MoLEecuLAR PHysIcs, 1986, VoL. 59, No. 5, 1043-1048

Viscous flow in the stress ensemblef
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The stress ensemble has advantages for studying shear flow in highly
viscous media. We derive a simple method for performing nonequilibrium
molecular dynamics simulations in this ensemble. We also derive the associ-
ated equilibrium fluctuation expressions for the zero frequency shear vis-
cosity. These expressions relate the reciprocal of the shear viscosity to strain
rate fluctuations in the zero stress equilibrium ensemble. Our analysis is
based upon the Nosé—Hoover method of treating non-holonomic constraints.
We show that for generating the stress ensemble, the Nosée—-Hoover method
is much simpler to implement than the corresponding gaussian approach.

1. INTRODUCTION

In conventional nonequilibrium molecular dynamics (NEMD) simulations of
shear flow in fluids, one solves the Sllod equations of motion for a periodic
system of N particles under shearing boundary conditions [1, 2]. The equations
of motion are

i) ="+ iy,

-
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i)j———F,-—vipy,-—O‘P,-, 1<j<N, M

where 1 denotes a unit vector in the x-direction, p; and r; are the momentum and
position of the jth molecule, m is the mass and F; is the force on j. In equation (1)
o is a thermostatting parameter and when
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the temperature, as determined from the peculiar kinetic energy, is a constant of
the motion. Evans and Morriss [2] have recently proved that these equations give
an exact description of isothermal planar Couette flow at a strain rate, 0w, /0y = y.
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It has also been shown that (1) and (2) give the correct description of nonlinear
effects such as shear thinning and shear dilatancy as well as time dependent
viscoelastic phenomena.

If one wants to simulate the rheology of a Bingham plastic these equations of
motion have disadvantages. It would be more convenient to have the shear stress
as an independent variable rather than the strain rate. This would for example,
permit the direct determination of the yield stress for Bingham plastics.

Such a simulation would be an example of a Norton ensemble calculation [3],
because by analogy with electric circuit theory, the thermodynamic flux rather
than the force would be the independent state defining variable. From a formal
statistical mechanical viewpoint, little is known about transport theory in the
Norton ensemble. For example Green—Kubo (GK) relations are always derived in
a force or Thevenin ensemble. An exception to this is our recent derivation of the
GK expression for the resistance of a Norton circuit [3]. The result of that study
was the derivation of the thermodynamic conjugate of the Kubo expression for
the conductivity of the corresponding Thevenin circuit.

Recently, Brown [4] has used gaussian methods [1] to perform simulations at
constant shear stress. In addition, Parrinello and Rahman [5] have studied the
constant stress ensemble at constant enthalpy to obtain expressions for the elastic
compliances of crystals. Of particular interest in this work are Brown’s equations
of motion which were derived by treating the strain rate in (1) and (2) as a
Lagrange multiplier which is chosen from the condition that the shear stress is
constant [1, 4]. This was precisely the method used by Evans and Morriss [1] to
develop isothermal/isobaric equations of motion. Brown’s expression for the
strain rate which is given in the Appendix is quite complex, making it extremely
difficult to analyse theoretically. In this paper we develop a simpler scheme which
allows the stress to fluctuate about a specified mean value. The nature of these
fluctuations resuits in major simplifications in the mathematical analysis. The
price paid for these simplifications is that the method only works at zero fre-
quency.

2. THE NOSE-NORTON STRESS ENSEMBLE

In 1984 Nosé [6] proposed a constant temperature simulation algorithm based
on Anderson’s method for controlling the pressure [7]. The difference between
Nosé’s method and the gaussian thermostatting method of Hoover and Evans
[8, 9] is that in gaussian methods, the peculiar kinetic energy is a constant of the
motion while in the Nosé method the peculiar kinetic energy fluctuates about a
specified mean value. Recently, Hoover [10] proposed significant simplifications
in the implementation of the Nosé thermostat. We shall use the Hoover form of
Nosé dynamics in this paper although similar results may be obtained starting
with the Anderson-Parrinello-Rahman formalism [5, 7]. In particular, we shall
use the basic idea of the Nosé-Hoover (NH) thermostat to drive a system away
from equilibrium. Consider the equations of motion,

. P =
rj=:nl 17y;, (3)

p;=F; — iyp,, — &p)> (4)
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where V is the volume, —P,, and —S,, are the instantaneous and desired shear

stresses, T is a relaxation tlme K denotes the instantaneous kinetic energy and K°
is the desired kinetic energy determined from the desired temperature via
K° = 3NkT)2.

