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Abstract

In our previous work [S.B. Kiselev, J.F. Ely, Fluid Phase. Equilib. 222-223 (2004) 149], we developed a generalized cubic (GC) EoS for pure
fluids, which incorporates non-analytic scaling laws in the critical region and reproduces the thermodynamic properties of pure fluids with high
accuracy, including the asymptotic scaling behavior of the isochoric heat capacity in the one- and two-phase regions. However, it appears that in
some cases the GC EoS can give unphysical behavior when extrapolated to high temperatures and densities. In this work, we present a modification
of the generalized cubic EoS, which in the critical region is physically equivalent to the GC EoS developed earlier, but is more reliable in its

extrapolation to high temperatures.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that long-range fluctuations in the density
cause the thermodynamic surface of fluids to exhibit a singular-
ity at the critical point. As a consequence, all analytical, classical
equations of state (EoS), which give a reasonable representation
of the thermodynamic properties of fluids far away from the crit-
ical point, fail in the critical region. Significant efforts have been
made to develop a “global” EoS that incorporates the asymptotic
singular behavior of the thermodynamic properties in the critical
region, and at low densities reproduces the ideal gas equation
[1-27]. Thus far, all these efforts have been mainly focused on
developing an EoS for VLE and PVT surfaces, but not for caloric
properties, such as the isochoric and isobaric heat capacities. In
our recent publication [28], we reported a “global”, generalized
cubic (GC) EoS for pure fluids, which reproduces the thermody-
namic properties of pure fluids with high accuracy, including the
asymptotic scaling behavior of the isochoric heat capacity in the
one- and two-phase regions. In combination with the decoupled-
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mode theory (DMT), we also proposed a generalized GC + DMT
model [28] that is capable of reproducing the singular behavior
of the thermal conductivity of pure fluids in and beyond the crit-
ical region. However, it appears, that for some substances the
GC EoS with system-dependent parameters optimized to exper-
imental data at near critical and sub-critical temperatures, can
give unphysical behavior at higher temperatures and densities.
As an example, the short-dashed curve in Fig. 1 shows the pres-
sure as a function of density calculated with the GC EoS for CO;
[28] along the isotherm T=2T,. As one can see, at high densi-
ties where p > 1.5, this isotherm CO» exhibits non-monotonic
behavior, and when 1.5 < p/p. < 1.8 it even has a negative slope,
(0P/9p)r <0, which is physically incorrect. We need to note, that
this non-monotonic behavior is observed at temperatures which
are far beyond the temperature range of the experimental data
used for the optimization of the GC EoS for CO, [28], and,
therefore, was overlooked in our previous work.

In principle, the non-monotonic behavior observed in Fig. 1
can be eliminated by refitting the GC EoS using experimental
high temperature PVT-data. Alternatively, one could generate
data for T > T, with some more accurate EoS, such as a multi-
parameter crossover EoS developed recently for CO; by Sun et
al. [29]. However, in general these approaches make the GC EoS
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Fig. 1. P—p (top) and (dP/dp)r — p (bottom) isotherms calculated for carbon
dioxide at T=2T, with the GC EoS [28] (short-dashed curves), the GC/CRS
(solid curves), and the GC/ANS (long-dashed curves) models.

less predictive. Therefore, in this paper we present a modifica-
tion of the GC EoS, which is more reliable when extrapolated
to high temperatures. We proceed as follows. In Section 2 we
describe an improved GC EoS for pure fluids and in Section 3
we apply this EoS for the thermodynamic transport properties
calculations.

2. Modified GC EoS

In the generalized—*global” crossover EoS, the dimension-
less Helmholtz free energy A = A(T, v)/RT is represented in
the form [28]:

A(T, v) = AA(T, ) — K(1, ¢) — AvPo(T) + AG*(T)+Aia(T),
ey

where v = 1/p is molar volume, R the universal gas constant,
Toc and v are the classical (predicted by the unmodified EoS)
critical temperature and molar volume, respectively, Av, =
(ve — voc)/voec K 1 adimensionless shift of the critical volume,
Po(T) = P(T, voc)/RT the dimensionless pressure, ABCS(T) =
A™(T, voc) the dimensionless residual part of the Helmholtz
energy along the critical isochore v = vg., and ATy s
the dimensionless temperature-dependent ideal-gas Helmholtz
free energy. The singular part of the Helmholtz free energy
AA(z, p) is obtained by a replacing the dimensionless distances
AT=T/Top. — 1 and Av = v/vg, — 1 in the classical expression
for critical part of the Helmholtz free energy:

