In our previous study we showed
[5] that for simple fluids, a good estimate for this
parameter is c0 ffi kBTc�

1=3
c . Following that study, for

square-well fluids we adopt the temperature-
independent parameter c0 in the form

c0 ¼ ð1� �0Þ2kBTc�
1=3
c , ð32Þ

where parameter �05 1. We found, that for the SW

fluids with 1.255 �5 2.1 a good approximation for this

parameter is

�0 ¼ 0:53� 0:2� ð33Þ

The results of our calculations in comparison with

the MC simulation results for the surface tension

in square-well fluids with �¼ 1.5, 1.75 and 2.0 obtained

by Singh et al. [35] are shown in figure 11.

Again, excellent agreement between calculated

values and simulation data for all SW fluids is observed.

Except for a few data points where j�j5 0.05, the CR

EOS/DFT model reproduces the MC simulation

results for the surface tension [35] with an AAD of

about 1–2%.

6. Discussion

SW systems capture the essential features of real

materials while remaining simple enough to treat using

analytic and simulation methods. However, most
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Figure 4. Coexistence curve of the square-well fluid with �¼ 2.0. The symbols correspond to the computer simulation
results [31, 35, 44–46], the second-order thermodynamic perturbation theory TPT2 (ants), and the global renormalization method
calculations [16] (empty squares). The crosses mark the critical point, and the curves represent the values calculated with the
crossover EOS (solid curves) and with the CR EOS-02 [1] (dotted-dashed curves).
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previous studies of SW fluids have been concentrated
on the one-phase PVT and VLE properties, and no
systematic study of the solid–liquid equilibrium (SLE) in
SW fluids has been performed thus far. Since SLE
calculations require an accurate EOS for representation
of the liquid densities, �(P,T), in a wide interval
pressures and temperatures, a self-consistent
Helmholtz energy model should be used for these
calculations. In this work, we presented new extensive
MD simulations and developed a global equations of
state for SW fluids with 1.1� �� 2.1, which far from the
critical point, at j�j � 0.05, represents all reliable MD
and MC simulations with a high accuracy and in the
critical region, at j�j! 0, reproduces all theoretically
well-established scaling laws. Therefore, it is also
interesting to apply this EOS to SLE calculations.

Our preliminary results for the global phase diagram
for SW fluids with �¼ 1.5, 2.0, and �¼ 1.75 calculated
with the CR EOS and Lennard–Jones and Devonshire
(LJD) cell model [36] are shown in figures 12 and 13,
respectively. The squares in figures 12 and 13 represent
the SLE densities calculated with the LJD cell model [36]
for both, liquid and solid phases, while the curves
correspond to the values calculated with the crossover
EOS for the liquid phase and the LJD cell model for
the solid phase. Since the zero level of the Helmholtz
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Figure 5. Coexistence curve of the square-well fluids with
�¼ 1.25� 2.1. The symbols correspond to the simulation
results by Elliott and Hu [31] (filled circles), by Singh et al. [35]
(triangles down), by del Rio et al. [46] (triangles up), by
Orkoulas and Panagiotopoulos [33] (dimonds), and the global
renormalization method calculations [16] (empty squares). The
curves represent the values of the critical packing fraction
(dotted-dashed curves) and VLE data (solid curves) calculated
with the crossover EOS.
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free-energy in the crossover model, fCRo , and in the LJD
cell model [36], fLJDo , can be chosen arbitrarily and in
general do not coincide, the calculations have been
performed with a zero parameter f0 ¼ fLJDo � fCRo and
f0¼ 1.76. As one can see, in the latter case the CR
EOS/LJD model reproduces the MD simulations for
SW fluid with �¼ 1.5 reported by Young and Alder [37],
but with a stable hexagonal close-packed (hcp) phase up
to T� ¼ 2.5. No stable face-centered cubic (fcc) phase
that was predicted by Young and Alder [37] at T� 4 1.2
is observed.

For the SW fluid with �¼ 1.75, the stable hcp phase is
observed only where T� 4 2.4, and at lower tempera-
tures the stable body-centered cubic (bcc) phase is
observed. The solid state region, which corresponds to
our results presented in figure 12, is marked in figures 1
and 2 by shaded area. In accordance with these
calculations, all MD simulations for SW fluid with
�¼ 1.75 with y4 0.45 and �� 5 1.0, as we pointed it out
in the previous section, do belong to the solid phase
region.

For the SW fluid with �¼ 2.0, the SLE calculations
are inconsistent with MD VLE simulation data reported
by Elliott and Hu [38]. In both cases, with zero and non-
zero f0, the CREOS/LJD model predicts a triple point
temperature (Ttr¼ 2.5 and 2.25, respectively), which is
higher than a minimum temperature reported in
Ref. [38] (see also shaded area in figures 2 and 3). For
SW fluids with �5 1.5, the discrepancy between MD
VLE simulations and CR EOS/LJD model SLE
calculations is even more dramatic. The global phase
diagram for SW fluid with �¼ 1.375 calculated with the
CR EOS/LJD model with f0¼ 0 is shown in figure 14.
As one can see, according to these calculations, no liquid
states exist in this system. A similar situation arises for
�¼ 1.25.