Equations (3) and (4) are identical to the isothermal Sllod equations for shear
flow given in (1) above. What is different about these equations is that the strain
rate y is not an independent state variable, but rather satisfies a differential equa-
tion which relates the rate of change of y to the degree to which the instantaneous
shear stress, —P,, differs from a specified value, —S,,. If the instantaneous
stress is greater than the specified value, the strain rate will decrease in an attempt
to make the two stresses more nearly equal.

A second difference in these equations from (1) and (2) is that we are now
employing the NH thermostat rather than a gaussian one. Properties of the NH
thermostat are reasonably well understood [9]. It should be noted, however, that
the relaxation time, 7, should be chosen to correspond to some microscopic relax-
ation time, otherwise the resulting equations of motion will be stiff [11].

Since the time derivative of the internal energy, H = ). p2/2m + @ is given by

H,= —P_yV — 2K, (7)

the dynamics described by (3)—(6) do not satisfy the Liouville equation. Instead
they satisfy a Non-Liouville equation in which phase space behaves as a com-
pressible 6 N + 2 dimensional fluid [1, 11]. The N-particle distribution function
£V is a function of the 6N particle positions and momenta, the thermostat multi-
plier £, and the strain rate y, viz., f¥ = f¥T, &, y) where I' = {r,, ..., py}. The
non-Liouville equation is

N N N
a” - T aL__éaf aLN fl: I 65+6y:|

ot or ot Pty (8)

Since &= &T) and § = (), 9E/0¢ = dy/0y = 0. Using the equations motion
(0/0T) . T is easily seen to be —3N¢.
When the set value of the shear stress, —S,,, is zero, elementary principles of

statistical mechanics give the equilibrium distribution function [1] as

exp —Bl[H, + 2Qy? +l%52]
T [ dT [ dy [ dE exp —BLH, + 30,77 + 30, &1

fs 9

where
0= 3NETT? = 2K°12

and

B =3N/2K® = 1/kT.
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That this solution is correct is easily checked by substitution into the non-
Liouville equation. This shows, using (7), that df /6t = 0. The equilibrium dis-
tribution function is thus a generalized canonical distribution permitting strain
rate fluctuations,

kT

—0="T". 10
=0, (10)

<)’2>s,y

These strain rate fluctuations are unphysical since their amplitude is controlled
by the adjustable constant Q, .

3. LINEAR RESPONSE THEORY

Suppose we subject an equilibrium ensemble of systems, characterized by the
distribution f§, to an externally imposed stress, —S,,. It is now a simple matter
to apply the results of the linear response theory of Evans and Holian [11] to this
problem. The fact that the external field is a flux causes no difficulties because it
appears explicitly in the equations of motion. This is in contrast to the much
more difficult case of applying gaussian methods to the Norton ensemble [4]. In
that case it is not usually possible to express the equations of motion in a form
where the set value of the thermodynamic flux appears explicitly. A second diffi-
culty of using gaussian methods for generating the Norton ensemble is, that
except in simple cases [3], the AIT" condition [1] is not satisfied. From Brown’s
gaussian equations of motion [4], it would appear that the calculation of the
required phase space compression factor, (0/0I') . I, would be exceedingly
complex. Using our equations of motion under adiabatic conditions (¢ = 0) there
are no such difficulties since AII is satisfied. From (7) we see that the adiabatic
derivative of the extended internal energy, E = H, — Q, y?, is

B = —S, VY. (11)

Applying the results of Evans and Holian [11] we find that

t

DDs,, = JJC(S)S,:y ds + O(S3,) 12)

0

where the Norton ensemble susceptibility, y, is
x(t) = — BV {p(0(t))s,,=0- (13)
This expression shows that the shear viscosity, 7, is given by

n=1 / j dtBV y(0)y(8)Ds,, -0 (14)
0

which is the Norton conjugate of the usual Green-Kubo result obtained in the
Thevenin ensemble

