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Abstract—In this article, we rigorously compare compressive
sampling (CS) to four state of the art, on-mote, lossy com-
pression algorithms (K-run-length encoding (KRLE), lightweight
temporal compression (LTC), wavelet quantization thresholding
and run-length encoding (WQTR), and a low-pass filtered fast
Fourier transform (FFT)). Specifically, we first simulate lossy
compression on two real-world seismic data sets, and we then
evaluate algorithm performance using implementations on real
hardware. In terms of compression rates, recovered signal error,
power consumption, and classification accuracy of a seismic
event detection task (on decompressed signals), results show that
CS performs comparable to (and in many cases better than)
the other algorithms evaluated. The main benefit to users is
that CS, a lightweight and non-adaptive compression technique,
can guarantee a desired level of compression performance (and
thus, radio usage and power consumption) without subjugating
recovered signal quality. Our contribution is a novel and rigorous
comparison of five state of the art, on-mote, lossy compression
algorithms in simulation on real-world data sets and implemented
on hardware.

I. INTRODUCTION

Creating a low-cost wireless sensor network (WSN) for
continuous (e.g., 250 Hz sampling rate) geohazard monitoring
necessitates a better approach than a simplistic “sense, send”
modality. Since the radio on a wireless device consumes orders
of magnitude more power than other components (e.g., ADC,
CPU) [1], streaming all the data may consume too much power
to be viable. As such, using compression to reduce radio
transmissions will help increase system longevity, decrease
overall system power requirements, and decrease system costs.

There have been several lossy1 compression algorithms de-
vised specifically for resource constrained wireless motes (e.g.,
8-16 MHz CPU, 2-10 kB RAM). These algorithms include: K-
run-length encoding (KRLE) [2], lightweight temporal com-
pression (LTC) [3], wavelet quantization thresholding and RLE
(WQTR) [4], low-pass filtered fast Fourier transform (FFT) [5],
and compressive sampling (CS) [6], [7], [8]. In this article, we
compare these five on-mote, lossy compression algorithms as
potential data reduction techniques on real-world seismic data.

The main contribution of this paper is a rigorous evaluation
and analysis comparing our lightweight and novel CS tech-
nique called Randomized Timing Vector (RTV) [6] to four
other on-mote, lossy compression algorithms (KRLE, LTC,

1A lossy compression algorithm means that some information is lost during
compression and decompression.

WQTR, and FFT) using identical real-world seismic data sets.
Consequently, this work provides a novel comparative study
of five state of the art on-mote, lossy compression techniques.
Previous literature comparing on-mote lossy compression al-
gorithms [9] did not simulate, implement, or evaluate the
compression algorithms on the same set of data. Instead, the
authors of [9] discussed the merits of each algorithm based
on the mutually exclusive results presented in the literature
surveyed; in other words, the algorithms were compared based
on results from different data sets. We also note that the survey
conducted by [9] did not include KRLE, WQTR, FFT, or our
CS algorithm, RTV.

Results depicted in this paper demonstrate why CS, a
lightweight and non-adaptive compression algorithm, is an
attractive option for on-mote lossy compression. Specifically,
CS offers guaranteed compression performance, low recovery
error, and low power consumption without subjugating de-
compressed signal quality. We note that lossy compression
is not appropriate for exploration geophysics, where little is
known about the target signal being acquired. However, lossy
compression is a feasible data reduction technique for seismic
event detection, where there is a priori knowledge of the target
signal and some information loss is acceptable. Moreover, we
note that lossless compression is not covered in this article;
comparing lossy to lossless compression is beyond the scope
of this work.

II. BACKGROUND

In this section we describe the five lossy compression
algorithms used in this study. We provide implementation
details where appropriate.

A. K-Run-Length Encoding (KRLE)
The authors of [2] propose a novel lossy adaptive compres-

sion algorithm, called K-run-length encoding (KRLE), which
allows for some variability in the input data stream during data
encoding. KRLE encodes the input signal by using a range of
acceptable values specified by a parameter K. Specifically, the
current value (y) of an input stream is considered redundant
if it falls within some predefined range of the first novel
value (x), that is, if x − K ≤ y ≤ x + K. For example,
with K = 3, the sequence of integers {61, 62, 63, 64, 65} are
encoded simply as {61 : 4; 65 : 1}, which indicates that the
decoder should reconstruct the value 61 four times and then
the value 65 once. Experimental results from [2] show that



KRLE can significantly increase compression rates of certain
signals, where the compression rate is defined as:

CompressionRate = 100×
(

1− CompressedSize

OriginalSize

)
.

