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Collision integrals and equilibrium pressure and dielectric second virial 
coefficients are calculated for a non-spherical m-6-8 model potential energy 
function. The results are applied in a correlation of the physical properties 
of carbon dioxide. It is shown that the inclusion of non-spherical contr ibu-  
t ions in the calculation of the collision integrals has a small but significant 
effect  wi th  respect  to the accurate representation of data. The Mason- 
Monchick approximation that non-spherical molecules collide with fixed 
relative orientations is briefly discussed. Agreement between calculated 
and experimental values for the viscosity coefficient, the thermal conduc- 
tivity coefficient, the second virial coefficients and the isotopic thermal 
diffusion factor is generally satisfactory. 

1. INTRODUCTION 

In previous publications [1, 2] the m-6-8 model potential function [3] was 
shown to be of practical value in correlating various thermophysical properties 
of monatomic fluids. More recently [4, 5] the application of this potential 
has been extended to axially symmetric quadrupolar molecules, in particular, 
nitrogen, oxygen, carbon dioxide and fluorine. In this later work a potential 
of the form 

= if(spherical) + ~(permanent) + r (1) 

was used to calculate equilibrium properties (pressure and dielectric virial 
coefficients). Transport properties were calculated by using only the spherical 
term in equation (1) [the m-6-8 potential function]. A feature of the work 
was that the m-6-8 spherical potential parameters, determined by fitting wide 
temperature range viscosity data, were used in the calculation of both transport 
and equilibrium properties. Also, the molecular parameters appearing in the 
anisotropic terms (e.g. quadrupole moments and molecular polarizabilities) 
were not determined from a fit of the potential to data, but  were taken from 
independent experimental sources. The results demonstrated that a satisfactory 
representation of the experimental data could be achieved, but it was apparent 
that systematic differences between experimental second virial coefficients and 
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those calculated using equation (1) existed. The  preliminary conclusion drawn 
was that the effect of anisotropic interactions on the collision integrals should 
be re-investigated. 

In this paper the application of the model potential of equation (1) to carbon 
dioxide is re-examined. In particular, the contribution of the non-spherical 
terms to the Chapman-Enskog collision integrals (and hence to the viscosity) 
is investigated. The  results are demonstrated graphically by comparing the 
calculations with experimental data for several macroscopic properties:  the 
pressure and dielectric second virial coefficients, the viscosity and thermal 
conductivity coefficients and the isotopic thermal diffusion factQr. Carbon 
dioxide was chosen for this study owing to the relative size of its quadrupole 
moment  and abundance of experimental data, but the results are qualitatively 
similar for other axially symmetric quadrupolar fluids. 

2. KINETIC THEORY OF POLYATOMIC MOLECULES 

For spherically symmetric molecules the calculation of transport properties 
is straightforward: the Chapman-Enskog solution of the Boltzmann equation 
provides a direct connection between the intermolecular potential and the 
dilute gas transport coefficients via the collision integrals, s [6]. For 
non-spherical molecules, however, the theory is complicated by anisotropic 
forces associated with the internal structure of the molecules. In particular, 
the presence of internal structure introduces inelastic collisions (usually transla- 
tional-rotational energy transfers) and the required scattering cross-section 
calculations become very complicated. To circumvent these difficulties, one 
of three possible approximations is normally used. The  first of these is that 
used in our previous studies [4, 5] and is to simply neglect the anisotropic forces 
in the cross-section calculations in the hope that the effects are small. The  
second method which has been used extensively [7-10] is to ' pre-average ' the 
anisotropic potential to obtain an effective spherically symmetric potential 
with temperature-dependent parameters. Although this approximation may 
be valid in the limit of large impact parameters or low relative velocities [9-12] 
it is difficult to draw any significant conclusions about the potential function 
thus derived or the results obtained from its use [7]. 