0
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Comparison of Norton and Thevenin ensembles for shear flow.

y* —P3, P*, P, P* kts  Ensemble
02 055+ 001 098+003 1:06+003 096+002 50 T
0-20+£0-01 0-57 095+0-02 1:07+003 095+002 50 N
1-0 209+002 2024005 2034002 158+001 18 T
1-024+ 002 207 198+ 002 206+002 1584+002 15 N
2-0 318+ 006 326 +001 3-37+007 253+003 25 T
1-94 + 006 3-18 324+ 002 2424002 251+£004 10 N

kts = 1000 time steps, T' = Thevenin, N = Norton.

Our Norton ensemble result is however less general than the usual Thevenin
expression because it cannot easily be generalized to non-zero frequencies. In
particular, the frequency dependent shear viscosity is not given by the reciprocal
of the Fourier-Laplace transform of the strain rate autocorrelation function. At
infinite frequencies (10) shows that such an approach is dominated by the Nose
time constant rather than by the infinite frequency shear modulus. Gaussian
methods of generating the Norton ensemble do not suffer from this defect [3].

4. NUMERICAL RESULTS

We decided to perform a computer ‘ experiment’ to verify the thermodynamic
equivalence of the Thevenin and Norton ensembles, as we have defined them for
shear flow. Non-equilibrium molecular dynamics simulations were run for planar
Couette flow in the triple point Lennard-Jones fluid. The equivalence test was
performed for shear rates which span a range of nonequilibrium behaviour from
the linear, Newtonian regime far into the non-linear, non-Newtonian region.

Intermolecular interactions were truncated at 7* = 2-5. All units are reduced
with respect to the molecular interaction parameters, m, g, 6. In both the Theve-
nin and Norton ensemble calculations, the gaussian thermostat was used to
control the temperature at the equilibrium triple point value of T* = 0-722. The
gaussian thermostat was used because of its greater computational efficiency com-
pared to the Nosé-Hoover thermostat [10]. The density was set at the Lennard-
Jones equilibrium triple point value of p* = 0-8442.

Thevenin ensemble calculations were performed first so that the Thevenin
averaged shear stress could be used as input to the corresponding Norton ensem-
ble calculation. The value chosen for the constant Q, was 0-2. The results are
tabulated above. It is clear that within statistical uncertainties, the results are
independent of whether they are determined from simulations at constant applied
strain rate—Thevenin ensemble—or at specified mean shear stress—Norton
ensemble. This equivalence is apparent even when the system is far from equi-
librium y* = 2, where the hydrostatic pressure is many times greater than it is at
equilibrium.

These results provide an ‘experimental’ confirmation that the equivalence of
gibbsian equilibrium ensembles can be extended to nonequilibrium steady states.
The response theory outlined in §3 provides a basis for understanding linear
transport processes in Norton ensembles. It is clear that these methods can be
simply extended to each of the other Navier—Stokes transport processes.
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APPENDIX

Brown’s equations of motion

In applying gaussian techniques to the constant stress ensemble, one requires
the rate of change of the xy component of the stress to be a constant. Differentiat-
ing this quantity with respect to time yields

.1 ) .
- VSxy = ; Z (px_,-i’yj + I)xjpyj) + Z (xiij + xJ'F)’j)’
J J

where I is the volume of the system. Substituting for p, x, and « from equations
(1) and (2) and assuming the potential to be pairwise additive one finds for y
appearing in equations (1) and (2)

Li—L,+S,V

e N S

where the sums L — L, are given by the following

1
Ll = ; Z [szijj + ijpyj - z(p_’ . Fj)(Z Pxipy‘/z p‘%)],
j T T
1 Xij ’ ” ’
Ly==3 % 5 by, + (v - Pi)yif(bii/ | v35] — Sip/xE),
moy Irijl
=25 02 - 25 o, [ [T 0}
3 m 7 yi m|5 xjFyj ; j

2 42
Ly=3 5“4 (6 — ¢y . (1 — xd/ad) Ixyl],

i j ij
where m is the mass of a particle and ¢;; is the interaction potential between
particles 7 and j.
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