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The stress ensemble has advantages for studying shear flow in highly 
viscous media. We derive a simple method for performing nonequilibrium 
molecular dynamics simulations in this ensemble. We also derive the associ- 
ated equilibrium fluctuation expressions for the zero frequency shear vis- 
cosity. These expressions relate the reciprocal of the shear viscosity to strain 
rate fluctuations in the zero stress equilibrium ensemble. Our analysis is 
based upon the Nosb-Hoover method of treating non-holonomic constraints. 
We show that for generating the stress ensemble, the Nosb-Hoover method 
is much simpler to implement than the corresponding gaussian approach. 

1. INTRODUCTION 

In  conven t iona l  n o n e q u i l i b r i u m  molecu l a r  d y n a m i c s  ( N E M D )  s imula t ions  of  
shear  flow in fluids,  one solves the  S l lod  equa t ions  of  m o t i o n  for a pe r iod i c  
sys tem of  N par t ic les  u n d e r  shear ing  b o u n d a r y  cond i t i ons  [1, 2]. T h e  equa t ions  
of  m o t i o n  are 

i 'j = PJ + y[yj 
m 

and  

pj  = Fj  --  Y[Prj -- a p j ,  1 ~<j ~< N,  (1) 

where  [ deno tes  a un i t  vec to r  in the  x -d i r ec t ion ,  p j  and  r j  are the  m o m e n t u m  and  
pos i t ion  of  the  j t h  molecu le ,  m is the  mass  and  F j  is the  force on j .  In  equa t ion  (1) 
ct is a t h e r m o s t a t t i n g  p a r a m e t e r  and  when  

E F j .  pj -- y E ~)xJ~),J 
= J J ( 2 )  

2 EPJ 
�9 m 1 

the t e m p e r a t u r e ,  as d e t e r m i n e d  f rom the pecu l i a r  k ine t ic  energy ,  is a cons t an t  of  
the mo t ion .  Evans  and  M o r r i s s  [2]  have recen t ly  p r o v e d  tha t  these  equa t ions  give 
an exact  d e s c r i p t i o n  of  i so the rma l  p l ana r  Coue t t e  flow at a s t ra in  rate,  Oux/Oy = ~. 
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It has also been shown that (1) and (2) give the correct description of nonlinear 
effects such as shear thinning and shear dilatancy as well as time dependent 
viscoelastic phenomena. 

If  one wants to simulate the rheology of a Bingham plastic these equations of 
motion have disadvantages. It would be more convenient to have the shear stress 
as an independent variable rather than the strain rate. This would for example, 
permit the direct determination of the yield stress for Bingham plastics. 

Such a simulation would be an example of a Norton ensemble calculation 1,3], 
because by analogy with electric circuit theory, the thermodynamic flux rather 
than the force would be the independent state defining variable. From a formal 
statistical mechanical viewpoint, little is known about transport theory in the 
Norton ensemble. For example Green -Kubo  (GK) relations are always derived in 
a force or Thevenin ensemble. An exception to this is our recent derivation of the 
G K  expression for the resistance of a Norton circuit 1,3]. The result of that study 
was the derivation of the thermodynamic conjugate of the Kubo expression for 
the conductivity of the corresponding Thevenin circuit. 

Recently, Brown 1,4] has used gaussian methods 1,1] to perform simulations at 
constant shear stress. In addition, Parrinello and Rahman 1,5] have studied the 
constant stress ensemble at constant enthalpy to obtain expressions for the elastic 
compliances of crystals. Of particular interest in this work are Brown's equations 
of motion which were derived by treating the strain rate in (1) and (2) as a 
Lagrange multiplier which is chosen from the condition that the shear stress is 
constant 1,1, 4]. This was precisely the method used by Evans and Morriss 1,1] to 
develop isothermal/isobaric equations of motion. Brown's expression for the 
strain rate which is given in the Appendix is quite complex, making it extremely 
difficult to analyse theoretically. In this paper we develop a simpler scheme which 
allows the stress to fluctuate about a specified mean value. The nature of these 
fluctuations results in major simplifications in the mathematical analysis. The 
price paid for these simplifications is that the method only works at zero fre- 
quency. 

