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bstract

In our previous work [S.B. Kiselev, J.F. Ely, Fluid Phase. Equilib. 222–223 (2004) 149], we developed a generalized cubic (GC) EoS for pure
uids, which incorporates non-analytic scaling laws in the critical region and reproduces the thermodynamic properties of pure fluids with high
ccuracy, including the asymptotic scaling behavior of the isochoric heat capacity in the one- and two-phase regions. However, it appears that in

ome cases the GC EoS can give unphysical behavior when extrapolated to high temperatures and densities. In this work, we present a modification
f the generalized cubic EoS, which in the critical region is physically equivalent to the GC EoS developed earlier, but is more reliable in its
xtrapolation to high temperatures.

2006 Elsevier B.V. All rights reserved.
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. Introduction

It is well known that long-range fluctuations in the density
ause the thermodynamic surface of fluids to exhibit a singular-
ty at the critical point. As a consequence, all analytical, classical
quations of state (EoS), which give a reasonable representation
f the thermodynamic properties of fluids far away from the crit-
cal point, fail in the critical region. Significant efforts have been

ade to develop a “global” EoS that incorporates the asymptotic
ingular behavior of the thermodynamic properties in the critical
egion, and at low densities reproduces the ideal gas equation
1–27]. Thus far, all these efforts have been mainly focused on
eveloping an EoS for VLE and PVT surfaces, but not for caloric
roperties, such as the isochoric and isobaric heat capacities. In
ur recent publication [28], we reported a “global”, generalized
ubic (GC) EoS for pure fluids, which reproduces the thermody-

amic properties of pure fluids with high accuracy, including the
symptotic scaling behavior of the isochoric heat capacity in the
ne- and two-phase regions. In combination with the decoupled-
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ode theory (DMT), we also proposed a generalized GC + DMT
odel [28] that is capable of reproducing the singular behavior

f the thermal conductivity of pure fluids in and beyond the crit-
cal region. However, it appears, that for some substances the
C EoS with system-dependent parameters optimized to exper-

mental data at near critical and sub-critical temperatures, can
ive unphysical behavior at higher temperatures and densities.
s an example, the short-dashed curve in Fig. 1 shows the pres-

ure as a function of density calculated with the GC EoS for CO2
28] along the isotherm T = 2Tc. As one can see, at high densi-
ies where ρ > 1.5ρc, this isotherm CO2 exhibits non-monotonic
ehavior, and when 1.5 < ρ/ρc < 1.8c it even has a negative slope,
∂P/∂ρ)T < 0, which is physically incorrect. We need to note, that
his non-monotonic behavior is observed at temperatures which
re far beyond the temperature range of the experimental data
sed for the optimization of the GC EoS for CO2 [28], and,
herefore, was overlooked in our previous work.

In principle, the non-monotonic behavior observed in Fig. 1
an be eliminated by refitting the GC EoS using experimental

igh temperature PVT-data. Alternatively, one could generate
ata for T ≥ Tc with some more accurate EoS, such as a multi-
arameter crossover EoS developed recently for CO2 by Sun et
l. [29]. However, in general these approaches make the GC EoS

mailto:skiselev@mines.edu
dx.doi.org/10.1016/j.fluid.2006.10.028


58 S.B. Kiselev, J.F. Ely / Fluid Phase

F
d
(

l
t
t
d
w
c

2

l
t

A

w
T
c
(
P

A

e
t
f
�

�

f

�

w

τ

w
a
a
τ

t
l
v

K

w
a

η

K

Υ

w
a
g
f
o
[
H
l
t
o
s

ig. 1. P–ρ (top) and (∂P/∂ρ)T − ρ (bottom) isotherms calculated for carbon
ioxide at T = 2Tc with the GC EoS [28] (short-dashed curves), the GC/CRS
solid curves), and the GC/ANS (long-dashed curves) models.

ess predictive. Therefore, in this paper we present a modifica-
ion of the GC EoS, which is more reliable when extrapolated
o high temperatures. We proceed as follows. In Section 2 we
escribe an improved GC EoS for pure fluids and in Section 3
e apply this EoS for the thermodynamic transport properties

alculations.