AA(AT, Av) = A™(AT, Av) — A™(AT, 0) — In(Av+ 1)
+ AvPy(AT) (2
with the renormalized values
@ = oY V2PMAA L (1 4 o) Ay T R241
(3)

where =0.11, $=0.325, y=2—-28—«a=1.24,and A; =0.51
are universal non-classical critical exponents [30,31] wv,,
and Y(t, ¢) denotes a crossover function. In Egs. (1)—(3),
t=T/T. — 1 isadimensionless deviation of the temperature from
the real critical temperature T, ¢ = v/v. — 1 is a dimension-
less deviation of the molar volume form the real critical molar
volume, and the kernel term is given by

- —a/24
T =y %24

1
K(t,¢) = Eazorz[T_“/A' (t,o) — 1]

1
+ 5cmrz[r—<‘*—A”/Al(r, o) — 11, )

where the coefficients a>o and ay; correspond to the asymptotic
and first Wegner-correction terms, respectively.

In our previous work [28], for the crossover function Y(z,
n) we used a simple phenomenological expression obtained by
Kiselev and co-workers [32-36]:

2A
1 ) , ©)

T(g) = <1+q

where ¢ = (r/Gi)"? is a renormalized distance to the critical point
and r(t, @) is a parametric variable. The crossover function YT
given by Eq. (5) coincides with the corresponding crossover
function in the asymptotic crossover Leung—Griffiths model
obtained in the first order of e-expansion by Belyakov et al.
[37] and works well in the extended critical region where |t| < 1.
However, as was shown by Kiselev et al. [38], better extrapo-
lation behavior of the crossover equation of state to the high
temperature region can be achieved with a crossover function
obtained in the form of a Pade-approximant to the numerical
solution of the renormalization-group equations [39,40]. There-
fore, in order to avoid the non-monotonic unphysical behavior
of the pressure—density isotherms in the extrapolation of the GC
EoS in the high temperature region, we first replace the crossover
function Y in Eq. (3) with the more reliable crossover function
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Y obtained by Kiselev et al. [39,40]:
A A A
@) = {‘qu} 1
1+4+4?
where g = r/Gi. Unlike the original work that incorporated this

function [39,40], the parametric variable r(z, ¢) in Eq. (6) can be
found from a solution of the crossover sine (CRS) model [38]:

(r—1 p? T of 2 \° (1-28)/4
1= 2 (1= 0 =p2] 2L ya2pra g
Gi [ 4b2( r) oGP )

where = ¢[1 + v exp(—10¢)] + dj 7, the coefficients myg, v1,
di and Gi are the system-dependent parameters, while the uni-
versal parameters p” and b” can be set equal to the linear model
(LM) parameter p> = b*> = be = 1.359 [36]. The coefficient
v1, which is supposed to be positive and small (0 < v; < 1),
ensures that at the triple point a physically obvious condition
Y =1 is captured in the model. In order to avoid an unphysical
divergence of the kernel term when |t|> 1, one also needs to
replace the crossover asymptotic equation for K(z, ¢), Eq. (4),
with a modified expression:

(6)

2
K(z. ) = ﬁ{m[r“/m(u o) —1]
+ay [Y @AV A7 ) — 1]). )

This expression provides a better convergence to the classical
behavior Y — 1 and K — 0 when || > 1 [38]. We need to note,
that with these modifications, the crossover formulation of the
Helmholtz free energy in the GC/CRS model is similar to the
crossover EoS model for square-well fluids developed earlier
[38].

Eq. (7) is a transcendental equation with respect to r and
can be only solved numerically, making the calculation of the
crossover function Y and its first and second derivatives more
complicated. In practice, however, one can determine the para-

metric variable r(t, ¢) from the analytical sine (ANS) model
developed recently by Kiselev and Ely [41]. Therefore, in the
second step, we have also modified the GC/ANS model by using
the parametric variable given r by [41]

+>12 5. C))

As we have shown earlier [41], in the asymptotic critical
region, where r — 0, both models, the GC/CRS given by Egs.
(1)=(3), (7) and (8), and the GC/ANS given by Egs. (1)—(3) and
(8) and (9), are physically equivalent. The main difference is that
the derivatives (3Y/07),, (3Y/d¢)-, (32Y/372),, (3*Y/3¢?);, and
(8*Y/3td¢) in the GC/ANS model can be evaluated analytically
and, therefore, the GC/ANS model is easier to use in practical
applications.