The  collision integral calculations reported herein are based on the third 
approach to the problem which has been discussed extensively by Mason and 
Monchick and their co-workers [13-17]. The  model proposed by these authors 
is based on the formal theory of Wang Chang and Uhlenbeck [18] and Taxman 
[19] and comes from solving the Boltzmann equation under certain approxima- 
tions. Using this approach, one finds the following expressions for the viscosity 
and thermal condUctivity coefficients : 

"q = ~ ~.o2<t)(~. 2)*> (2) 

and 

where 

A = _  _ _  
2 Cv int [ 1 +  2 (5raCy int 

(3) 
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In- these  expressions m is the mass of a molecule, T the absolute temperature, 
p the density, Z the rotational collision number (approximately the average 
number of collisions required to transfer one quantum of energy from the 
translational to rotational mode) and Cv int is the specific heat per unit mass at 
constant volume due to internal degrees of freedom. The term Din t accounts 
for an internal ' diffusion ' of energy and is given by 

(~.mk T)l  l 2 
pDint - ~ rra~<~int (1, 1)*>" (4) 

The <~(z.s)*> are complicated functions of temperature and the internal 
co-ordinates and energies of the colliding molecules. Detailed expressions for 
these have been given in the literature [14, 15]. 

Although these expressions are exact under the approximations of the Wang 
Chang-Uhlenbeck theory, several severe approximations must be made to use 
them in practical applications. These assumptions are 

(1) The trajectories of colliding molecules are, on the average, insensitive 
to the details of an inelastic collision. 

(2) The internal diffusion coefficient pDin t may be replaced by a diffusion 
coefficient for ordinary diffusion, pDil. 

(3) Terms of 0(1/Z ~) and higher may be neglected in the thermal conduc- 
tivity. 

(4) The molecules collide with fixed relative orientations. 

It is difficult to assess quantitatively what effect these assumptions have o'n 
the collision integral calculations but it seems likely that the fourth assumption 
(fixed orientations during collisions) places the greatest limitations on the model. 
For example, this assumption has been studied by Cross and Herschbach [20] 
for the case of an atom-diatom collision and has been shown to be inadequate. 
[The reason for this is that one is neglecting the angular torque which can give 
rise to out-of-plane scattering.] In spite of the limitations, it appears that the 
Mason-Monchick approach affords the best compromise between physical 
reality and practical utility at this time. 

We shall also present calculations of the isotopic thermal diffusion factor, 
%, even though an accurate expression for polyatomic molecules is not available. 
For these calculations, we use the monatomic gas expression with the collision 
integrals for polyatomic fluids <~(z. s)> in place of those for a monatomic gas : 

15(6C*- 5)(2A* + 5) 
%=  2A*(16A* - 12B'* + 55) [1 + 8], (5) 

where 
A@= <~-~ (2, $)*>/<~(1,1)*), 

B ' * -  5 <~~ (1' 2)> _ 4<~-~(1, 8)*> 
< ~-~ (1, 1)*> 

C@ = <~'~(1, 8)*>/<~-~ (1, 1)*> 

and 3 is a correction term involving further combinations of collision integrals. 
An expression for this term is given in reference [29]. 

2 o 2  
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Similarly, second-order corrections to the viscosity and self-diffusion 
coefficients have been calculated from the formulae 

3 (8<a(2,  3 r > _ 7 ) 2  
[~= 1 + T ~  \ <~(2, 2)*> 

(6C* - 5 )  2 
fD=IH 16A* + 40' 

which are again identical to those for monatomic gases with the ~(~, ~)* replaced 
by <~(l, ~)*). 

3. THE MODEL POTENTIAL 

The detailed form of the model potential (1) and the assumptions made in 
arriving at this model have been discussed in references [4] and [5]. Briefly, 
however, if the anisotropy in the repulsive and dispersive parts of the potential 
are neglected, one has 

(1) = ~m_6_8(II ' [)--I-~quad(F, ~O1, tO2)'-{-~ind(F , tO1, 032, D) ,  

where to i denotes the set of angles describing the orientation of molecule i 
with respect to some arbitrary space-fixed coordinate system, O is the dielectric 
displacement vector and r is a vector connecting the centres of mass of the two 
interacting molecules. The  spherical term 9~m_6_s([r]) is given by [1] 

~'-e-s([rl)=~ Lm-6 m - 6  - 7  , (6) 

where r-tr[, d=rmin/Cr with ~ and rmi n being defined by the conditions 
~m_e_s(o)=0 and ~min_6_s(rnn)=--c  respectively. The  parameters m and 7 
represent the ' hardness ' of the repulsive term and t h e '  strength ' of the inverse 
eighth attraction term, respectively. 