2. THE NOsE--NoRTON STRESS ENSEMBLE 

In 1984 Nos~ 1,6] proposed a constant temperature simulation algorithm based 
on Anderson's  method for controlling the pressure 1,7]. The difference between 
NosCs method and the gaussian thermostatting method of Hoover and Evans 
1,8, 9] is that in gaussian methods, the peculiar kinetic energy is a constant of the 
motion while in the Nos~ method the peculiar kinetic energy fluctuates about a 
specified mean value. Recently, Hoover 1-10] proposed significant simplifications 
in the implementation of the Nos~ thermostat. We shall use the Hoover form of 
Nos~ dynamics in this paper although similar results may be obtained starting 
with the Anderson-Parr inel lo-Rahman formalism [-5, 7]. In particular, we shall 
use the basic idea of the Nos~-Hoover  (NH) thermostat to drive a system away 
from equilibrium. Consider the equations of motion, 

~'j = PJ --~ i~yj, (3) 

P2 = F i -- i~py~ -- ~pj, (4) 
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1 
= -A-- (P~yV - S~yV), (5) 

1 
~ = ~-s ( ~ - -  1) ,  (6) 

where V is the volume, - P x y  and - S ~ y  are the instantaneous and desired shear 
stresses, z is a relaxation time, K denotes the instantaneous kinetic energy and K ~ 
is the desired kinetic energy determined f rom the desired tempera ture  via 
K ~ = 3NkT/2 .  

Equations (3) and (4) are identical to the isothermal Sllod equations for shear 
flow given in (1) above. What  is different about these equations is that the strain 
rate Y is not an independent  state variable, but  rather satisfies a differential equa- 
tion which relates the rate of change of ? to the degree to which the instantaneous 
shear stress, --P~y differs f rom a specified value, - S ~ y .  I f  the instantaneous 
stress is greater than the specified value, the strain rate will decrease in an a t tempt  
to make the two stresses more nearly equal. 

A second difference in these equations f rom (1) and (2) is that we are now 
employing the N H  thermostat  rather than a gaussian one. Properties of the N H  
thermostat  are reasonably well understood [9]. It  should be noted, however, that 
the relaxation time, z, should be chosen to correspond to some microscopic relax- 
ation time, otherwise the resulting equations of motion will be stiff [11]. 

Since the t ime derivative of the internal energy, H = ~ p~/2m + �9 is given by 

I:-I o = -- P,,y y V  - 2{K,  (7) 

the dynamics described by (3)-(6) do not satisfy the Liouville equation. Instead 
they satisfy a Non-Liouvi l le  equation in which phase space behaves as a com- 
pressible 6N + 2 dimensional fluid [1, 11]. The  N-part ic le  distribution function 
f~r is a function of the 6 N  particle positions and momenta ,  the thermostat  multi-  
plier ~, and the strain rate y, viz., fN = f N ( F  ' ~, ?) where F = {r 1, . . . ,  PN}. T h e  
non-Liouvil le  equation is 

Of N ~, Of ?r ~Of  I~ O f s _ f N I O  Of O~] 
0 t -  o r  - (8) 

Since ~ = ~(F) and ~ = ~(F), 0~/0~ = 05,/cgy = 0. Using the equations motion 
(0/0F) . F is easily seen to be - 3 N ~ .  

When the set value of the shear stress, -- Sxy, is zero, e lementary principles of 
statistical mechanics give the equil ibrium distribution function [1] as 

where 

and 

exp -- f l[H 0 + �89 ]:2 + �89162 ~2] 

f ~  = S dr" S d7 ~ d~ exp - f l [ H o  + �89 + �89162 

Q~ = 3 N k T z  2 = 2 g ~  2 

(9) 

fl = 3 N / 2 K  ~ = 1/kT. 



1046 D . J .  Evans and J. F. Ely 

That  this solution is correct is easily checked by substitution into the non- 
Liouville equation. This shows, using (7), that ~ f ~ / ~ t  = 0. The  equilibrium dis- 
tribution function is thus a generalized canonical distribution permitting strain 
rate fluctuations, 

k T  
(yZ)s~= o - Q . (10) 

These strain rate fluctuations are unphysical since their amplitude is controlled 
by the adjustable constant Q~. 

