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What is Molecular 
Simulation?

Molecular simulation is a computational 
“experiment” conducted on a molecular 
model
– Could be a single molecule (computational 

quantum chemistry)
– Could involve O(10)-O(106) molecules
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What is Molecular Simulation?
Computational quantum chemistry 
generally provides results for isolated or 
pairs of molecules
– Geometry
– Thermochemistry   
– Frequencies
– Anything associated 

with electronic structure
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What is Molecular Simulation?
Molecular dynamics provides results for a 
system of molecules undergoing dynamic 
(deterministic) motion
– Generates many configurations which are 

averaged to provide measurements
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What is Molecular Simulation?
Monte Carlo provides results for a system 
molecules undergoing stochastic motions 
– Generates an ensemble average with no 

element of time
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What is a Molecular Model?
Computational Quantum Chemistry
– Theory underlying the molecular orbital model 

that goes into the many-body Schrödinger
equation

Ψ = ΨN N NH E
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What is a Molecular Model?
In molecular dynamics and Monte Carlo it is the 
model for the interactions between molecules, 
e.g., the force field
– Intramolecular Contributions
– Intermolecular Contributions

Method for handling finite size of a simulation 
system
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Forces
To begin we start with a categorization of 
forces (relative strengths)
– Strong interactions (10)
– Coulombic force (0.1)
– Weak interactions (10-3)
– Gravity (10-19)

A research area in physics is to unify these 
forces
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Forces
For our purposes, we are only interested in 
Coulombic forces
– ionic
– covalent
– molecular
– van der Waals

All material properties are determined by 
this force
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Simulation Force Fields
Intramolecular Forces

bend
stretch

torsion

Non-bonded

stretch bend torsion non bonded
i i i ij

bonds bond dihedral i j
angles angles

U U U −= + + +∑ ∑ ∑ ∑∑intraU U
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Simulation Force Fields
Intermolecular Forces

,= + + +inter repulsion lr attraction electrostatic multibodyU U UU U
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MD and MC Modeling
It isn’t possible to simulate a macroscopic system 
containing ~1023 molecules
– No computer exists that could store the positions and 

momenta of more than 109 molecules (~6 terabytes)
Solution is paradoxical—we simulate an infinite 
system!
– It is infinite in a special way—it is periodic, i.e. a 

smaller set of molecules are confined to a regular 
space filling geometry like a cube which is duplicated 
in all directions

– applet
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Periodic Boundaries
In the periodic system, each molecule in 
principle interacts with an infinite number 
of other molecules.
– Not a problem for systems whose forces are 

short-ranged, e.g., 0.5 nm or so
– For electrostatic systems, where the potential is 

very long ranged, other techniques must be 
used

» Ewald sums or reaction fields
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Molecular Perspectives in 
Chemical Engineering

What is this course about? 
– Arguably, chemical engineering is at a 

crossroads as a profession. The traditional 
chemical processing and petrochemical 
industries are yielding their dominance to 
newer, dynamic and fast growing ones like 
microelectronics and biotechnology.
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Length Scales
Emerging Chemical Engineering

Current Chemical Engineering
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Molecular Simulation as a 
Tool for Chemical Engineers

Modern materials science is built upon metallurgy 
and alchemy
Today its scope is far beyond its origins
– amorphous materials
– ceramics
– polymers
– nanoscale and nanocomposites

Modern alchemy is the molecular design of new 
materials
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Molecular Simulation as a 
Tool for Chemical Engineers

Since materials are complex, we cannot 
treat them directly by theory
– Historically, experimental methods have been 

the stalwart of materials research
Unfortunately, experimental methods are 
also inadequate 
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Progress in Computer Technology 
is Opening a New Era

MO, MD and MC calculations are now 
being used to supplement experiments
– New chemicals and materials are being 

designed by first applying simulations 
and then being confirmed in 
experimental tests

Computer simulations enhance our 
understanding of natural phenomena
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Industrial Examples

Workshop on Predicting the Thermophysical 
Properties of Fluids by Molecular 

Simulation
N.I.S.T., Gaithersburg, MD

June 18 and 19, 2001

www.ctcms.nist.gov/~fstarr/ptpfms/home.html
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Industrial Examples 
(C. Thomas – 3M)

Molecular Modeling
– 3M Fluoro-organic molecules
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Industrial Examples
(C. Thomas – 3M)

Surface Energies of Polymers
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Personal Care Industry
(F. Case - Colgate)

Surfactant/surfactant & surfactant/water         
interaction parameters
– Driving forces for miscibility or phase separation
– Input parameters for mesoscale models (used to predict 

structure and properties)

Absorption onto “real” surfaces (skin, cotton, 
grout)
Chaotropic effects - water ordering
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Chemical Industry
(T. Thompson - Dow)

Complimentary          Direct Advantage
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Curriculum Challenge

Maintain quality program in “classical” 
process oriented chemical 
engineering while simultaneously 
introducing molecular engineering 
concepts
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Course Outline
Review computational quantum chemistry
– How does Spartan Work?