. Modified GC EoS

In the generalized—“global” crossover EoS, the dimension-
ess Helmholtz free energy Ā = A(T, v)/RT is represented in
he form [28]:
¯ (T, v) = �Ā(τ̄, ϕ̄) − K(τ, ϕ) − �vP̄0(T ) + Āres
0 (T )+Āid(T ),

(1)

f
o
E
f
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here v = 1/ρ is molar volume, R the universal gas constant,
0c and v0c are the classical (predicted by the unmodified EoS)
ritical temperature and molar volume, respectively, �vc =
vc − v0c)/v0c � 1 a dimensionless shift of the critical volume,
¯ 0(T ) = P(T, v0c)/RT the dimensionless pressure, Āres

0 (T ) =
¯ res(T, v0c) the dimensionless residual part of the Helmholtz
nergy along the critical isochore v = v0c, and Āid(T ) is
he dimensionless temperature-dependent ideal-gas Helmholtz
ree energy. The singular part of the Helmholtz free energy
Ā(τ̄, ϕ̄) is obtained by a replacing the dimensionless distances
T = T/T0c − 1 and �v = v/v0c − 1 in the classical expression

or critical part of the Helmholtz free energy:

Ā(�T, �v) = Āres(�T, �v) − Āres(�T, 0) − ln(�v + 1)

+ �vP̄0(�T ) (2)

ith the renormalized values

¯ = τΥ−α/2Δ1 , ϕ̄ = ϕΥ (γ−2β)/4Δ1 + (1 + ϕ)�vcΥ
(2−α)/2Δ1 ,

(3)

here α = 0.11, β = 0.325, γ = 2 − 2β − α = 1.24, and Δ1 = 0.51
re universal non-classical critical exponents [30,31] vc,
nd Υ (τ, ϕ) denotes a crossover function. In Eqs. (1)–(3),
= T/Tc − 1 is a dimensionless deviation of the temperature from

he real critical temperature Tc, ϕ = v/vc − 1 is a dimension-
ess deviation of the molar volume form the real critical molar
olume, and the kernel term is given by

(τ, ϕ) = 1

2
a20τ

2[Υ−α/�1 (τ, ϕ) − 1]

+ 1

2
a21τ

2[Υ−(α−Δ1)/Δ1 (τ, ϕ) − 1], (4)

here the coefficients a20 and a21 correspond to the asymptotic
nd first Wegner-correction terms, respectively.

In our previous work [28], for the crossover function ϒ(τ,
) we used a simple phenomenological expression obtained by
iselev and co-workers [32–36]:

(q) =
(

q

1 + q

)2Δ1

, (5)

here q = (r/Gi)1/2 is a renormalized distance to the critical point
nd r(τ, ϕ) is a parametric variable. The crossover function ϒ

iven by Eq. (5) coincides with the corresponding crossover
unction in the asymptotic crossover Leung–Griffiths model
btained in the first order of �-expansion by Belyakov et al.
37] and works well in the extended critical region where |τ| < 1.
owever, as was shown by Kiselev et al. [38], better extrapo-

ation behavior of the crossover equation of state to the high
emperature region can be achieved with a crossover function
btained in the form of a Pade-approximant to the numerical
olution of the renormalization-group equations [39,40]. There-

ore, in order to avoid the non-monotonic unphysical behavior
f the pressure–density isotherms in the extrapolation of the GC
oS in the high temperature region, we first replace the crossover

unction ϒ in Eq. (3) with the more reliable crossover function
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obtained by Kiselev et al. [39,40]:

(q̂) =
[

q̂ + q̂2

1 + q̂ + q̂2

]Δ1

, (6)

here q̂ = r/Gi. Unlike the original work that incorporated this
unction [39,40], the parametric variable r(τ, ϕ) in Eq. (6) can be
ound from a solution of the crossover sine (CRS) model [38]:

(r − τ)

Gi

[
1 − p2

4b2

(
1 − τ

r

)]
= b2

{
ϕ̂

m0Giβ

}2

Y (1−2β)/Δ1 , (7)

here ϕ̂ = ϕ[1 + v1 exp(−10ϕ)] + d1τ, the coefficients m0, v1,
1 and Gi are the system-dependent parameters, while the uni-
ersal parameters p2 and b2 can be set equal to the linear model
LM) parameter p2 = b2 = b2