3. LINEAR RESPONSE THEORY 

Suppose we subject an equilibrium ensemble of systems, characterized by the 
distribution f 0 N , to an externally imposed stress, - S x y .  It is now a simple matter 
to apply the results of the linear response theory of Evans and Holian [11] to this 
problem. The fact that the external field is a flux causes no difficulties because it 
appears explicitly in the equations of motion. This is in contrast to the much 
more difficult case of applying gaussian methods to the Norton ensemble [4]. In 
that case it is not usually possible to express the equations of motion in a form 
where the set value of the thermodynamic flux appears explicitly. A second diffi- 
culty of using gaussian methods for generating the Norton ensemble is, that 
except in simple cases [3], the A I F  condition [1] is not satisfied. From Brown's 
gaussian equations of motion [4], it would appear that the calculation of the 
required phase space compression factor, (0/0F).  F, would be exceedingly 
complex. Using our equations of motion under adiabatic conditions (~ = 0) there 
are no such difficulties since A I F  is satisfied. From (7) we see that the adiabatic 
derivative of the extended internal energy, E = H 0 - Q~ 7 2, is 

f?d = - S x r V %  (11) 

Applying the results of Evans and Holian [-1 1] we find that 

f' 
<~(t)>s., = Z ( s ) S x r  ds  + O(S~r) (12) 

0 

where the Norton ensemble susceptibility, Z, is 

X(t)  = - -  ~ V ( 7 ( O ) ~ ( t ) ) s , ,  = o. (13) 

This expression shows that the shear viscosity, q, is given by 

,7 = 1 d t B V < ~ , ( O ) ~ , ( t ) ) s x , = o  (14) 

which is the Norton conjugate of the usual Green -Kubo  result obtained in the 
Thevenin ensemble 

~l = d t f l V ( P x r ( O ) P ~ r ( t ) ) o .  (15) 
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Comparison of Norton and Thevenin ensembles for shear flow. 
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~* - P*~y P*~x P~ P*~z kts Ensemble 

0.2 0.55 + 0.01 0-98 + 0"03 1"06 + 0.03 0"96 + 0"02 50 T 
0"20 + 0-01 0"57 0"95 + 0-02 1"07 + 0-03 0-95 + 0.02 50 N 

1'0 2"09 + 0-02 2'02 + 0'05 2"03 + 0"02 1-58 + 0-01 18 T 
1.02 + 0"02 2"07 1-98 + 0"02 2-06 + 0.02 1.58 + 0"02 15 N 

2-0 3-18 + 0.06 3"26 + 0'01 3-37 + 0-07 2'53 + 0"03 25 T 
1"94 + 0'06 3-18 3"24 + 0"02 2'42 + 0'02 2"51 + 0.04 10 N 

kts = 1000 time steps, T = Thevenin, N = Norton. 

O u r  N o r t o n  e n s e m b l e  resul t  is howeve r  less genera l  than  the usual  T h e v e n i n  
express ion  because  it canno t  easi ly be  genera l i zed  to n o n - z e r o  f requencies .  In  
pa r t i cu la r ,  the  f r equency  d e p e n d e n t  shear  v i scos i ty  is not  g iven by  the rec iproca l  
of  the  F o u r i e r - L a p l a c e  t r a n s f o r m  of  the  s t ra in  rate  au toco r re l a t i on  func t ion .  At  
infini te  f requenc ies  (10) shows tha t  such  an a p p r o a c h  is d o m i n a t e d  b y  the  Nos@ 
t ime  cons t an t  r a the r  than  by  the inf ini te  f r e q u e n c y  shear  m o d u l u s .  G a u s s i a n  
m e t h o d s  of  gene ra t ing  the  N o r t o n  e n s e m b l e  do  not  suffer f rom this  defec t  [3] .  

4. NUMERICAL RESULTS 

W e  dec ided  to p e r f o r m  a c o m p u t e r  ' e x p e r i m e n t '  to ver i fy  the  t h e r m o d y n a m i c  
equ iva lence  of  the  T h e v e n i n  and N o r t o n  ensembles ,  as we have  def ined  t h e m  for 
shear  flow. N o n - e q u i l i b r i u m  m o l e c u l a r  d y n a m i c s  s imula t ions  were  run  for p l ana r  
Coue t t e  flow in the  t r ip le  po in t  L e n n a r d - J o n e s  fluid.  T h e  equ iva lence  test  was 
p e r f o r m e d  for shear  rates  which  span  a range  of  n o n e q u i l i b r i u m  b e h a v i o u r  f rom 
the l inear ,  N e w t o n i a n  r eg ime  far in to  the  non- l i nea r ,  n o n - N e w t o n i a n  region.  