Review Statistical Thermodynamics
– Structure and Ensemble Averages

Monte Carlo Simulation Techniques
Molecular Dynamics Simulation 
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The Big Picture

Quantum and 
Statistica1Mechanics

Quantum 
Mechanics Isolated

Molecules

Interacting
Molecules

Atoms

Behavior of Big Chunks
of Matter

Applied Theory, 
Simulation and 
Experiment

Thermodynamics 
Kinetics, Transport 
Phenomena
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The Curriculum
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The Curriculum
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The Tools – Spartan 
(Wavefunction)

Methods
– Molecular Mechanics (SYBL, MMFF94)

» Up to 1,000 atoms
– Semi-empirical Molecular Orbital 

(MNDO, AM1, PM3, MNDO/d)
» Up to 200 atoms

– Hartree-Fock Molecular Orbital
(STO-3G, 3-21G, 6-31G*, 6-311G*)

» Up to 100 atoms
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The Tools – Spartan 
(Wavefunction)

Methods (continued)
– Density Functional (Local density models and 

BP, BLYP, EDF1 and B3LYP)
» Up to 50 atoms

– Møller-Plesset (MP2, MP3, MP4)
» Up to 20 atoms
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The Tools – Spartan 
(Wavefunction)

Tasks
– Energy
– Equilibrium Geometry
– Transition State Geometry
– Normal Mode Frequencies 
– Conformation
– Energy Profile
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The Tools – Spartan 
(Wavefunction)

Properties
– Atomic Charges (Mullikin and Bond Orbital 

Charges)
– Thermodynamics (Enthalpies, entropies, free 

energies,isotope effects, based on calculated 
geometries and vibrational frequencies)

– Electrical (Dipole, quadrupole and higher 
moments, polarizabilities and hyper-
polarizabilities)

– Solvation (Aqueous solvation energies from SM5.4 
model)
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The Tools – MMTF Modules
CACHE – Computer Aids for Chemical 
Engineering (www.che.utexas.edu/cache/)
CACHE Molecular Modeling Task Force
Purpose
– Foster integration of molecular modeling in chemical 

engineering curricula
Initiatives
– WWW based textbook on molecular simulation
– Molecular-simulation based teaching modules
– FOMMS 2003
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CACHE Molecular Modeling 
Task Force

Peter T. Cummings, UTK
Arup Chakraborty, UCB
Ariel A. Chialvo, ORNL
Henry D. Cochran, Jr., ORNL
Juan J. DePablo, UWisc 
James F. Ely, CSM 
David Ford, TAMU
David A. Kofke, SUNY-Buffalo
Sanat K. Kumar, PSU
Daniel Lacks, Tulane

Module Creators

Edward J. Maginn, ND
A. Z. Panagiotopoulos, 

Princeton 
Richard Rowley, BYU
Nigel Seaton, Edinburgh 
Warren Seider, Penn
Randall Q. Snurr, 

Northwestern
Phillip R. Westmoreland, 

UMass
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The Tools 
– MMTF Simulation  Modules

Teaching of molecular origins of macroscopic 
behavior
– vapor pressure, viscosity, adsorption, nonideal gases, etc.

Web accessible, platform independent (Java)
Production of multiple modules
– Infrastructure developed and first modules produced by 

collaborators
– Additional modules to be produced by larger community

» Need to provide authoring support!
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The Tools – MMTF Modules

Dynamic, interactive molecular simulation
Supplemental material
– Lecture notes
– Example and homework problems
– Narrative description

Evaluation
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The Tools – Etomica 
(Dave Kofke, UB-SUNY)

GUI-based development environment
– Simulation is constructed by piecing together elements
– No programming required
– Results can be exported run stand-alone applet

Application Programming Interface (API)
– Library of components used to assemble a simulation
– Can be used independent of development environment
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The Tools – Materials Studio 
(Accelrys)

Integrated GUI for molecular dynamics, 
Monte Carlo and mesoscale systems 
interacting with state of the art force fields
– Intended to be a commercial rather than 

educational tool
– Moderately steep learning curve
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Tools – Materials Studio 
(Accelrys)

