
Physica A 299 (2001) 357–370
www.elsevier.com/locate/physa

Curvature e ect on the physical boundary of
metastable states in liquids

S.B. Kiselev∗, J.F. Ely
Chemical Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden,

CO 80401-1887, USA

Received 19 December 2000

Abstract

The physical boundary of metastable states, the kinetic spinodal, is introduced as a locus where
the lifetime of metastable state becomes shorter than a relaxation time to local equilibrium.
The theory does not contain any adjustable parameters. If the surface tension is known, the
kinetic spinodal is completely determined by the equation of state only. The curvature e ect
on the surface tension and nucleation barrier is considered and a general, curvature-corrected,
equation for the kinetic spinodal is developed. The theory was tested against experimental data
for the homogeneous nucleation limit of superheated, stretched, and supercooled water. In all
cases, good agreement between theoretical predictions and experimental data was achieved. We
7nd that in water, the Tolman length is negative and the curvature e ect increases the surface
tension and the nucleation barrier. The glass transition in supercooled water is also discussed.
The high-temperature limit for glassy states is introduced as a second root of the kinetic equation
in supercooled 8uids. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Curvature e ect; Glass transition; Homogeneous nucleation; Kinetic spinodal;
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1. Introduction

In the thermodynamic theory of phase transitions, the locus of states of in7nite
compressibility, the spinodal, is considered as a boundary of 8uid metastable states [1].
Physically, however the metastable state becomes short-lived well before the spinodal is
reached [2,3]. In the 8uctuation theory of relaxation of metastable states developed by
Patashinskii and Shumilo [4,5], the physical boundary of metastable states, the kinetic
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spinodal, is determined as a locus where the mean-time of formation of a critical
nucleus of stable phase, tM , becomes shorter than a characteristic time governing the
decay of 8uctuations to local equilibrium, tR. Both times, tM and tR, depend on the
kinetic properties of the liquid, but the ratio tM =tR depends on the thermodynamic
properties only. Therefore, the physical boundary of metastable states in this approach
is completely determined by the equilibrium properties of the system.
In the present work, we continue the study of the kinetic boundary of metastable

states initiated in our previous works [6–9]. Here we introduce a curvature e ect on the
surface tension into nucleation theory and consider the kinetic boundary of metastable
states in superheated, stretched, and supercooled water.

2. Theoretical background

The dynamics of a system in a metastable state of the initial phase is connected with
the relaxation and 8uctuations of the hydrodynamic 7elds of the order parameter ’(̃x; t)
[4,5]. The slowness of its relaxation allows excluding other degrees of freedom and
consideration of the dynamics of the order parameter only. In this case, the equation
of motion of the system is [10]
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where 
c is a transport coeHcient, H is an e ective Hamiltonian, and fst is an external
random force modeling thermal 8uctuations. Near the stability region, the e ective
Hamiltonian can be represented in the form [5]
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where g; u2; u3¿ 0, and u2 are assumed to be small. The curve u2 = 0 represents a
bare or “unrenormalized” spinodal (i.e., a spinodal of the system in the absence of
8uctuations). The solution of Eqs. (1) and (2), which was obtained by Patashinskii and
Shumilo [4,5] yields a lifetime of the metastable phase, which accounts for 8uctuations
and is given by

tM = tR

(
4��
�0

)
exp(�Wmin=kBT ) : (3)

In this equation tR=16g=
cu22 is a characteristic time governing the relaxation to-
ward local equilibrium, Wmin is the nucleation barrier, which is equal to the minimum
reversible work required to form a critical size nuclei, the dimensionless parameter
�=(u2g)3=2=kBTu23, and �0 ∼= 8:25 is a dimensionless constant. When �Wmin�kBT ,
the lifetime of the metastable phase is much longer than the relaxation time tR, and
the metastable state is statistically well de7ned. For �¡kBT=Wmin, the initial homoge-
neous state, as a result of 8uctuations, transforms to a heterogeneous state during a time
comparable with the time governing the relaxation toward local equilibrium (tM ∼= tR).
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The curve �Wmin = kBT , or, alternatively,

u2 = (u2)KS =
1
g

[
(kBTu3)2

Wmin

]2=3
; (4)