LM = 1.359 [36]. The coefficient
1, which is supposed to be positive and small (0 ≤ v1 � 1),
nsures that at the triple point a physically obvious condition
= 1 is captured in the model. In order to avoid an unphysical
ivergence of the kernel term when |τ| > 1, one also needs to
eplace the crossover asymptotic equation for K(τ, ϕ), Eq. (4),
ith a modified expression:

(τ, ϕ) = τ2

2(1 + τ2)
{a20[Y−α/Δ1 (τ, ϕ) − 1]

+ a21[Y−(α−Δ1)/Δ1 (τ, ϕ) − 1]}. (8)

This expression provides a better convergence to the classical
ehavior Y → 1 and K → 0 when |τ| � 1 [38]. We need to note,
hat with these modifications, the crossover formulation of the
elmholtz free energy in the GC/CRS model is similar to the

rossover EoS model for square-well fluids developed earlier
38].
Eq. (7) is a transcendental equation with respect to r and
an be only solved numerically, making the calculation of the
rossover function Y and its first and second derivatives more
omplicated. In practice, however, one can determine the para-

w
b
f

able 1
ystem-dependent constants for the GC/CRS model, Eqs. (1)–(3), (7) and (8)

CH4 C2H6

lassical critical parameters
Z0c 3.333329 × 10−1 3.258977 ×
T0c (K) 1.905640 × 102 3.053220 ×
ρ0c (mol l−1) 8.708162 5.887651
Critical shift

�vc −1.396796 × 10−1 −1.417594 ×
c1 −2.276827 × 10−1 1.737651
c2 −1.844858 −1.621735 ×
c3 8.515276 × 10−1 −2.909159

rossover parameters
Gi 8.875467 × 10−2 1.530256 ×
m0 1.316678 1.287753
v1 2.524273 × 10−3 5.568065 ×
d1 8.351856 × 10−1 −3.497820 ×
a20 4.392332 1.631400 ×
a21 −2.836717 2.699469
Equilibria 252 (2007) 57–65 59

etric variable r(τ, ϕ) from the analytical sine (ANS) model
eveloped recently by Kiselev and Ely [41]. Therefore, in the
econd step, we have also modified the GC/ANS model by using
he parametric variable given r by [41]

= 2

3

{(
b

m0
|ϕ̂|

)1/β

+ 1

2
τ

+

√√√√[(
b

m0
|ϕ̂|

)1/β

+ 1

2τ

]2

+ 3

4
τ2

⎫⎪⎬
⎪⎭ . (9)

As we have shown earlier [41], in the asymptotic critical
egion, where r → 0, both models, the GC/CRS given by Eqs.
1)–(3), (7) and (8), and the GC/ANS given by Eqs. (1)–(3) and
8) and (9), are physically equivalent. The main difference is that
he derivatives (∂Y/∂τ)η, (∂Y/∂ϕ)τ , (∂2Y/∂τ2)η, (∂2Y/∂ϕ2)τ , and
∂2Y/∂τ∂ϕ) in the GC/ANS model can be evaluated analytically
nd, therefore, the GC/ANS model is easier to use in practical
pplications.

Similar to the GC EoS [28], in the GC/CRS and GC/ANS
odels we use the Patel–Teja (PT) EoS [42,43] as a reference

ubic EoS for one-component fluids. The “global” equation of
tate can be obtained by differentiation of Eq. (1) with respect
o volume:

(v, T ) = −RT

(
∂Ā

∂v

)
= RT

v0c

×
{

−v0c

vc

[(
∂�Ā

∂ϕ

)
T

−
(

∂K

∂ϕ

)
τ

]
+P̄0(T )

}
, (10)
here the dimensionless Helmholtz free energy Ā is determined
y Eqs. (1)–(3), with using the replacements ϒ → Y, and Eq. (8)
or the kernel term.