Similar to the GC EoS [28], in the GC/CRS and GC/ANS
models we use the Patel-Teja (PT) EoS [42,43] as a reference
cubic EoS for one-component fluids. The “global” equation of
state can be obtained by differentiation of Eq. (1) with respect
to volume:

9A RT
P(v,T) = —RT <> = —
v V0c

(), (%) ] o)
x{——= —=— ) [+P(T);, (10)
Ve dp Jr \ ¢/,

where the dimensionless Helmholtz free energy A is determined
by Egs. (1)—(3), with using the replacements Y — Y, and Eq. (8)
for the kernel term.

Table 1
System-dependent constants for the GC/CRS model, Egs. (1)—(3), (7) and (8)
CHy CyHg CO, H,O
Classical critical parameters
Zoe 3.333329 x 107! 3.258977 x 107! 3.185531 x 107! 2.744415 x 107!

Toe (K) 1.905640 x 10? 3.053220 x 102 3.041282 x 10? 6.47096 x 10%
poc (mol1~1) 8.708162 5.887651 9.158456 1.494270 x 10!
Critical shift
Ave —1.396796 x 10! —1.417594 x 107! —1.380162 x 10! —1.660035 x 10~!
1 —2.276827 x 107! 1.737651 2.097987 x 10! 6.604890 x 107!
e —1.844858 —1.621735 x 1072 2.561467 x 10! 2.866304
c3 8.515276 x 10! —2.909159 —4.321730 x 10! —9.247295
Crossover parameters
Gi 8.875467 x 1072 1.530256 x 107! 1.169050 x 10~! 1.589771 x 10~!
mo 1.316678 1.287753 1.336174 1.395591
vy 2.524273 x 1073 5.568065 x 103 4484512 x 1073 2.114637 x 1073
di 8.351856 x 10~! —3.497820 x 10~! 1.276830 2.855061
ax 4.392332 1.631400 x 10* 7.220079 4.377004
a —2.836717 2.699469 —3.574001 —7.72628
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System-dependent constants for the GC/ANS model, Egs. (1)—(3), (8) and (9)

CHy

CyHg

CO,

H,0

Classical critical parameters
Z()c
Toc (K)
poc (mol171)
Critical shift
Ave

Classical PT EoS parameters
1
2
3

Crossover parameters
Gi
mo
V1
d
ax
as)

3.321264 x 107!
1.905640 x 102
8.739797

—1.270853 x 107!

—2.462321 x 10!
—1.897490
9.060517 x 107!

7.941293 x 1072
1.625190
1.134638 x 1073
6.978983 x 107!
4.844775
—2.711996

3.243231 x 107!
3.053220 x 102
5.916235

—1.375926 x 107!

1.263169
—6.819121 x 107!
—1.889157

1.330732 x 107!
1.519874
3.042934 x 1073
—4.056100 x 107!
1.631400 x 10!
2701719

3.137072 x 107!
3.041282 x 102
9.299927

—1.247012 x 107!

4.065855 x 10!
4.985292 x 10!
—8.294750 x 10!

8.593281 x 1072
1.717345
3.331977 x 1073
9.357659 x 107!
6.951048
—2.289222

2.663585 x 107!
6.470960 x 102
1.539616 x 10!

—1.406946 x 107!

4.730452
2.170701
—8.084029

8.405396 x 1072
1.957081
1.728209 x 1073
3.216950
3.709276
—9.282964

3. Comparison with experimental data
3.1. Thermodynamic properties

In general, the GC/CRS and GC/ANS models defined above
are similar to the GC EoS for one-component fluids developed
earlier [28] in that they require six classical system-dependent
parameters and seven crossover parameters. Those parameters
are the critical parameters Toc, voc, Zoc, and coefficients c;
(i=1-3) in the oy(T)-term in the PT EoS, the Ginzburg num-
ber Gi, the critical shift Av., the coefficients myg, vy, d;, and the
kernel term amplitudes azo and as;. Thus, the global crossover
Helmholtz free energy for the GC/CRS and GC/ANS models
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Fig. 2. PpT data for carbon dioxide [48,49] compared to predictions of the

contains 13 adjustable parameters. However, since the real crit-
ical parameters T, P., and Z; for a one-component fluid are
usually known, the critical shift Av. = ve/vgc — 1 is known
too. Therefore, following our previous work [28], we use here
the conditions Ty = T, and P, = P thus reducing the number of
adjustable parameters to ten: the classical compressibility factor
Zoc, the coefficients ¢; (i=1-3), the Ginzburg number Gi, the
coefficients my, v1, d1, and the critical amplitudes ayo and ay;.