can be regarded as the physical (kinetic) spinodal, which limits the region in the
phase diagram (u2¿ (u2)KS) of statistically well de7ned and experimentally attainable
metastable states. For 0¡u2¡ (u2)KS the lifetime tM ¡ tR and the very concept of
an equilibrium homogeneous state is no longer applicable, and this spinodal region
separates metastable and unstable states in the phase diagram of the system.
As was shown by Kiselev [8,11], in one-component 8uids the parameters u2 and u3

are directly related to the 7rst and second derivatives of the chemical potential,  , with
respect to the density
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and for the parameter g a good estimate is

g= kBT (!∗)1=3 (6)

where !∗ is a characteristic density in the system. Eq. (4) for the kinetic spinodal,
using Eqs. (5) and (6), can be written in the form

M !(TKS)=

[
kBT M 2!!(TKS)
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]2=3(
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)1=3
; (7)

where for the characteristic density in the superheated and stretched liquids, one can
use the critical density, !∗= !c [6–8], while in supercooled liquids one can set !∗

equal to the density of liquid in the triple point, !∗= !tr [11]. If an explicit expression
for the nucleation barrier Wmin(T ) is known, the temperature TKS at the kinetic spinodal
can be found from a solution of Eq. (7).

3. Nucleation barrier

A general thermodynamic expression for the nucleation barrier for a spherical nucleus
with the radius r in the bulk liquid phase can be written in the form [8]

Wmin(r)=
4
3
�r3

 N (PN )−  L(P)
vN

+
4
3
�r2& ; (8)

where the subscripts “N” and “L” correspond to the nucleus and the bulk liquid phase,
respectively, vN is the molar volume, PN =P+&=2r is the pressure in the nucleus, and
& is the surface tension. The critical radius of the nucleus, rc; is determined from the
condition(
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=0 (9)
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which for the surface tension dependent on the radius of the nucleus r is equivalent to

 N (PN )=  L(P)− vN

(
@&
@r

)
T
: (10)

For the curvature-independent surface tension &= &0(T ), Eq. (10) takes a simple
form

 N (PN )=  L(P) ; (11)

where PN =P+&=2r0c . For the spherical vapor nucleus in the metastable liquid, a good
approximation for the solution of Eq. (11) is [8]
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while for the spherical crystal nucleus in the supercooled liquid the critical radius is
given by [2,3]

r0c =
Tm(P)&SL0 (T )v∗S (T )

NhNT
: (13)

In Eqs. (12) and (13) &VL0 and &SL0 are the surface tension at the planar vapor–liquid
and solid–liquid interfaces, respectively, Nh is the molar enthalpy of fusion, Tm is a
melting temperature at given pressure P, and NT =Tm−T is a degree of supercooling,
and the superscript “∗” denotes the properties on the coexistence curve.
In general, the surface tension is a function of the radius of the curvature r [12–16].

Here we focus in particular curvature correction de7ned by the Tolman length *T [17]

&= &0(T )
(
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)
: (14)

A solution of the Eq. (10) for the critical radius of the nucleus with the surface tension
as given by Eq. (14) can be written in the form
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where r0c is the critical radius of the nucleus introduced above (see Eqs. (12) and
(13)). Eq. (8) for the nucleation barrier in this case reads
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)
: (16)

4. Comparison with experimental data

In order to calculate the kinetic spinodal using Eq. (7), one needs to know the
equation of state, which can be extrapolated into the metastable region, the surface
tension of the plane interface &0(T ), and the Tolman length *T . For a comparison of
the theory with experimental data, we consider here metastable water, for which all of
these properties were studied in detail.
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Fig. 1. P–T diagram of superheated and stretched water. The solid line represents the coexistence curve,
the symbols correspond to the homogeneous nucleation, TH , obtained by Skripov [2] (open circles) and by
Zheng [20] (7lled circles), the dotted, short-dashed, and long-dashed lines represent the kinetic spinodal,
TKS , calculated with the Tolman length *T =0:1; 0, and −0:1 nm, respectively, and the dashed-dotted curve
represents the spinodal.