CO2 H2O

10−1 3.185531 × 10−1 2.744415 × 10−1

102 3.041282 × 102 6.47096 × 102

9.158456 1.494270 × 101

10−1 −1.380162 × 10−1 −1.660035 × 10−1

2.097987 × 101 6.604890 × 10−1

10−2 2.561467 × 101 2.866304
−4.321730 × 101 −9.247295

10−1 1.169050 × 10−1 1.589771 × 10−1

1.336174 1.395591
10−3 4.484512 × 10−3 2.114637 × 10−3

10−1 1.276830 2.855061
101 7.220079 4.377004

−3.574001 −7.72628
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Table 2
System-dependent constants for the GC/ANS model, Eqs. (1)–(3), (8) and (9)

CH4 C2H6 CO2 H2O

Classical critical parameters
Z0c 3.321264 × 10−1 3.243231 × 10−1 3.137072 × 10−1 2.663585 × 10−1

T0c (K) 1.905640 × 102 3.053220 × 102 3.041282 × 102 6.470960 × 102

ρ0c (mol l−1) 8.739797 5.916235 9.299927 1.539616 × 101

Critical shift
�vc −1.270853 × 10−1 −1.375926 × 10−1 −1.247012 × 10−1 −1.406946 × 10−1

Classical PT EoS parameters
c1 −2.462321 × 10−1 1.263169 4.065855 × 101 4.730452
c2 −1.897490 −6.819121 × 10−1 4.985292 × 101 2.170701
c3 9.060517 × 10−1 −1.889157 −8.294750 × 101 −8.084029

Crossover parameters
Gi 7.941293 × 10−2 1.330732 × 10−1 8.593281 × 10−2 8.405396 × 10−2

m0 1.625190 1.519874 1.717345 1.957081
v1 1.134638 × 10−3 3.042934 × 10−3 3.331977 × 10−3 1.728209 × 10−3

d1 6.978983 × 10−1 −4.056100 × 10−1 9.357659 × 10−1 3.216950
a20 4.844775 1.631400 × 101 6.951048 3.709276

719

3

3
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a21 −2.711996 2.701

. Comparison with experimental data

.1. Thermodynamic properties

In general, the GC/CRS and GC/ANS models defined above
re similar to the GC EoS for one-component fluids developed
arlier [28] in that they require six classical system-dependent
arameters and seven crossover parameters. Those parameters
re the critical parameters T0c, v0c, Z0c, and coefficients ci
i = 1–3) in the αa(T)-term in the PT EoS, the Ginzburg num-
er Gi, the critical shift �vc, the coefficients m0, v1, d1, and the
ernel term amplitudes a20 and a21. Thus, the global crossover
elmholtz free energy for the GC/CRS and GC/ANS models

ig. 2. PρT data for carbon dioxide [48,49] compared to predictions of the
C/CRS model (solid curves), the GC/ANS model (long-dashed curves), and

he GC EoS [28] (short-dashed curves). The empty symbols correspond to the
ne-phase region, and the filled symbols indicate the VLE data.

a
i
s
[
G

F
d
G

−2.289222 −9.282964

ontains 13 adjustable parameters. However, since the real crit-
cal parameters Tc, Pc, and Zc for a one-component fluid are
sually known, the critical shift �vc = vc/v0c − 1 is known
oo. Therefore, following our previous work [28], we use here
he conditions T0c = Tc and P0c = Pc thus reducing the number of
djustable parameters to ten: the classical compressibility factor
0c, the coefficients ci (i = 1–3), the Ginzburg number Gi, the
oefficients m0, v1, d1, and the critical amplitudes a20 and a21.

In this work, we tested the GC/CRS and GC/ANS models
gainst experimental data for methane, ethane, carbon diox-
de, and water. For optimization of these models, we used the

ame data sets and optimization procedure as for the GC EoS
28]. In particular, the classical compressibility factor Z0c, the
inzburg number Gi, and the coefficients ci (i = 1–3), m0, v1, and

ig. 3. The isochoric heat capacity data along the critical isochore [50] for carbon
ioxide compared to predictions of the GC EoS [28] (short-dashed curves), the
C/CRS (solid curves), and the GC/ANS (long-dashed curves) models.
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Fig. 4. The isobaric heat capacity data [51] for carbon dioxide compared to pre-
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totic critical region the predictions of the GC EoS qualitatively

F
G

ictions of the GC EoS [28] (short-dashed curves), the GC/CRS (solid curves),
nd the GC/ANS (long-dashed curves) models.