B. Lightweight Temporal Compression (LTC)
Much like KRLE, lightweight temporal compression (LTC)

adaptively compresses data by encoding streams of redundant
sequences [3]. LTC is different from KRLE in the way redun-
dancy is defined. In LTC, a data point is considered redundant
if it falls within some range of lines interpolated from previous
data points. If the current data point falls within some user-
specified range of interpolated lines (specified by a parameter
K), then the data point is encoded as redundant. Otherwise,
the current data point is used to start the next iteration of
interpolation and compression. Results from [3] show that LTC
performs comparably to Lempel-Ziv-Welch and wavelet based
compression on micro-climate data.

C. Wavelet Quantization Thresholding and RLE (WQTR)
The authors of [4] describe a lossy adaptive compression

algorithm that we refer to as wavelet quantization thresholding
and RLE (WQTR). First, the WQTR algorithm works by cal-
culating a discrete wavelet transform using Cohen-Daubechies-
Feauveau (2,2) integer wavelets (CDF(2,2)) on subsets of 128
samples. Integer wavelets were selected because they can be
implemented using only addition and bit shifting operations.
Second, the wavelet coefficients are quantized to reduce signal
resolution, which decreases the size of the signal and makes
the signal more compressible. Third, the coefficients undergo
thresholding, where coefficients with absolute values above
some percentage threshold are kept while the other coefficients
are zeroed out. The resulting signal, consisting of a few
large quantized wavelet coefficients and many zeros, is then
passed to a run-length-encoder (RLE2) and transmitted. Results
from [4] show that WQTR’s increased compression rates and
low overhead make it a viable option for the authors’ WSN
deployment.

D. Low-pass Filtered Fast Fourier Transform (FFT)
The fast Fourier transform (FFT) is a well-known and effi-

cient method to transform signals from the time to frequency
domain [5], [10]. Briefly, an N -point FFT takes N complex
numbers as input and produces N complex FFT coefficients;
within a mote’s memory, the FFT’s input and output both
consist of N real and N imaginary components. Assuming the
imaginary component of the input is zero, as it is with a real-
valued seismic signal, the real and imaginary components of an
N -point FFT’s output are symmetric and antisymmetric about
the center frequency, respectively. Thus, instead of transmitting
2N numbers to represent the FFT’s N complex coefficients,
we make use of the FFT’s symmetry to transmit N/2 real
and N/2 imaginary components (i.e., the first “half” of the

2RLE is equivalent to KRLE with K = 0.

FFT’s output). We recover the N complex FFT coefficients by
mirroring the real and imaginary coefficients about the center
frequency and multiplying the mirrored imaginary components
by −1 (since it is antisymmetric).

To implement non-adaptive compression, we employ low-
pass filtering on the Fourier coefficients before transmission;
low-pass filtering allows low-frequency coefficients to “pass-
through” the filter, zeroing out the frequency coefficients above
a user-defined threshold [5]. In other words, we achieve non-
adaptive compression by transmitting the lowest (in terms
of frequency bins) L real and L imaginary components of
the FFT’s output, where L < N/2. During offline signal
recovery, the N/2−L real and N/2−L imaginary components
not transmitted are set to 0. The full time-domain signal
is recovered using the inverse Fourier transform on the N
recovered complex FFT coefficients. Our implementation of
FFT compression is based on the source code provided by
the Open Music Labs [10], which computes a fixed point
FFT. We note that, although FFT-based adaptive compression
(similar to WQTR) could have been implemented, we chose
the non-adaptive approach for the sake of comparison against
CS, which is a non-adaptive compression algorithm.

E. Compressive Sampling (CS)
Compressive sampling (CS) is the final lossy compression

algorithm evaluated in this article. CS is motivated by the
desire to simplify both the sensing and compression processes.
We have proposed a novel lightweight CS algorithm called
Randomized Timing Vector (RTV), which, after initialization,
achieves lossy compression using only a ‘for’ loop and ‘if’
statement [6]. While other on-mote CS algorithms such as
Additive Random Sampling [7] and Sparse Binary Sampling
[8] have been proposed, herein we use our RTV algorithm for
the CS implementation due to its superior performance [6].