Firstly, we apply the theory to calculation of the kinetic spinodal in superheated and
stretched water, which was considered before by Kiselev et al. [7,8] with the assumption
that *T =0. In this work, we calculate the kinetic spinodal in superheated and stretched
water with *T =0:1 nm obtained by Tolman [17] for the water droplets at T =293 K.
For the surface tension at the plane vapor–liquid interface, &VL0 (T ), we adopted the
equation of Vargaftik et al. [18], and for the representation of the thermodynamic
properties of metastable water we used the IAPWS-95 formulation [19]. Our results
are compared with earlier results in Fig. 1. The previous results shown in Fig. 1
are those of Kiselev et al. [7,8], experimental data for the nucleation limit obtained
by Skripov [2] and values recalculated into the P–T plane by Zheng [20]. As one
can see, in the critical region, at 575 K6T6Tc, the curvature e ect on the kinetic
spinodal is small and both curves with *T =0 and *T =0:1 nm practically coincide. In
both cases, excellent agreement with experimental data is observed. However, in the
low temperature region, at T6 550 K, the curvature e ect becomes essential.
The kinetic spinodal calculated with the positive value of the Tolman length (dotted

curve in Fig. 1) lies above the homogeneous nucleation temperatures, a result that is
physically incorrect. A much better result is achieved with a negative value of the
Tolman length, *T = − 0:1 nm, (long-dashed curve in Fig. 1). This result is clearer
in Fig. 2, where the original data obtained by Zheng [20] are shown. Thus, with
the IAPWS-95 formulation [19] for water and steam, we obtain negative values for
the Tolman length. It is interesting to note that the negative value of the Tolman
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Fig. 2. !–T diagram of superheated and stretched water. The legend as in Fig. 1.

length, *T ¡ 0, has been also obtained earlier by Zhukovitskii [15] from his independent
analysis of the size-corrected e ect on homogeneous nucleation in water but we also
note that Ref. [16] argued that *T ¿ 0. Since water is a complex 8uid with di erent
anomalous properties [21], we cannot say for sure if the negative length result is really
correct or if it is arising from an “illegal” extrapolation of the empirical formulation
[19] into the region where no experimental data were used.
We have also compared the theory with experimental data obtained by Angell and

coworkers for supercooled water [22,23]. In supercooled liquids, the situation in general
is more complicated than in superheated liquids. The primary reason for this is that an
equation of state obtained from the analysis of experimental data for the stable liquid, as
a rule, cannot be extrapolated into the supercooled region where experimental data are
scarcely known. Secondly, the solid–liquid surface tension &SL0 (T ) cannot be measured
directly and it is usually determined from the analysis of the experimental data for the
nucleation rate in supercooled liquid [2]. Therefore, the numerical value of the surface
tension obtained by this way depends strongly on the theoretical model used in the
analysis [9].
For the representation of the thermodynamic properties of supercooled water, the

IAPWS-95 formulation [19] is recommended as being the most accurate. The melting
temperature Tm was calculated with the international equation developed by Wagner
et al. [24], while for the calculation of the ice density, !S =1=vS , and heat of fusion,
Nh, we used the vapor pressure formulation for ice developed by Wexler [25]. The
surface tension &SL0 (T ) was calculated with Turnbull’s expression [26]

&SL0 = +
Nh

v2=3s
(17)
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Fig. 3. The phase diagram of supercooled water. The solid line represents the melting curve [24], the
diamonds and 7lled triangles down with eye-guide lines correspond to the kinetic spinodal temperatures, TKS ,
calculated with Eq. (7) with di erent approximations for the Tolman length *T , and the symbols represent the
homogeneous nucleation, TH (empty triangles down), and spinodal, TS (triangles up), temperatures obtained
by Angell et al. [22,23].

with +=0:32 as originally recommended for water by Turnbull [26]. A recent study
[16] indicates that the Tolman length for the ice–water interface is negative and strongly
depends on temperature. Therefore, here we calculated the kinetic spinodal with the
temperature dependent Tolman length *T (T )=−0:4−0:005(273−T ), which is a simple
linear interpolation of the results presented in Ref. [16] (see Fig. 2 in Ref. [16]).
The results of our calculations are compared with experimental data for the homo-

geneous nucleation temperatures TH of Angell and co-workers [22,23] in Fig. 3. The
open diamonds with the eye-guide lines in Fig. 3 correspond to the kinetic spinodal
calculated with *T =0, while the 7lled diamonds correspond to the kinetic spinodal
calculated with the temperature dependent Tolman length *T = *T (T ). The 7lled tri-
angles up in Fig. 3 represent the values of the spinodal temperatures TS obtained by
Angell et al. [22,23] from the analysis of their isothermal compressibility data with the
empirical expression