In this work, we tested the GC/CRS and GC/ANS models
against experimental data for methane, ethane, carbon diox-
ide, and water. For optimization of these models, we used the
same data sets and optimization procedure as for the GC EoS
[28]. In particular, the classical compressibility factor Z, the
Ginzburg number Gi, and the coefficients c; (i = 1-3), mg, v1, and

o oo 8
7t
®  Abdulagatov et. al., 1991
GC/CRS (this work)
6 ——=— GC/ANS (this work)
------- GC EOS (2004)

Fig.3. Theisochoric heat capacity data along the critical isochore [50] for carbon
dioxide compared to predictions of the GC EoS [28] (short-dashed curves), the
GC/CRS (solid curves), and the GC/ANS (long-dashed curves) models.

GC/CRS model (solid curves), the GC/ANS model (long-dashed curves), and
the GC EoS [28] (short-dashed curves). The empty symbols correspond to the
one-phase region, and the filled symbols indicate the VLE data.
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Fig. 4. The isobaric heat capacity data [51] for carbon dioxide compared to pre-
dictions of the GC EoS [28] (short-dashed curves), the GC/CRS (solid curves),
and the GC/ANS (long-dashed curves) models.

dy were found from a fit of the models to experimental VLE-
and PVT-data in one and two-phase regions. The amplitudes axg
and ay; for all substances were found from a fit of the models
to the Cy-data generated along the critical isochore using the
parametric crossover model developed for these substances by
Kiselev and co-workers [44,45]. The system-dependent param-
eters for methane, ethane, carbon dioxide and water are listed
for the GC/CRS and GC/ANS models in Tables 1 and 2,
respectively. Comparisons of the predictions of the models with
experimental data, and the GC EoS [28] as well, are shown in
Figs. 2-6.

methane
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In Fig. 2 we show a comparison of the GC/CRS, GC/ANS,
and GC EoS predictions with experimental PVT and VLE
data for carbon dioxide. As one can see, in a wide range
of thermodynamic states, all three models practically coin-
cide and yield very good representation of the PVT and VLE
surfaces of the pure fluids including the critical region. Sim-
ilar to the GC EoS [28], the GC/CRS and GC/ANS models
reproduce the PVT surface in the one-phase with an aver-
age absolute deviation (AAD) for pressure is less then 1%,
and at p >2p. they reproduce the liquid densities for all sub-
stances with an AAD of about 1-2%. We should note, that
contrary to the GC EoS, the GC/CRS and GC/ANS mod-
els can be also extrapolated into the high temperature region
(see solid and long-dashed curves in Fig. 1) without producing
the non-monotonic unphysical behavior of the pressure-density
isotherms discussed above for the GC EoS. The predictions of
the GC/CRS and GC/ANS models for the PVT and VLE sur-
face in methane, ethane, and water are also very similar to the
ones achieved with the GC EoS [28], and, therefore, we will not
show them here. For all substances in the temperature region
0.3T. < T <T,, the GC EoS reproduces the saturated pressure
data with an AAD of about 0.5-1%, the liquid density data
with an AAD of about 1-2%, and the vapor density with about
2-3%.

Predictions for the one and two-phase isochoric heat capac-
ity of carbon dioxide are shown in Fig. 3. The GC EoS
results are shown as short-dashed curves and the GC/CRS
are shown as solid curves. As one can see, in the asymp-
totic critical region the predictions of the GC EoS qualitatively
and quantitatively are in a good agreement with experimental
data. Similar results have been obtained for all other sub-
stances.

ethane

3000+ 4,916 MPa

=-=--- GC EOS (2004)

4 Furtado, 1973
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Fig. 5. The isobaric heat capacity data for methane [52,53] (left) and ethane [54,55] (right) compared to predictions of the GC EoS [28] (short-dashed curves), the

GC/CRS (solid curves), and the GC/ANS (long-dashed curves) models.
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Fig. 6. The isobaric heat capacity data for water [56] compared to predictions
of the GC EoS [28] (short-dashed curves), the GC/CRS (solid curves), and the
GC/ANS (long-dashed curves) models.

In Figs. 4-6 we compare experimental values of the isobaric
heat capacities, C,,, with the values calculated with the GC/CRS
and GC/ANS models (solid and long-dashed curves, respec-
tively), and the GC EoS (short-dashed curves). Again, all three
models give the very similar predictions, which in the critical
region are systematically lower than experimental values. As
we noted in it our previous work [28], this is not surprising,
since a simple cubic EoS, even in the crossover formulation, is
unable to simultaneously reproduce the PVT and heat capacity
data in the critical region within experimental accuracy. Except
for data points very close to the critical point, for which devia-
tions increase to 30-40%, the GC EoS reproduces the isobaric
heat capacity data shown in Figs. 3 and 4 with an AAD of about

304.3K
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3132K
3227K
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L —— GCICRS (this work)
——— GC/ANS (this work)
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Fig. 7. The thermal conductivity data along the isotherms for carbon dioxide
[57] compared to predictions of the GC + DMT [28] (short-dashed curves), the
GC/CRS + DMT (solid curves), and the GC/ANS + DMT (long-dashed curves)
models.