Briefly, CS displaces the traditional (and often wasteful)
mantra of “sample then compress” with “compress while
sampling”. At its core, CS uses numerical optimization meth-
ods to recover full-length signals from a small number of
randomly collected samples. For CS, the computational burden
occurs offline during signal recovery, and not on-mote during
signal compression. In CS, compression occurs via a matrix
multiplication of a randomized measurement matrix Φ (size
M ×N , with M � N ) with the original signal x (length N )
to obtain a compressed vector y of length M (i.e., y = Φx).
However, it is possible to implement on-mote CS without fully
sampling x or computing a costly matrix multiplication [6]. In
other words, our RTV algorithm greatly simplifies compression
by acquiring the data directly in compressed form. For a
thorough explanation of CS and RTV, we refer the reader to
[11] and [6], respectively.

CS is advantageous because it greatly simplifies the com-
pression process by acquiring compressed signals directly and
shifts the computational burden away from the wireless mote to
the system performing signal decompression. Thus, given the
lightweight and non-adaptive nature of CS data compression,
how does CS compare to the four other lossy algorithms
(three adaptive and one non-adaptive) described previously?



To answer this question, we analyzed the performance of the
five lossy compression algorithms in two scenarios: 1) in sim-
ulation on two sets of real-world seismic data, and 2) on real
hardware. We describe our experimentation, implementations,
and results in the next two sections.

III. SIMULATION

We first simulated the five lossy compression algorithms
on real-world seismic data collected in the mountains above
Davos, Switzerland. The simulation experiments allowed us to
evaluate the compression algorithms in terms of compression
rates, recovery error rates, and event classification accuracies.
Additionally, we further support our findings by simulating the
compression algorithms on a second real-world seismic data
set collected from a test levee in the Netherlands called IJkdijk
(pronounced “Ike-dike”).

The seismic data used in the first set of simulations was
collected during the 2009-2010 winter season using a wired
geophone array in the mountains above Davos, Switzerland
[12]. The full seismic data set, sampled at 500 Hz with 24-
bit precision, contains over 100 days of data with 33 slab
avalanche events (e.g., Figure 1). A slab avalanche event is
when a large, dangerous mass of snow and/or ice debris
tumbles down a mountain, burying and/or damaging everything
in its path. More information regarding the wired geophone
deployment and subsequent geophysical data analysis can be
found in [12]. Wirelessly transmitting all of this data would
require a tremendous amount of power.
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Fig. 1: Five minutes of seismic data containing a slab avalanche event, plotted
in the time domain (top) and time-frequency domain (bottom). We simulated
on-mote lossy compression on 2.75 hours of real-world seismic data, which
contained 33 slab avalanches events that occurred in the 100+ days of data.

In our experiments, we simulated compression on the 33
five-minute chunks of seismic data containing slab avalanches
from the wired deployment in 2009-2010. To simulate our real-
world wireless mote deployment (recently installed and collect-
ing geophone data above Davos, Switzerland), we subsampled
the 33 slab avalanches from the original 500 Hz sample rate
with 24-bit precision to a 250 Hz sample rate with 16-bit
precision. Additionally, we performed compression on the raw
ADC encodings, as these values are two byte signed integers,
not floating point voltage values.

In terms of algorithm parameters, we selected powers of
two for KRLE and LTC (i.e., K = {1, 2, 4, ..., 512}). For
WQTR, we used thresholds between 10% and 90%, and added
a 98% threshold for aggressive compression. For FFT, we
selected low-pass filter thresholds between 10% and 90% of
the center frequency. For CS, we employed compressed vector
lengths of M = {0.1N, 0.2N, ..., 0.9N}. Note that the ratio of
compressed vector length to full signal (i.e., M/N ) is inversely
proportional to the compression rate, e.g., a 30% ratio between
M and N results in a 70% compression rate.

To increase the credibility of our simulations, we used the
same C++ compression functions and memory usage as our
on-mote implementations of CS, KRLE, LTC, and WQTR
(see Section IV). In other words, we first implemented the
compression functions in C++ for Arduino and then ported the
methods to a desktop computer using a different driver to read
in the seismic data. Additionally, we simulated the memory
constraints of the Arduino Fio platform by limiting the size of
each data buffer to be compressed. We note that since the FFT
library obtained from the Open Music Labs [10] was written
in assembly for Arduino, we used custom Matlab functions
(with limited precision) for our simulations.