KT =A-(T=TS − 1)−�- (18)

were A-; �-; and TS are the adjustable parameters. As one can see from Fig. 3, at pres-
sures P6 10 MPa the curvature e ect in supercooled water is not signi7cant. At these
pressures, both the kinetic spinodals, calculated with *T =0 and *T = *T (T ), lie very
close to each other, and practically coincide with the homogeneous nucleation limit.
However, at higher pressures, P¿ 10 MPa; TKS calculated with *T =0 lies above the
nucleation limit obtained by Angell and co-workers [22,23], while for *T = *T (T ) the
kinetic spinodal lies systematically lower than TH . At P=50 MPa; TKS calculated with
*T = *T (T ) lies even lower than TS reported by Angell et al. [22,23]. Since TKS always
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satis7es the obvious condition TS ¡TKS6TH , or equivalently (u2)S ¡ (u2)KS ¡ (u2)H ,
it indicates that the IAPWS-95 formulation [19] for water and the empirical expression
(18) are thermodynamically inconsistent in this region. As we mentioned above, the
IAPWS-95 formulation [19] yields an accurate representation of the experimental data
for pure water in a wide range of the parameters of state, including the supercooled
water. Unfortunately, this empirical equation of state (EOS) gives some unphysical
behavior if one tries to extrapolate it into the supercooled region beyond the range
of the experimental data used for its optimization. Because of that, we were unable
to calculate with the IAPWS-95 formulation [19] the kinetic spinodal for *T = *T (T )
at higher pressures, P¿ 50 MPa. For this goal, a more physical EOS for supercooled
water should be used.
The kinetic spinodal represents the boundary behind which no equilibrium ther-

modynamic state can exist; therefore, we consider here the lowest temperatures (i.e.,
TKS calculated with temperature dependent Tolman length) as a physical boundary
of metastable states in supercooled water. The shaded area in Fig. 3 marks the region
where no thermodynamic state for liquid water is possible. This is a “non-thermodynamic
habitat” for liquid water because in this region the lifetime of the homogeneous state
is smaller than the time to establish local equilibrium. Therefore, any equilibrium ho-
mogeneous state for liquid water is not possible in this region. The parameter u2 in
Eq. (2), or equivalently the 7rst derivative M !, remains small but positive in this region.
As consequence, the kinetic spinodal always appears earlier than the thermodynamic
stability limit determined by the condition M !=0.
The kinetic boundary of metastable states is mostly determined by the EOS applied

for its prediction. Therefore, it is interesting to see what predictions can be made with
other, less accurate, but more physical models. As example, we have used the new
analytical (NA) equation of state for supercooled water developed recently by Je ery
and Austin [27]. This equation predicts the existence of a second critical point (CP2)
related to low density water (LDW)–high density water (HDW) phase equilibrium,
and qualitatively reproduces the anomalous behavior of the isothermal compressibility
in supercooled water. However, the quantitative di erence between experimental data of
Angell and co-workers [22,23], and calculated values of the isothermal compressibility
in supercooled water is signi7cant (see discussion in Ref. [11]). Therefore, one cannot
expect to obtain with this EOS a good quantitative prediction of the physical boundary
of metastable state in supercooled water. In this case, it is only the qualitative analysis
is that of interest.
The phase diagram and the kinetic spinodal calculated with the NA EOS are shown

in Fig. 4. The principle di erence between this diagram and the phase diagram shown in
Fig. 3 is that since Eq. (7) now has two roots, TKS1 and TKS2, the “non-thermodynamic
habitat” for supercooled liquid water now has a shape of a belt. It is interesting to
note, that, according to this scenario, there are no thermodynamically unstable states
in the supercooled water at pressures P¡ 90 MPa and temperatures from the melting
curve down to T =150 K. In this case, the pressure-dependent Kauzman temperature
TK gives a thermodynamic limit of stability in supercooled liquids [3]. However, the
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Fig. 4. The phase diagram of supercooled water calculated with the new analytic equation of state of Je ery
and Austin [27]. The cross corresponds to the critical point of LDW–HDW equilibrium (dashed curve), the
dotted curves correspond to the LDW–HDW spinodals. The other legend as in Fig. 3.