The  non-spherical portion of the potential consists of two terms ~bquaa and 
~ind which represent the potential energy between two permanent quadrupoles 
and the electric fields and dipoles induced in the system, respectively. These 
are given by [21] 

~qu&d = Q I  : V12 : Q2 
and 

-�89 QD. T2d-'. a,. (V-U12. Q2) 

- I ( D - U 2 t  �9 Q z ) .  (1 - a  z . Tz2) -z . ~2 .  ( D - U 2 1  : Q1), (7) 

where T, U and V are the dipole-dipole, dipole-quadrupole and quadrupole- 
quadrupole interaction tensors and =i and Qi are the molecular polarizability 
and quadrupole moment  tensors, respectively. 

Finally, in the calculation of the collision integrals, it is convenient to write 
out the anisotropic contribution to the potential in terms of the relative orienta- 
tions of the two molecules, given by (01, 02, 9b) [see reference [6]). In this case 
we find with D = 0, 

302 
quid =~-~r 5 [ 1 - 5  cos 2 0 1 - 5  c082 0 2 -  15 c082 01 c082 02 

+ 2(4 cos 01 cos 02-  sin 01 sin 02 cos 4) 2] (8) 
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and 

9&| [sin 4 0 t + sin 4 03 + 4 cos  4 0,  + 4 cos  4 02], (9)  
$ i n d = -  8r s 

where ~ is the mean molecular polarizability and | is the scalar quadrupole 
moment.  Note that we have only considered the first-order term in equation 
(7) and that  we have neglected the anisotropy in the polarizability. 

4. CALCULATIONS FOR CO 2 

4.1. Potential parameter selection 

The potential of equation (1) is considered to have only four parameters, 
m, 7, a (or train) and elk, all of which are associated with the spherical m-6-8 
potential function. The quadrupole moment,  molecular polarizability and 
polarizability anisotropy K were taken from independent  sources and are listed 
in table 1. 

m ~, lO*~ rmin /o  (c/k)/K 1 0 2 4 8 / c m  3 K 102e| 

eference [4] (a) 14 1-0 3.68 1"1048729 282-0 2"925 (b) 0.239 (c) 4"3 +0"2 (d) 
his work 11 0"5 3 .775  1"1259862 217-0 2"925 0-239 4"3 +0"2 

e.s.u, of polarizability, cm3.~1"11265 x 10 -16 j - i  C ~ m 2 ; e.s.u, of quadrupole moment~3"33564 
10 TM C m s. 
(a) Based on a fit to viscosity data assuming a spherically symmetric potential function. 
(b) LANVOLT, H. H., and BORNSTEIN, R., 1951, Zahlenwerte und Funktionen (Springer-Verlag). 
(c) BmDCE, N. J., and BUCKINCHAM, A. D., 1966, Proc. R. Soc., 295, 334. 
(d) BVCKINGHAM, A. D., DISCH, R. L., and DVNMVa, D. A., 1968, J. Am. chem. Soc., 90, 3104. 

Table 1. Model potential parameters for C02. 

A desirable method of determining potential parameters is to fit simul- 
taneously several macroscopic properties [22]. I t  was found, however, that a 
suitable correlation for COa could not be obtained by this procedure and it was 
decided, therefore, to select the potential parameters by fitting wide temperature 
range dilute gas viscosity data. Clearly, the parameters determined in this 
manner are dependent on the accuracy of the experimental viscosity data. The  
data used in  this work were taken from the following sources. Johnston and 
McCloskey [23], Michels, Botzen and Schuurman [24], Kestin et al. [25, 26] 
and Smith et al. [27, 28].  Based on an evaluation of these data and on our 
experience with the results from these sources for other non-polar fluids [29, 30], it 
was felt t h a t  the data are accurate to within + 2 per cent in the temperature 
range considered. 