Can calculate a wide variety of properties
– Fluctuation properties

» NVE, NPT and NVT ensembles
– Dynamic Properties

» Mean squared displacement
» Dipole, velocity, rotational, space-time and stress-

time autocorrelation functions
– Mechanical Properties

» Static and fluctuating elastic properties
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Tools – Materials Studio 
(Accelrys)

Properties (continued)
– Structural Properties

» Length, angle and dihedral distributions
» Pair and orientational correlation functions
» Concentration Profiles
» Voronoi tessellation
» X-ray and neutron scattering
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Tools – Materials Studio 
(Accelrys)

Properties (continued)
– Energetic

» Energy evolution
» Temperature profiles
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Short(est) Course on Molecular 
Simulation

Focus will be on molecular dynamics and 
Monte Carlo
Adapted from short courses originally 
developed by Peter Cummings (UTK) and 
David Kofke (UB)
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Structure of a Molecular Simulation
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Background
Assume  interactions are given by pair 
potentials
– Not necessary assumption, but frequently 

invoked
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Background – MD
Calculate time average of a mechanical property

– Configurational energy

Compute by 
molecular dynamics

P = lim
t→∞

1
T

P(t)dt
0

T

∫

Econf = u(rijωi  ω j )
1≤i< j≤N
∑



8/12/2002 Molecular Modeling I

Background – MC
Alternative to time average
– Instantaneous average from large number (ensemble) of 

systems
– Compute ensemble average

Compute by Monte Carlo
 
P =

1
N

Pi
i=1

N

∑
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Background
Gibbs postulate:

time average = ensemble average
(MD results)  =  (MC results)

0
1

1 1T

it i
P t dt P

T
lim ( )
→∞

=

= ∑∫
N

N



8/12/2002 Molecular Modeling I

Equilibrium Molecular Dynamics
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Equilibrium Molecular Dynamics
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Equilibrium Molecular Dynamics
Common Inegrators
– Gear 4th or 5th order predictor corrector 
– Verlet
– Velocity Verlet
– Beeman
– RESPA (multi-time step)

Integrators should be symplectic
– Conserve energy and phase space volume
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Equilibrium Molecular Dynamics
Predictor-Correctors are easiest to constrain
– Gaussian constraints for temperature, 

pressure, bond length, …
Other constraint methods for temperature 
and pressure are common
– Nose-Hoover
– Anderson
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Equilibrium Molecular Dynamics
(LJ) Force calculation
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Equilibrium Molecular Dynamics

Periodic Cell Geometry
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Equilibrium Molecular Dynamics

Minimum Image Convention
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Equilibrium Molecular Dynamics
Cut-off
radius, Rc
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Monte Carlo Simulation
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Monte Carlo Simulation
Displacement
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Monte Carlo Simulation
Detailed Balance
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Monte Carlo Simulation
Detailed Balance
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Monte Carlo Simulation
Detailed Balance
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Foundations of Molecular Modeling 
and Simulation (FOMMS)

Sponsored by:
– CACHE
– CoMSEF

Second International  Meeting
– J. F. Ely, Chair
– G. A. Jackson, co-Chair

– P. T. Cummings, Senior Advisor
– P. R. Westmoreland, Senior Advisor

FOMMS 2000 Movie
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Molecular Modeling and Simulation

Break Time
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Molecular Perspectives
Outcomes (hoped for!)
– Synthesis of chemistry and chemical 

engineering
– Higher order thinking 
– Use of important new tools
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Molecular Perspectives
Sophomore Year

Organic Chemistry
– Introduction to computational quantum 

chemisty
Is the time now?
“We are perhaps not far removed from the time 

when we shall be able to submit bulk of 
chemical phenomena to calculation.”

Joseph Louis Gay-Lussac 1778-1850
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Molecular Perspectives
Sophomore Year

Objectives
– Structural Visualization
– Isosurfaces

» Molecular Orbitals
» Electron Densities
» Electrostatic Potentials

– Property Maps (color coded isosurfaces)
– Animations
– Intro to molecular modeling
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Molecular Perspectives
Junior Year

MMTF Modules
– VLE Module (Richard Rowley)
– Heat Transfer (Randy Snurr)

Introduction to Materials Studio
– Virial Coefficients
– VLE

Physical Chemistry
– Spartan Applications (e.g., HF potential)
– Heavy dose of quantum chemistry
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Molecular Perspectives
Senior Year

Capstone Course
– Properties of fluids and solids: molecular 

structure prediction methods, QSAR/QSPR
– Thermochemical computational quantum 

chemistry
– Intermolecular forces and configurational

properties
– Equilibrium molecular dynamics
– Monte Carlo techniques
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Molecular Perspectives
Senior Year