Kauzman temperature TK is not attainable experimentally because of the glass transi-
tion, which appears at temperatures TK ¡Tg¡TH [3]. According to the speci7cation
introduced by Mishima and Stanley [28], the temperature range Tg ¡T ¡TH belongs
to the so called “no man’s land”, which corresponds to the short lived and, therefore,
experimentally not attainable but still thermodynamic-metastable states. In our theory,
no thermodynamic states exist inside the “non-thermodynamic habitat” belt (the tem-
perature range TKS2¡T ¡TKS1) which splits the “no man’s land” into the two narrow
strips, Tg ¡T ¡TKS2 and TKS1¡T ¡TH .
The glass transition temperature is essentially the temperature at which the relaxation

time of the system is of the same order of magnitude as the observation time [29,30].
The ratio tM =tR calculated with NA EOS as a function of the temperature at P=0:1 MPa
is shown in Fig. 5. As one can see, at the temperatures TKS1¡T ¡TKS2, which cor-
respond to the “non-thermodynamic habitat”, this ratio is much less than unity. At
T ∼= TKS2 the ratio tM =tR is of order of one; therefore, the second kinetic spinodal
temperature TKS2 can be interpreted as the high-temperature limit, Tmax

g , for glassy,
or ultraviscous, states. At higher temperatures T ¿Tmax

g (P) up to T =TKS1 no glassy,
ultraviscous, or any other thermodynamic metastable state is possible. The second crit-
ical point and the LDW–HDW coexistence curve lie inside the “non-thermodynamic
habitat” belt, and, therefore, have no real physical meaning and in principle cannot be
observed experimentally. Only the transparent area in Figs. 4 and 5 is available for
experimental study.
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Fig. 5. The ratio tM =tR at P=0:1 MPa for supercooled water as a function of temperature T calculated with
the new analytic equation of state of Je ery and Austin [27] with di erent values of the Tolman length *T .

5. Discussion

In the present work, we have developed a general, theoretical model for predicting of
the physical boundary of metastable states—kinetic spinodal in superheated, stretched,
and supercooled 8uids. A unique feature of this model is that it takes into account of
the curvature of the surface tension. This model does not contain adjustable parameters
and requires only the equation of state and surface tension for the prediction of the
kinetic spinodal in metastable liquids.
Here we have applied this method for the calculation of the kinetic spinodal in

metastable water. We show that in the critical region, the curvature e ect on the kinetic
spinodal in superheated water is small. However, in stretched water, this e ect is
essential and it causes increasing of the surface tension and nucleation. In superheated
and stretched water, the kinetic spinodal lies above the thermodynamic spinodal and
qualitatively reproduces its shape. Starting from the critical point, the kinetic spinodal
7rst traces the physical boundary of the metastable states in superheated water, then
passes through negative pressures de7ning the limit of stability in stretched water. The
theory is in good agreement with experimental data.
Although water is the most common and best-studied liquid, the peculiar behavior

of its physical properties in supercooled regime is still a puzzle for investigators [21].
Only during the last 4 or 5 years a number of di erent models and equations of state for
supercooled water have been developed [27,31–37]. In this work, using the IAPWS-95
formulation [19] for the representation of the thermodynamic properties of supercooled
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water, we show that the curvature e ect in supercooled water at high pressures and
low temperatures is signi7cant. Taking into account this e ect, we obtained reasonably
good agreement of the predicted kinetic spinodal with experimental limit of stability
data obtained by Angell and co-workers [22,23]. However, the empirical IAPWS-95
formulation [19] cannot be extrapolated very far into the metastable region and it does
not predict an existence of a glassy transition in supercooled water.
The less accurate but more physically attractive NA EOS developed by Je ery and