The  spherical potential parameters were determined by the following pro- 
cedure : (1) initial estimates of m, y, a, and c/k were obtained by fitting experi- 
mental viscosity data in the temperature range 200-1600 K with viscosities 
calculated using only the spherical m-6-8 potential. [These are the parameters 
given in [4] and are listed for the sake of comparison in table 1] ; (2) new sets 
of collision integrals ( ~ t l .  s)) calculated with the full potential (m-6-8 + aniso- 
tropic terms) were obtained for m = 11, 12, 13, and 14 and for several values of y. 
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The upper limit of m= 14 and the values of Elk and o (which are required to 
reduce the quadrupole moment and polarizability, viz. ~* = &/~r 3 and | = | 
were determined by step (1). A comparison of the viscosities calculated with 
these collision integrals and experimental data led to a choice of m = 11 and a 
closer estimate of y, ~ and E/k; (3) new sets of collision integrals were calculated 
with m= 11 and several values of y, o and ~/k. This led to a choice of y=0"5 
and a closer estimate of o and ~/k ; (4) recalculations of the collision integrals 
with m= 11 and y =  0.5 and comparison to the experiment led to final values of 
m= 11, 9,=0.5, ~=3.775 x 10 -t~ m and E/k=217 K t .  

4.2. Collision integral calculations 
The collision integrals, (~ct ,  8 : ) ,  required in this procedure are defined by 

1 1 2n 
':(T))= I d(cos 01) I d(cos f do, 4, T), 

- 1  - 1  0 

where the quantities f~ct, S)(01, 02 , 4 '  T) are the collision integrals calculated 
using the standard formulae [6] only with the full anisotropic potential evaluated 
at the fixed orientation given by (01, 02, 4) [see equations (8) and (9)]. At a 
given fixed orientation, the collision integrals were evaluated by the method of 
O'Hara and Smith [31, 32] and the triple integration over angles was performed 
by a three-fold application of a one-dimensional Chebyshev integration technique. 
The complete computer program has been described in detail elsewhere [33].$ 

The final collision integrals obtained for CO2 are listed in table 2. The 
accuracy of these calculations was checked by means of comparisons with previous 
results [34] for the 12-6 potential (without the induced dipole term) and by 
examining the divided differences calculated from table 2. Overall, the accuracy 
of these collision integrals is believed to be no worse than 0.1 per cent, which 
should be more than adequate for most applications. 

4.3. Second pressure and dielectric virial coefficients 
The second pressure virial coefficient is defined by the expansion of the 

compressibility factor in powers of the density, viz. 

P 
pRY,= 1 + B( T)p + C( T)p 2 +..., 

where p is the density in tool/l, R is the gas constant and B(T) is the second 
pressure virial coefficient at a temperature T. For polyatomic molecules, 
B(T) is related to the intermolecular potential by the formula 

B(T) = - �89 S S (exp [- /30(R1,  R~)] - 1) dR x dR 2 

~- I t  was observed that it made no difference in the final viscosity fit if the second-order 
correction to the viscosity was used or n o t ;  o and c/k merely changed slightly to com- 
pensate for this correction. 

$ The  method of calculating the collision integrals used here is slightly different from 
that used originally by Smith et al. [34] in that the CI(I, s)(01, 02, 9~, T) were not  found by  
an interpolation technique and that some small inconsistencies in the original O 'Hara  and 
Smith programme had been corrected. 
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T* (~(1, 1)*) (~(1, 2)*) (~(2, 2)*) (~r'~(1, 8)*) (f~(2, 8)*) (~(3, 3)*) 