1 were found from a fit of the models to experimental VLE-
nd PVT-data in one and two-phase regions. The amplitudes a20
nd a21 for all substances were found from a fit of the models
o the CV-data generated along the critical isochore using the
arametric crossover model developed for these substances by
iselev and co-workers [44,45]. The system-dependent param-

ters for methane, ethane, carbon dioxide and water are listed
or the GC/CRS and GC/ANS models in Tables 1 and 2,

espectively. Comparisons of the predictions of the models with
xperimental data, and the GC EoS [28] as well, are shown in
igs. 2–6.

a
d
s

ig. 5. The isobaric heat capacity data for methane [52,53] (left) and ethane [54,55]
C/CRS (solid curves), and the GC/ANS (long-dashed curves) models.
Equilibria 252 (2007) 57–65 61

In Fig. 2 we show a comparison of the GC/CRS, GC/ANS,
nd GC EoS predictions with experimental PVT and VLE
ata for carbon dioxide. As one can see, in a wide range
f thermodynamic states, all three models practically coin-
ide and yield very good representation of the PVT and VLE
urfaces of the pure fluids including the critical region. Sim-
lar to the GC EoS [28], the GC/CRS and GC/ANS models
eproduce the PVT surface in the one-phase with an aver-
ge absolute deviation (AAD) for pressure is less then 1%,
nd at ρ ≥ 2ρc they reproduce the liquid densities for all sub-
tances with an AAD of about 1–2%. We should note, that
ontrary to the GC EoS, the GC/CRS and GC/ANS mod-
ls can be also extrapolated into the high temperature region
see solid and long-dashed curves in Fig. 1) without producing
he non-monotonic unphysical behavior of the pressure-density
sotherms discussed above for the GC EoS. The predictions of
he GC/CRS and GC/ANS models for the PVT and VLE sur-
ace in methane, ethane, and water are also very similar to the
nes achieved with the GC EoS [28], and, therefore, we will not
how them here. For all substances in the temperature region
.3Tc ≤ T ≤ Tc, the GC EoS reproduces the saturated pressure
ata with an AAD of about 0.5–1%, the liquid density data
ith an AAD of about 1–2%, and the vapor density with about
–3%.

Predictions for the one and two-phase isochoric heat capac-
ty of carbon dioxide are shown in Fig. 3. The GC EoS
esults are shown as short-dashed curves and the GC/CRS
re shown as solid curves. As one can see, in the asymp-
nd quantitatively are in a good agreement with experimental
ata. Similar results have been obtained for all other sub-
tances.

(right) compared to predictions of the GC EoS [28] (short-dashed curves), the
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Fig. 6. The isobaric heat capacity data for water [56] compared to predictions
o
G
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3.2. Thermal conductivity

F
G

f the GC EoS [28] (short-dashed curves), the GC/CRS (solid curves), and the
C/ANS (long-dashed curves) models.

In Figs. 4–6 we compare experimental values of the isobaric
eat capacities, Cp, with the values calculated with the GC/CRS
nd GC/ANS models (solid and long-dashed curves, respec-
ively), and the GC EoS (short-dashed curves). Again, all three

odels give the very similar predictions, which in the critical
egion are systematically lower than experimental values. As
e noted in it our previous work [28], this is not surprising,

ince a simple cubic EoS, even in the crossover formulation, is
nable to simultaneously reproduce the PVT and heat capacity
ata in the critical region within experimental accuracy. Except

or data points very close to the critical point, for which devia-
ions increase to 30–40%, the GC EoS reproduces the isobaric
eat capacity data shown in Figs. 3 and 4 with an AAD of about d

ig. 8. The thermal conductivity data along the isochores for methane [58] (symbo
C/CRS + DMT (solid curves), and the GC/ANS + DMT (long-dashed curves) mode
ig. 7. The thermal conductivity data along the isotherms for carbon dioxide
57] compared to predictions of the GC + DMT [28] (short-dashed curves), the
C/CRS + DMT (solid curves), and the GC/ANS + DMT (long-dashed curves)
odels.