2-5% in the low-density region, and with an AAD of about
1-2% for liquids. Thus, in spite of the differences in definition
of the crossover function, the GC/CRS and GC/ANS models
give a sufficiently accurate representation of the isochoric and
isobaric heat capacities in pure fluids and, therefore, can be
used for the prediction the thermal conductivity in the critical
region.

3.2. Thermal conductivity

Following our previous work [28], we use a crossover
decoupled-mode theory (DMT) expression for the calculation

methane
4 G
v p=80moll’ v p=10.1mol I 100l |© p=120moll”
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Fig. 8. The thermal conductivity data along the isochores for methane [58] (symbols) compared to predictions of the GC+DMT [28] (short-dashed curves), the
GC/CRS + DMT (solid curves), and the GC/ANS + DMT (long-dashed curves) models.
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Fig. 9. The thermal conductivity data along the isotherms for ethane [59] (sym-
bols) compared to predictions of the GC + DMT [28] (short-dashed curves), the
GC/CRS + DMT (solid curves), and the GC/ANS + DMT (long-dashed curves)
models.

of the thermal conductivity in the critical region [46,47]:

r= "1 o) 4 an
6mné

In this equation, kg is Boltzmann’s constant, 1 the shear vis-
cosity, and Ap is a background part of the thermal conductivity
which is an analytic function of the temperature and density. For
the crossover function £2(z) = .Q(ql)é) and renormalized corre-
lation length (7, p) we use the same expressions and the same
system-dependent parameters &y and gp as employed in our pre-
vious work [28] (see Egs. (13)—-(16) in Ref. [28]). Here, however,
the thermodynamic properties were calculated with the GC/CRS
and GC/ANS models developed in this work. For the shear vis-
cosity n(7, p) and background part of the thermal conductivity
Ap(T, p) we also use the same correlations as in our previous
GC + DMT model [28] (see Egs. (20) and (21) in Ref. [28]).

A comparison of thermal conductivity data for carbon diox-
ide, methane, and ethane with the predictions of the GC + DMT,
GC/CRS + DMT, and GC/ANS +DMT models is shown in
Figs. 7-9.

In agreement with experimental data, all models yield an
anomalous increase in the thermal conductivity in the critical
region, while far away from the critical point they reduce to
their background contributions. Also when p — 0, all models
give the dilute gas contribution Ao(7). Since the DMT expression
for the thermal conductivity, Eq. (11), involves not only direct
P—p—T calculations but also require an accurate representation of
the first, (3P/3p)r and (3P/3T),, and second, (3*P/dT?),,, deriva-
tives, we consider the results presented in Figs. 7-9 as additional
proof of the thermodynamic self consistency of the GC/CRS and
GC/ANS models developed in this work.

List of symbols
a; parameter in Eq. (4) (i=0,1)
A Helmbholtz free energy

A dimensionless Helmholtz free energy

Ag dimensionless ideal gas part of free energy

AFS dimensionless ideal residual part along the critical iso-
chore

b? universal linear-model parameter

Ci system-dependent parameters in the Patel-Teja EoS
(i=1-3)

Cp isobaric heat capacity

Cv isochoric heat capacity

di system-dependent coefficient

g inverse Ginzburg number

Gi Ginzburg number

kg Boltzmann’s constant

mo system-dependent coefficients

My, molecular weight

P’ universal sine-model parameter

P pressure

P. critical pressure

Py dimensionless pressure along the critical isochore

q,q arguments of the crossover functions

gp cut-off wave number

R gas constant

T temperature (K)

T critical temperature (K)

v molar volume (1 mol~1)

Ve critical volume (Imol 1)

V] system-dependent coefficient

Z argument of the dynamical crossover function

Z; critical compressibility factor

T,Y crossover functions

Greek letters

o universal critical exponent

B universal critical exponent

A difference

Aq universal critical exponents

y universal critical exponent

n shear viscosity

[0 order parameter

% renormalized order parameter

K kernel term

A thermal conductivity

P molar density (moll~!)

T reduced temperature difference

T renormalized temperature difference

& correlation length

&o critical amplitude

Subscripts

bg,b  background

c critical

ex excess

0 classical

Superscripts

id ideal gas part

res residual
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