0-6 1 .918145 1 -613920  2"099084  1.413648 1.868458 1-737636 
0-7 1"781597 1 -495825  1"959346  1 . 3 1 2 7 9 3  1:737179 1.615179 
0.8 1.670502 1.402237 1 .843281  1.235088 1.630116 1.517277 
0.9 1 .578491 1.326852 1.745217 1.173889 1.541599 1.437453 
1"0 1-501419 1.265064 1.661469 1.124538 1.467775 1"371155 
1.2 1 .379425 1 . 1 7 0 1 8 7  1 .527171  1 . 0 5 0 2 4 1  1 . 3 5 2 5 0 1  1.267839 
1.4 1 .287793 1-t01245 1.424810 0-997062 1.267538 1.191492 
1.6 1 .216815 1 - 0 4 8 8 3 6  1"344990 0"957022  1.202899 1.132985 
1"8 1"160205 1 -007845  1.281204 0.925622 1.152307 1-086740 
2"0 1-114213 0 - 9 7 4 8 6 5  1 -229252  0-900202 1"111722  1.049305 
2.2 1"075924 0.947650 1.186210 0.879102 1 . 0 7 8 4 6 3  1"018400 
2.4 1"043669 0.924712 1.150147 0.861197 1.050667 0.992463 
2"6 1"016021 0"905053  1 .119461  0.845736 1"027082  0-970327 
2.8 0"992127 0.887999 1.093026 0.832190 1 .006755  0.951195 
3.0 0.971200 0"873005  1"069972  0-820172 0.989038 0.934444 
3.2 0.952730 0.859702 1.049699 0.809396 0.973430 0.919624 
3.4 0.936241 0"847772  1.031704 0.799642 0.959541 0.906391 
3.6 0.921414 0"836984  1 .015615  0.790743 0-947076 0.894480 
3.8 0'908008 0-827166 1'001144 0"782569  0.935804 0"883683 
4-0 0.895815 0 -818171  0.988039 0-775017 0-925535 0.873834 
5.0 0.847952 0-782120 0.937120 0.744143 0.884975 0.834838 
6.0 0.814036 0-755630 0"901539  0.720850 0.855774 0.806696 
7"0 0.788234 0.734855 0.874684 0.702208 0"833129  0"784873 
8.0 0.767590 0-717827 0.853307 0'686699 0-814696 0"767116 
9.0 0.750490 0-703430 0.835634 0.673439 0 -799175  0.752175 

10.0 0.735956 0-690979 0.820613 0-661872 0.785778 0.739293 
15.0 0-685119 0.646018 0.767944 0.619504 0.737428 0.692923 
20"0 0.652640 0 ,616311  0"733969  0"591144  0-705330 0"662260 
25-0 0-628915 0 -594251  0"708908  0"569969  0"681352  0"639418 

Table 2. Angle average collision integrals for carbon dioxide. 

where f l=  1/kT and dR i= dR~ d~o i. In  general, the indicated angular integra- 
tions cannot be performed analytically, and therefore the non-spherical portion 
of the Boltzmann factor is expanded in powers of fl [35], to,yield, in our case 

B(T)=Bo(T)+I ~ ~ (-fl)'~ /.L ~.z ~-m) n=l m=O n! Cmnl  \Wperm Wind exp (--3(~m_6_8) dr 

where Cm n is the binomial coefficient and the brackets ( ) indicate integration 
over the angular coordinates. The  non-spherical contributions can then be 
treated as perturbations and the infinite series may be truncated at some (usually 
arbitrary) order. For  most  quadrupolar  fluids, only a few terms n e e d t o  be 
considered [36], however, owing to the magnitude of the quadrupole moment  in 
CO S (see table 1), the series of terms (~perm n) does not converge rapidly. In  
these calculations the series was t runcated at n = 2 for cross-terms 
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and pure induction t e r m s  (r and at n= 5 for pure permanent terms 
(r The resulting expression for the second virial coefficient is 

9~*0"~ 108~*~O*~ tr u 
B*(T*)=B(kT/')/bo=Bm-6-s*- T* Is+ 25T* 

216~*~0"4 Ila 21 19.4 216 19.6 639 19 *6 4608 19.10 _ 
§ 35T *~ 5 T *~ I~~ 245 T .3 I~5 245 T .4 I~~ 4 ~ , - - ~ - ~  1~8" (10) 

The reduced quantities are defined by 

~*=&/oa; 19*2=| and T*=kT/E, 

and bo=27rNoa3/3, N o is Avogadro's number and the I,~ are dimensionless 
integrals given by 

QO 

1,~= I exp [-9~m_6_s*(x)/T*lx -'~+~ dx. 
0 

The polarizability anisotropy, r, is defined by r =  (~L--~T)/3~, where ~r~ and 
~T are the longitudinal and transverse components of the polarizability tensor, 
respectively. 