–5% in the low-density region, and with an AAD of about
–2% for liquids. Thus, in spite of the differences in definition
f the crossover function, the GC/CRS and GC/ANS models
ive a sufficiently accurate representation of the isochoric and
sobaric heat capacities in pure fluids and, therefore, can be
sed for the prediction the thermal conductivity in the critical
egion.
Following our previous work [28], we use a crossover
ecoupled-mode theory (DMT) expression for the calculation

ls) compared to predictions of the GC + DMT [28] (short-dashed curves), the
ls.
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ig. 9. The thermal conductivity data along the isotherms for ethane [59] (sym-
ols) compared to predictions of the GC + DMT [28] (short-dashed curves), the
C/CRS + DMT (solid curves), and the GC/ANS + DMT (long-dashed curves)
odels.

f the thermal conductivity in the critical region [46,47]:

= kBTρCp

6πηξ̂
Ω(z) + λb. (11)

In this equation, kB is Boltzmann’s constant, η the shear vis-
osity, and λb is a background part of the thermal conductivity
hich is an analytic function of the temperature and density. For

he crossover function Ω(z) = Ω(qDξ̂) and renormalized corre-
ation length ξ̂(T, ρ) we use the same expressions and the same
ystem-dependent parameters ξ0 and qD as employed in our pre-
ious work [28] (see Eqs. (13)–(16) in Ref. [28]). Here, however,
he thermodynamic properties were calculated with the GC/CRS
nd GC/ANS models developed in this work. For the shear vis-
osity η(T, ρ) and background part of the thermal conductivity
b(T, ρ) we also use the same correlations as in our previous
C + DMT model [28] (see Eqs. (20) and (21) in Ref. [28]).
A comparison of thermal conductivity data for carbon diox-

de, methane, and ethane with the predictions of the GC + DMT,
C/CRS + DMT, and GC/ANS + DMT models is shown in
igs. 7–9.

In agreement with experimental data, all models yield an
nomalous increase in the thermal conductivity in the critical
egion, while far away from the critical point they reduce to
heir background contributions. Also when ρ → 0, all models
ive the dilute gas contribution λ0(T). Since the DMT expression
or the thermal conductivity, Eq. (11), involves not only direct
–ρ–T calculations but also require an accurate representation of

he first, (∂P/∂ρ)T and (∂P/∂T)ρ, and second, (∂2P/∂T2)ρ, deriva-
ives, we consider the results presented in Figs. 7–9 as additional
roof of the thermodynamic self consistency of the GC/CRS and
C/ANS models developed in this work.
ist of symbols
2i parameter in Eq. (4) (i = 0,1)

Helmholtz free energy
¯ dimensionless Helmholtz free energy

S
i
r

Equilibria 252 (2007) 57–65 63

¯ 0 dimensionless ideal gas part of free energy
¯ res

0 dimensionless ideal residual part along the critical iso-
chore

2 universal linear-model parameter
i system-dependent parameters in the Patel–Teja EoS

(i = 1–3)
P isobaric heat capacity
V isochoric heat capacity
1 system-dependent coefficient

inverse Ginzburg number
i Ginzburg number

B Boltzmann’s constant
0 system-dependent coefficients
w molecular weight

2 universal sine-model parameter
pressure

c critical pressure
¯ 0 dimensionless pressure along the critical isochore
, q̂ arguments of the crossover functions
D cut-off wave number

gas constant
temperature (K)

c critical temperature (K)
molar volume (l mol−1)

c critical volume (l mol−1)
1 system-dependent coefficient

argument of the dynamical crossover function
c critical compressibility factor
, Y crossover functions

reek letters
universal critical exponent
universal critical exponent
difference

1 universal critical exponents
universal critical exponent
shear viscosity
order parameter

¯ renormalized order parameter
kernel term
thermal conductivity
molar density (mol l−1)
reduced temperature difference

¯ renormalized temperature difference
correlation length

0 critical amplitude

ubscripts
g, b background

critical
x excess

classical
uperscripts
d ideal gas part
es residual
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