I n t e r m o l e c u l a r  in te rac t ions  were  t r u n c a t e d  at r* = 2"5. Al l  uni t s  are r e d u c e d  
wi th  respec t  to the  mo lecu l a r  in te rac t ion  pa rame te r s ,  m, e, cr. In  bo th  the  T h e v e -  
n in  and  N o r t o n  e n s e m b l e  ca lcula t ions ,  the  gauss ian  t h e r m o s t a t  was used  to 
con t ro l  the  t e m p e r a t u r e  at  the  e q u i l i b r i u m  t r ip l e  po in t  va lue  of  7"* = 0-722. T h e  
gauss ian  t h e r m o s t a t  was used  because  of  its g rea te r  c o m p u t a t i o n a l  ef f ic iency c o m -  
p a r e d  to the  N o s ~ - H o o v e r  t h e r m o s t a t  [10].  T h e  de ns i t y  was set at the  L e n n a r d -  
Jones  e q u i l i b r i u m  t r ip le  p o i n t  va lue  of  p* = 0-8442. 

T h e v e n i n  e n s e m b l e  ca lcu la t ions  were  p e r f o r m e d  first so tha t  the  T h e v e n i n  
ave raged  shear  s t ress  cou ld  be  used  as i n p u t  to the  c o r r e s p o n d i n g  N o r t o n  e n s e m -  
b le  ca lcula t ion .  T h e  va lue  chosen  for  the  cons t an t  Qr was 0"2. T h e  resul t s  are 
t a b u l a t e d  above.  I t  is c lear  tha t  w i th in  s ta t is t ica l  uncer ta in t i es ,  the  resul t s  are 
i n d e p e n d e n t  of  w h e t h e r  they  are d e t e r m i n e d  f rom s imu la t ions  at cons t an t  a pp l i e d  
s t ra in  r a t e ~ T h e v e n i n  e n s e m b l e  o r  at specif ied mean  shear  s t r e s s - - N o r t o n  
ensemble .  T h i s  equ iva lence  is a p p a r e n t  even when  the  sys t em is far f r om equ i -  
l i b r i u m  y* = 2, whe re  the  h y d r o s t a t i c  p r e s su re  is m a n y  t imes  g rea te r  t han  it is at 
e q u i l i b r i u m .  

T h e s e  resul t s  p rov ide  an ' e x p e r i m e n t a l '  con f i rma t ion  tha t  the  equ iva lence  of  
g ibbs i an  e q u i l i b r i u m  ensemble s  can be  e x t e n d e d  to n o n e q u i l i b r i u m  s teady  states.  
T h e  response  t heo ry  ou t l i ned  in w p rov ides  a basis  for  u n d e r s t a n d i n g  l inear  
t r a n s p o r t  p rocesses  in N o r t o n  ensembles .  I t  is c lear  tha t  these  m e t h o d s  can be 
s i m p l y  e x t e n d e d  to each of  the  o the r  N a v i e r - S t o k e s  t r a n s p o r t  processes .  
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APPENDIX 

Brown's equations of motion 

In applying gaussian techniques to the constant stress ensemble, one requires 
the rate of change of the xy component  of the stress to be a constant. Differentiat- 
ing this quantity with respect to time yields 

- w% = ! ~ (pxjb~ + bx~p~) + Z (~jF~ + x~P~), 
m . j 

where V is the volume of the system. Substituting for ~b, 5r and a from equations 
(1) and (2) and assuming the potential to be pairwise additive one finds for T 
appearing in equations (1) and (2) 

L1 - L2 + S.vV 

L3 + L4 

where the sums L t -- L 4 are given by the following 

L2 = __I ~ ~ x,i [P,o$;i + (ro" PiJ)yoCdp'i~/]ro] - $;)/r2], 
m .  �9 I r , j l  

m �9 PY~ m P~iPYJ P~' 

2 2 

L ,  = ~. ~. ~ r  2 [d / i ) -  $ ; j .  (1 -- r2/x2)/lro[], 

where m is the mass of a particle and ~1i is the interaction potential between 
particles i andj .  
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