Resources 
– 22 Seat Computer Lab (dual Athlon 1800)
– 21 Node IBM SP2
– 22 Seat Site License for Materials Studio and 

Cerius2

– 50 Seat Site License for Spartan
– 50 node PIII Beowulf (on-line 9/1/02)
– 20 node Athlon 1800 Beowulf (on-line 10/1/02)
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Molecular Perspectives
Senior Year

Example Projects 
– Group Contributions

» Empirical – Lyderson/Joback (Crit, BP, MP)
» Empirical – Benson
» Quantum – CQC Calculation of Benson Groups
» Quantum – QSAR/QSPR study of BP and MP

– Etomica Demonstrations
– Materials Studio

» Diffusion in Polymers
» Polymer Miscibility
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Group Contribution Project 
Quantum Mechanics

Arguably the greatest discovery of the 20th 
century
– Extended classical ideas into the behavior of 

subatomic, atomic and molecular species
Forms the foundation of ALL chemistry
Has only become computationally tractable 
in the last 10 years
– J. A. Pople Nobel Prize in 1998
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Macroscopic Approximations 
to Quantum Behavior

Scientists realized early on that most properties of 
larger molecules can be considered as being made 
up of additive contributions from individual atoms 
or bonds in the molecules
– Group Contribution Approximations-the addition of 

empirically-derived quantities, each characteristic of a 
chemical sub-unit of the compound in question to 
arrive at a property

» The fundamental assumption is additivity of these 
contributions. 
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Group Contribution Methods
These methods are largely empirical although in 
some cases, theoretical knowledge about the inter-
dependence of material properties may be used as 
a guide in their development
– Physical basis is that the forces between atoms are 

very short ranged, e.g., 1-5 Ao

The definition of constituent "groups" is very 
subjective
– At one extreme only the atoms need to be specified
– At the other, every molecule is a group
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Group Contribution Classes
Class I: Fundamental (Independent of temp-
erature and time)
– Molar Mass
– Number of Backbone or Carbon Atoms
– van der Waals volume

Class II: Phase Transition
– Transition temperatures (Tc,Tb, Tg,Tm)
– Transition volumes (Vc, Vm)
– Transition pressures (pc, pt)
– Parachor (Surface tension)
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Group Contribution Classes
Class III: Internal Energy/Stability
– Heat Capacity (ideal gas and condensed)
– Heat of Formation
– Standard Entropy

Class IV: Electromagnetic
– Molar Polarization
– Optical Refraction
– Magnetic Susceptibility



8/12/2002 Molecular Modeling I

Hierarchy of Additivity Laws
Zeroth Order -- Additivity of atom 
properties (exact for molecular weight)
First Order -- Bond Properties
Second Order -- Group Properties
– corrections for non-bonded interactions
– gauche interactions (anything bigger than H)
– ring corrections (proximity of distant groups)
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Lyderson/Joback Method 
Phase Transition Properties

Critical Temperature (K)

Critical Pressure (bar)

Critical Volume (cm3/mol)

( )
12

0.584 0.965c b T TT T
−

 = + ∆ − ∆  ∑ ∑

( ) 2
0.113 0.0032c A pP N

−
= + − ∆∑

v17.5cV = + ∆∑
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Lyderson/Joback Method 
Phase Transition Properties

Normal boiling point (K)

Freezing Point (K)

The        are sums of group contributions

b198bT = + ∆∑

f122fT = + ∆∑
x∆
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Lyderson/Joback Method 
Phase Transition Properties

The boiling and freezing temperatures are difficult 
because they have a large entropic component

– S is a function of molecular symmetry, i.e., depends on 
the number of orientations that the molecule can have 
in the liquid

trans
trans

trans

HT
S

∆
=

∆
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Example
Estimate the transition properties of 2-methylhexane
– Tb =371.6, Tf=154.9, Tc=540.2, Pc=27.36, Vc=421
– Groups:   -CH3 (3), >CH2 (3), >CH- (1)
– Sums:

Tc:   3(0.0141)+3(0.0189)+0.0164 =0.1154
Pc:   3(0.0012)+3(0.0000)+0.0020 =0.0056
Vc:   3(65)+3(56)+41 =404
Tb: 3(23.58)+3(22.88)+21.74 =161.12
Tf: 3(-5.10)+3(11.27)+12.64 =18.81
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Example (cont’d)
Results:
– Tc: 544.8 K vs. 540.2
– Pc: 30.52 bar vs. 27.36
– Vc: 417.5 cm3/mol vs. 421
– Tb: 359.1 K vs. 371.6
– Tf: 140.8 K vs. 154.8