We should note that in principle this result is not fully
unexpected. Similar results have been obtained earlier
for the short-range attractive Yukawa [39] and empirical
Girifalco [40] potentials. However, for SW fluids these
phase diagrams have not been observed before. We are
not aware of any representative MD or MC simulations,
or any theoretically self consistent model for the VLE
and SLE properties in this system, and cannot say for
sure what causes this discrepancy. If it is an artifact
of the discontinuous potential in the MD simulations
[37, 38], or a result of an ‘‘illegal’’ combination of the
CR EOS with the LJD cell model [36]. Note, however,
that the MD simulations for �5 1.5 appear to be
unperturbed by the possible presence of a more stable
solid phase, making it possible to characterize the global
VLE for small �. We may only speculate that these
consistent VLE result from the entire VLE binodal being
inside the metastable region (as opposed to being
crossed at y¼ 0.45 for �¼ 1.75), or from a kinetic
resistance that develops for small �. In order to answer
these questions, a more detailed theoretical study and
new computer simulations for SW fluids with �5 1.5
are needed. It is also interesting to compare the present
CREOS/LJD predictions for SW fluids with the
SLE phase diagram calculated with the CR EOS for
liquid and thermodynamic perturbation theory [41–43]
for the solid phase. Work in this direction is now in
progress, and the results will be reported in future
publications.
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Appendix. MD simulation results along the near critical isochores in SW fluids with j^ 1.25, 1.375, 1.75, and 2.1.

�¼ 1.25 N¼ 2048 y¼ 0.220 �¼ 1.75 N¼ 500 y¼ 0.1404
0.07566 �1.33161 2.52244 0.06745 �2.76847 1.62580

0.16165 �1.37867 2.36487 0.15067 �2.85093 1.38534
0.18209 �1.39178 2.32618 0.18356 �2.88530 1.29127
0.20865 �1.40059 2.27858 0.22201 �2.92247 1.18198
0.25165 �1.43014 2.19688 0.27898 �2.98893 1.01640

0.30502 �1.46234 2.09808 0.36777 �3.11244 0.76577
0.38569 �1.51042 1.94552 0.41460 �3.18129 0.63531
0.50969 �1.58967 1.71349 0.46185 �3.28838 0.50229

0.62433 �1.66510 1.49901 0.49259 �3.36049 0.42519
0.71019 �1.73070 1.33834 0.50979 �3.40522 0.37908
0.80339 �1.80349 1.16495 0.52076 �3.45248 0.34479

0.91000 �1.89582 0.96676 0.53066 �3.50468 0.32354
1.06205 �2.05193 0.68774 0.53546 �3.52722 0.31130
1.12334 �2.13223 0.57105 0.54521 �3.55567 0.28672

1.17970 �2.21446 0.47430 0.55468 �3.61610 0.26524
1.20991 �2.25985 0.41961 0.56335 �3.68485 0.24701
1.23509 �2.30836 0.37824 0.57297 �3.78259 0.22247
1.25960 �2.36193 0.33387 0.58143 �3.87927 0.20354

1.27489 �2.39404 0.31080 0.59752 �4.02653 0.16434
1.29709 �2.44815 0.26808 0.60368 �4.19475 0.15264
1.31036 �2.49998 0.25071 0.61236 �4.38069 0.13758

1.32655 �2.54900 0.22092 0.62908 �4.55666 0.11008
1.34253 �2.65238 0.19901 0.64320 �4.77286 0.08736
1.36270 �2.71788 0.17429 0.66081 �4.97784 0.05877

1.37879 �2.83690 0.14649 0.68484 �5.23353 0.02813
1.40075 �2.97523 0.12743
1.43067 �3.15609 0.10134
1.46278 �3.36850 0.06367

1.50936 �3.59822 0.02950

�¼ 1.375 N¼ 500 y¼ 0.200 �¼ 2.10 N¼ 2048 y¼ 0.140
0.09541 �1.80410 2.20384 0.01008 �4.85378 1.77053
0.21311 �1.88171 1.93916 0.07960 �4.94890 1.42685
0.24336 �1.90215 1.87227 0.15814 �5.07729 1.03991

0.27585 �1.92325 1.79796 0.29050 �5.45521 0.40187
0.33543 �1.96007 1.66451 0.01003 �5.56182 1.93851
0.40510 �2.01408 1.51168 0.07967 �5.65503 1.54581

0.50542 �2.08835 1.29113 0.15807 �5.77663 1.10393
0.65465 �2.22429 0.96704 0.29141 �6.12422 0.37344
0.73795 �2.30162 0.79145 0.00998 �6.26725 2.12734

0.82536 �2.40838 0.60515 0.07964 �6.36340 1.68516
0.86999 �2.48641 0.50334 0.15788 �6.47363 1.19000
0.91808 �2.56277 0.40710 0.29407 �6.79245 0.34878
0.96546 �2.62524 0.32853 0.00994 �6.97156 2.33920

0.97272 �2.66085 0.30681 0.07943 �7.06190 1.85011
0.97689 �2.66122 0.30111 0.15866 �7.18088 1.29238
0.99207 �2.70889 0.27210 0.29595 �7.45764 0.34403
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