In a similar way, the second dielectric virial coefficient is given by the 
expansion of the Clausius-Mossotti function in powers of the density, [37] 

E - 1 1  
- = A D + B D ( T ) p  +. . .  

e+2p 

where e is the static dielectric constant and BD(T ) is the second dielectric virial 
coefficient which is related to the intermolecular potential via [21, 38] 

Bn*(T) BD(T)/bo =24 *3(1 12 T--- w -  (11) 

All of the I~(T*) were calculated by means of a one-dimensiolaal Chebyshev 
integration technique. 

5. P~v~s ULT$ 

Given the spherical potential parameters and the molecular parameters 
~, r, and | it is a straightforward task to evaluate the expressions for second 
pressure and dielectric virial coefficients. The primary computational difficulty 
lies in the evaluation of the collision integrals (~(1, 8)) since each potential 
tried required approximately 25 min on a CDC 7600 computer (versus approxi- 
mately 4 s for a spherical potential). In order to assess the effect of the non- 
spherical terms on the collision integrals, figure 1 shows a deviation plot between 
angularly averaged and equivalent collision integrals for a spherical potential as 
a function of temperature. For the sake of comparison the 12-6-0 potential 
(Lennard-Jones 12-6) was used as the spherical potential. The solid curve 
was obtained using equations (6), (8)-(9) with ~* = 0 and 19" = 1 and the dashed 
curve shows the corresponding differences for a*=  0.05 and 19"= 1, parameters 
which roughly correspond to those of CO2. It is observed that the primary 
effect of the non-spherical terms is to increase the collision integrals at a given 
T* with the maximum effect around T*=  2. The addition of an induced- 
dipole term in the potential makes a small but significant contribution. 
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Figure 1. Percentage difference plot comparing collision integrals calculated with the 
spherical 12-6 potential and the 12-6 potential with non-spherical contributions. 
The solid curve shows the effect of the quadrupole moment and the dashed curve 
shows the effect of including the first-order induced dipole term (neglecting aniso- 
tropy). 
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Figure 2. Corresponding plot to figure 1 only for the reduced pressure second virial 
coefficient. 

It is interest ing t o  note  that the non-spherical  contribut ions  are mos t  pro- 
nounced  in the temperature range 1 < T * <  8. Since this corresponds to 
temperatures  f rom 200 to 1750 K for COs, and since the available experimental  
data lie wi thin  the range 250 to 1600 K, one  w o u l d  expect  that a fit of viscosity 
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data and thus the potential parameters would be influenced by the anisotropic 
terms over the entire temperature range. In contrast, figure 2 shows the effect 
of the anisotropic term on the second pressure virial coefficient. In this case, 
as is well known, the non-spherical terms only make significant contributions 
for T* < 2 (~400  K). 

Figures 3 and 4 show the deviations between the experimental viscosity and 
pressure second virial coefficients and those calculated using equations (2) and 
(10). The agreement with experimental data is generally satisfactory: the 
viscosity deviations are within the + 2 per cent estimated experimental error. 
The pressure second virial coefficient deviations represent an improvement over 
previous calculated results [4]. The experimental pressure second virial 
coefficients were taken from references [39-44] and are estimated to be accurate 
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0 

- 4  
0 

i i 

Viscosity of CO 2 

0 0 0 0 

' 4~o ~ s~o ' 1200' ' 160~ 

T E M P E R A T U R E / K  

Figure 3. Percentage deviation plot for the viscosity ot carbon dioxide. The calculated 
viscosities were obtained using equation (2) with second-order corrections and t h e  
intermolecular potential parameters listed in table 1. References : ~) [23], O [24], 
A [25], �9 [26], �9 [27], [] [28]. 
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Figure 4. Difference between experimental and calculated values of the pressure second 
virial coefficient of CO2. The calculated values were obtained using equation (10) 
and the potential parameters listed in table 1. The parameters m, y, ~ and elk 
were determined by fitting the dilute gas viscosity, as described in w 4.1. Data, 
not distinguished, from references [39-44]. 