OK but not perfect.  Can we do better?
– Probably -- QSAR/QSPR
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QSAR and QSPR: Applications 
in Chemical Engineering
QSAR ⇒ Quantitative Structure-Activity 

Relationships

QSPR ⇒ Quantitative Structure-Property 
Relationships

Goal:  Correlation and prediction of activity 
(biological, pharmaceutical, etc.) or properties 
(physicochemical) with molecular characteristics.
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Common Families of Molecular 
Characteristics (Descriptors)

Spatial
– Molecular Area
– Molecular Volume
– Density
– Radius of Gyration

Structural
– Rotatable Bonds
– Molecular Weight
– Symmetry Number
– Hydrogen Bond Donor / Acceptor
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Descriptor Families (cont’d.)
Thermodynamic
– Heat of Formation
– Partition Coefficient (octanol/water)
– Molecular Refractivity

Electronic (Can be estimated from Spartan!)
– Dipole Moment 
– Charge Separation (Q+/Q-)
– LUMO
– HOMO
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Predictive Relationships

Target Data SetTraining Data Set
QSAR/QSPR      

Model

Activity ⇐⇒ Structure

Properties ⇐⇒ Structure
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Developing Predictive Correlations
Simple linear

Linear with cross-terms

Linear with general terms

1 1 2 2 n nY a X a X a X= + + +…

1 1 2 2 3 n m nY a X a X X a X X= + + +…

{ }( ) { }( ) { }( )1 1 2 2j j n n jY a f X a f X a f X= + + +…
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Developing Predictive Correlations
Determine model parameters using the training set 
data
– Choice of training set and model is an open ended 

problem
– Stepwise regression techniques can be used but in 

many cases Excel will suffice
Predict properties of other materials not included 
in the training set
– If  predictions are not satisfactory, refine the model 

and/or training set
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Example: Predicting Boiling and 
Melting Points of Chlorofluorocarbons

Question: What molecular properties should be 
significant in a QSPR model for boiling and/or 
melting points?
Answer: Phase transition properties clearly 
depend upon intermolecular forces (and maybe 
other things!)
– Dipole/Dipole Interactions
– Dipole/Induced Dipole Interactions
– Dispersion Forces
– Hydrogen Bonding
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Force - Property Relationships
Force Property

Dipole/Dipole Dipole Moment

Induced Dipole
/Dipole

Polarizability

Dispersion Molecular Area or
Volume

Hydrogen Bonding
Hydrogen and
Electronegative
Atoms
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Boiling and melting points: J. Wei, Ind. Eng. Chem. Res. 2000, 39

Polarizability:  Cerius2, Molecular Simulations, Inc.

Dipole, Area:  Spartan, Wavefunction, Inc. (ab-initio, 3-21G)

molecule Apol Dipole Area BP (K) MP (K)
CH4 654 0 50.937 111.6 90.7

CH3Cl 2150 1.628 69.596 249.1 175.4
CH3F 718 1.632 55.891 194.7 131.3

CH2ClF 2210 1.861 75.34 264 140.1
CF4 911 0 69.537 145.1 89.6
CCl4 6620 0 121.798 349.9 250.1

CH2F2 782 1.892 61.179 221.5 137.1
CHF3 847 1.691 65.771 191 118

CHClF2 2270 1.623 78.655 232.4 115.4
CClF3 2340 0.291 83.225 191.7 92.1

CH2Cl2 3640 1.691 85.957 313.1 178
CHCl2F 3700 1.499 89.354 282 138.1
CCl2F2 3770 0.345 96.198 243.3 115.1
CHCl3 5130 1.316 103.083 334.2 209.5
CCl3F 5190 0.322 107.266 296.8 162
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QSAR BP Correlation
Mathematical Relation

Training set
CHCH44, CH, CH33Cl, CHCl, CH33F, CHF, CH22ClF, CFClF, CF44, CCl, CCl4

BP a b polarizability
c dipole moment d area

( )
( ) ( )

= +
+ +

4
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Boiling Point Training Set
Parity Plot, Boiling Points
6 Molecule Training Set
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Boiling  Point Results
Parity Plot, Boiling Points

All Molecules
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Melting Point 
Melting Point Parity Plot
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Etomica Project
Download software from Dave Kofke’s web-site

www.ccr.buffalo.edu/etomica

– Run samples
– Build Simple 2-d MD Simulation
– Build Simple 2-d MC Simulation

http://www.ccr.buffalo.edu/etomica
http://www.ccr.buffalo.edu/etomica
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Materials Studio

Simulation of Polymers
– Polymer Miscibility and Cohesive Energy 

Density
– Diffusion of Gases in Polymers
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