To simulate our hardware implementation, we compressed
signals using a two buffer method; while one buffer of data
was being acquired, the other buffer was being compressed
and transmitted. Specifically, for KRLE, LTC, and CS, we
compressed buffers of N = 256 short (two byte) integers at a
time. Due to the increased memory required for computation,
we compressed buffers of N = 128 short integers for FFT and
WQTR.

In terms of radio usage, we simulated binary transmissions.
For CS, this meant transmitting the M short integers selected
during compression. For KRLE and LTC, we transmitted three
bytes at a time: two bytes for the signed short integer and one
byte for the number of occurrences. For FFT, we transmitted
2L short integers corresponding to the L real and L imaginary
components of the low-pass filtered FFT coefficients. Lastly,
for WQTR, we transmitted five bytes at a time: a four-byte
floating point wavelet coefficient followed by one byte for the
number of occurrences. We omitted the quantization step of
WQTR due to extremely poor performance during simulation;
though quantization equates to better compression rates, the
loss of precision from normalizing, truncating, and/or interpo-
lating the wavelet coefficients from four-byte floating points to
two-byte shorts resulted in significantly higher recovered signal
error rates. In other words, quantizing the wavelet coefficients
to match the other algorithms (i.e., from floating point to short
integer) resulted in recovered signals that were unusable.

A. Compression Rates
After simulating compression on the 33 five-minute chunks

of data containing slab avalanches, we calculated the compres-
sion rates using the formula defined in Section II-A. Figure 2
shows histograms of the compression rates for each algorithm
over the entire simulation.

The compression rates presented in Figure 2 show two clear
advantages to using non-adaptive compression. First, nonneg-
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Fig. 2: Histograms of the compression rates from the simulation on the
avalanche data. Note that CS and FFT (the two non-adaptive algorithms) are
the only algorithms without negative compression rates.

ative compression rates3 can be guaranteed. In other words,
the rate of compression for non-adaptive algorithms does not
depend on the compressibility of the input signal. Additionally,
with CS and FFT, users can specify a compression rate for the
lifetime of the mote by selecting the M parameter and the
low-pass filter threshold, respectively.

The second advantage is that the non-adaptive compression
algorithms have less variability in the resulting compression
rates. We encourage the reader to note the high variability
of compression rates for KRLE, LTC, and WQTR in Figure
2 compared to the low variability of compression rates for
CS and FFT. In the case of KRLE and LTC, the combination
of small K values and high signal variance led to negative
compression rates. For example, with a K value of 1, KRLE
would encode a signal {0,2,4} as {0:1,2:1,4:1}, which requires
more bytes than the original signal.

B. Recovered Signal Error
For signal recovery (decompression), we utilized a combi-

nation of C++, Python, and Matlab. Decoding KRLE and LTC
based encodings was straightforward, since these algorithms
specify what number to print and how many times it occurred.
WQTR decompression also included this decoding step, fol-
lowed by an inverse wavelet transform. Decoding the FFT
algorithm’s output required recovering the N FFT coefficients
and computing the inverse FFT. Lastly, for CS, we employed
reweighted `1-norm minimization [13] assuming sparsity in
the time-frequency domain (Gabor atoms); in previous work,
we verified that this real-world data set is sparse in the time-
frequency domain [14].

We computed signal recovery errors by computing the
normalized root mean square error (NRMSE) for the decom-
pressed versus original signals. NRMSE is calculated as:

NRMSE =

√
mean((x− x̂)2)

max(x)−min(x)
,

3Negative compression rates occur when the number of bytes required for
the compressed signal encoding is greater than the original signal.

where x̂ is the recovered signal and x is the original signal
containing a slab avalanche. Figure 3 plots the mean NRMSE
and 95% confidence intervals of all five algorithms based on
their respective mean compression rates. For KRLE, LTC, and
WQTR in Figure 3, the K values and thresholds increase from
left to right. For example, KRLE with K = 1 resulted in
approximately −47% mean compression rate and almost zero
NRMSE, while K = 512 resulted in 97% mean compression
rate and 0.017 NRMSE.
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Fig. 3: Mean NRMSE results (with 95% confidence intervals) from five lossy
wireless node compression algorithms simulated on a real-world seismic data
set containing avalanches.