Statistical mechanics o[ CO s gas 575 

to within + 5 per cent, Figure 5 compares the experimental thermal conduc- 
tivity coefficient [45-52] with those calculated with equation (3). The required 
values for the internal specific heat Cv int and rotational collisional number Z 
were taken from references [53] and [54], respectively. Figures 6 and 7 com- 
pare calculation and experiment for the isotopic thermal diffusion factor [55] 
and the second dielectric virial coefficient [56-61]. In an assessment of these 
later three figures it should be noted that the data are not very accurate : with 
the exception of a few isolated data points, the accuracy of the thermal conduc- 
tivity coefficient data is about 5 per cent ; the second dielectric virial coefficients 
data about 10 per cent ; and about 25 per cent for the thermal diffusion data. 
With the exception of figure 5, which is discussed in the next section, the agree- 
ment between theory and experiment is within these experimental uncertainties. 

~ 8  

o 

�9 +hermo; Conductivity'of CO' z 

2~)0 I I I I I 4~)0 600  8~)0 I000 i 1200 
TEMPERATURE/K 

Figure 5. Percentage difference plot comparing the experimental thermal conductivities 
and those calculated using equation (3) with pDint= pDll. References : [] [45], 
@ [46-48], �9 [49], �9 [50], @ [51], �9 [52]. 
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Figure 6. Isotopic thermal diffusion factor ~0 for CO~. The experimental data were 
taken from reference [55] and the curve was calculated using equation (5). 
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Figure 7. Dielectric second virial coefficient for COy The experimental data were 
critically evaluated by Olson [63] and the line was calculated using equation (11) 
with the parameters listed in table 1. 

5.1. Discussion 

Figures 3-7 effectively summarize the calculation of several quite different 
properties of CO 2 using the classical statistical mechanical formulae and the 
potential of equation (2). In general, we have reinforced the conclusion of our 
earlier work, viz. that the potential (2) is a reasonable, fairly simple model of 
the intermolecular potential for a simple quadrupolar gas. There are, however, 
two features of the results which require further consideration: (1) Systematic 
differences in figures 3 and 4, and (2) the thermal conductivity results, figure 5. 
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Figure 8. Recalculation of the thermal conductivity of CO2 using Sandler 's correction, 
equation (12) for pDint. Compare to figure 5. The symbols refer to the same 
investigators as in figure 5. 

Concerning the first point, the reasons for the small systematic differences in 
figures 3 and 4 have been examined. It is felt that the likely systematic errors 
in the data or in the calculation techniques would not give the deviation patterns 
observed. The deviations most probably arise either because the model 
potential is insufficiently flexible or because the assumptions used in the calcula- 
tion of the collision integrals are not correct. It is also not obvious that the 
classical expansion of the second virial coefficient is converging at low tempera- 
tures. Unfortunately, these factors cannot be easily separated but we can 
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make several observations. (a) Other authors have suggested that terms 
accounting for anisotropy in the attractive and repulsive parts of the spherically 
symmetric part of the potential should be included. These terms were neglected 
in order to avoid having an empirically determined non-spherical parameter 
(the shape factor) in the potential. (b) The assumption that the molecules 
collide with fixed orientations is surely incorrect at low temperatures and low 
impact parameters. 

With regard to the thermal conductivity, figure 5 shows that there is a syste- 
matic difference between the calculated and experimental thermal conductivity 
data. However, Sandler [62] has suggested that the difference between D11 
(used for Din t in figure 5) and Di~ t is most pronounced for molecules with a 
rotational collision number Z which is less than three. According to Annis 
and Malinauskas [54], Z for carbon dioxide varies from 1 to 3 in the temperature 
range of interest here. Although Sandler's argument is for diatomic molecules 
the conclusion may also be valid for the linear CO2 and as a matter of interest we 
have recalculated the thermal conductivity using his approximation for the 
internal diffusion coefficient (to I / Z )  : 

D~n t = Du(1 + 0.27/Z). (12) 

The resulting deviation curve is presented as figure 8 and one can see the 
improvement over the corresponding deviation pattern of figure 5. 
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