Austin [27] predicts existence of a second critical point and yields two kinetic spin-
odals in supercooled water. The question about the existence of a second critical point
in supercooled water has been intensively discussed during the last 5–7 years and the
discussion remains open (see Refs. [31–35,38,39]). Here, using the NA EOS as an
example, we show that this question cannot be in principle resolved experimentally,
and, therefore, it is physically irrelevant. Since the second critical point, CP2, is al-
ways lying in the “non-thermodynamic habitat”, it is not a real critical point, which
can be observed, but rather a “virtual critical point”, which rigorously speaking has no
physical meaning. Nevertheless, the concept of a second—“virtual critical point” can
be very useful, if it yields a good representation of the thermodynamic properties of
supercooled water outside the “non-thermodynamic habitat”. The second kinetic spin-
odal, TKS2, generated with this “virtual critical point” can be associated with the upper
temperature limit for the ultroviscous or glassy states. We presented here only qualita-
tive prediction of this limit. As one can see from Fig. 5, the kinetic spinodal determined
from Eq. (7) di ers from the exact condition tM = tR, or, alternatively,

�0
4��

=exp
[
�Wmin(TKS)

kBT

]
: (19)

Using Eqs. (3), (5), and (6), this condition can be written in the form

�0
4�

M 2!!(TKS)

M 3=2! (TKS)

(
!
!∗

)1=2
= exp

[
4Wmin(TKS) M 3=2! (TKS)

kBT M 2!!(TKS)

(
!∗

!

)1=2]
: (20)

Therefore, the physical boundary of metastable states in liquids should be determined
from a solution of Eq. (20) rather than from Eq. (7). However, we need to note
that since the Patashislii–Shumilo theory is valid only when 2�Wmin��kBT [5], the
physical boundary of metastable states, the kinetic spinodal TKS , in this theory can
be determined only approximately. Therefore, in practice, both the estimates with
Eqs. (20) and (7) should be analyzed.
A comparison of the kinetic spinodals for the NA EOS calculated with Eqs. (20)

and (7) is shown in Fig. 6. As one can see, the kinetic spinodal temperatures TKS1
and TKS2 calculated with Eq. (20) (open squares) give a wider “non-thermodynamic
habitat” belt than one obtained with Eq. (7) (7lled diamonds). As it was pointed out
earlier by Kiselev [11], in spite of that the NA EOS gives interesting qualitative pre-
dictions, the quantitative predictions made with this EOS are incorrect. The NA EOS
gives the second critical point Tc2 = 228:3 K and Pc2 = 95:3 MPa which is about 10 K
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Fig. 6. The phase diagram of supercooled water calculated with the new analytic equation of state of Je ery
and Austin [27] and *T =− 0:4 nm. The empty squares correspond to the kinetic spinodals calculated with
Eq. (20), and the diamonds correspond to the values calculated with Eq. (7). The other legend as in Fig. 3.

higher than the experimental homogeneous nucleation temperature obtained at this pres-
sure by Kanno and Angel [23]. Therefore, the temperatures TKS1 calculated with the
NA EOS lie systematically above TH obtained by Angell and co-workers [22,23].
For example, at P=0:1 MPa the temperature TKS1 calculated with the NA EOS and
Eq. (20) is about 21 K higher than the homogeneous nucleation temperature TH ob-
tained by Speedy and Angell [22]. After a shift of the second kinetic spinodal tempera-
ture TKS2 = 192 K at the same value, one obtains T shift

KS2 = 171 K, which is a reasonable
estimate for the upper limit for ultraviscous water at this pressure [28]. In order to
provide a more accurate comparison with experimental data and give better predictions
of the upper glass-transition temperature Tmax

g for supercooled water, we need both a
better EOS and more reliable estimate of the Tolman length.
The ultraviscous, or glassy, states are usually associated with the anomalous increas-

ing of the relaxation time [3,30]. Therefore, for an independent estimate of the upper
glass transition temperature Tmax

g it would be extremely interesting to study how the
transport coeHcient 
c and, as consequence, the relaxation time tR in Eq. (3) depends
on the temperature in supercooled liquids. We expect that the decoupled-mode theory
successfully applied earlier to the describing of the transport phenomena of pure 8u-
ids and binary mixtures in the extended critical region [40,41] can be also applied in
supercooled liquids. Research towards the application of this approach to glassy states
is in progress, and the results will be presented in future publications.
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