The NRMSE results in Figure 3 show that CS, a lightweight
non-adaptive compression technique, performs as well as the
best performing algorithms: KRLE and FFT. In other words,
the recovery errors of signals compressed and decompressed
with CS fell within all the 95% confidence intervals of KRLE
and FFT. Moreover, as shown, KRLE sometimes provides
negative compression rates.

The NRMSE results are quite striking, considering that CS
compression does not necessitate acquiring and storing every
sample in the original signal. In other words, instead of acquir-
ing the full signal and then performing compression, CS allows
us to acquire the compressed signal directly. In geophysical
monitoring applications where data acquisition is expensive
(e.g., due to power consumption from high sampling rates),
CS is an attractive option because it is the only compression
technique that does not require acquiring the full signal first
[6].

Though NRMSE results provide a nice depiction of com-
pression rates and recovery error, the error rates alone do not
paint a complete picture. For example, what does it mean for
CS to have 0.017 mean NRMSE at 90% compression rate? Is
the recovered signal still useful?

C. Avalanche Event Classification
In hopes of answering such questions, we applied our

automated avalanche detection workflow [15] to the recovered
(decompressed) signals from the five compression algorithms.
First, we divided each signal into consecutive five second
frames. A class label was then assigned to each five second
frame, depending on whether the frame contained part of an



avalanche event. Each frame was transformed from the time to
the frequency domain using a 1024-sample, non-overlapping,
normalized FFT. From the frequency domain we extracted 10
features common in acoustic signal processing: centroid, 85%
rolloff, kurtosis, spread, skewness, regularity, flatness, and the
maximum, mean, and standard deviation of the top 1% most
powerful frequencies. See [15] for more details.

After extracting features from the original and recovered
signals, we then moved to the machine learning task. Specif-
ically, for each of the recovered and original signals, we
trained and tested a decision tree classifier on subsets of
the data using a 10-fold cross-validation procedure. We used
stratified subsampling to create the training and testing subsets,
which included all five-second avalanche frames and an equal
number of randomly selected non-avalanche frames (to avoid
overfitting).

We ran a 10-fold cross-validation procedure 100 times
per recovered signal, randomly selecting a new set of non-
avalanche frames each time. Figure 4 plots the mean clas-
sification accuracies and 95% confidence intervals of the five
evaluated compression algorithms based on mean compression
rates.
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Fig. 4: Mean and 95% confidence intervals of classification accuracies from
our machine learning workflow (to detect slab avalanches) performed on
the recovered signals. FS shows the classification accuracy for the full
(uncompressed) signal.

There are three interesting trends in Figure 4 worth noting.
First, classification results show that CS performed quite well.
For example, the mean accuracy of detecting slab avalanche
events recovered from 60% compressive sampling (40% com-
pression rate) was 91.3%. In comparison, with full sampling,
we reached 92.3% mean classification accuracy. In other
words, the 40% increase in compression rate for CS over full
sampling resulted in only a 1% decrease in mean classification
accuracy.

Second, observe the “bumps” of increased classification
accuracies for KRLE with parameter K = 128 (78% com-
pression rate) and FFT with low-pass filter thresholds of 60%
and 10% (40% and 90% compression rates, respectively). We
believe that these temporary improvements in classification
accuracies occur because the algorithms were effectively de-
noising the data before feature extraction. For example, by

encoding many values as a single number, KRLE removes
frequency content and greatly simplifies the signal during
periods of little variance. However, the classification accuracies
of KRLE with K = 256 and K = 512 (92% and 97%
compression rates, respectively) degrade rapidly to 82% and
73%, respectively. Likewise, the FFT’s mean classification
accuracies quickly degrade from above 90% accuracy (with
40% compression rate) to below 75% accuracy (with 80%
compression rate). These rapid downward trends in mean
classification accuracies given higher K values and lower filter
thresholds suggests that both KRLE and FFT remove useful
frequency information from the signal before feature extraction
and machine learning.

Lastly, although CS and FFT both had exclusively nonnega-
tive compression rates, FFT’s accuracies were highly variable
or significantly worse than the other algorithms evaluated. We
hypothesize that this occurs because the low-pass filtered FFT
explicitly removes the mid to high frequency components of
the recovered signal, thus eliminating information that may
be critical for our pattern recognition workflow to detect
avalanches. Herein lies an advantage of CS over FFT; with
high rates of compression (i.e., greater than 50%) it appears
that CS recovers more useful information from the compressed
signal than the low-pass filtered FFT. For example, with 50%
compression rate, FFT had a mean classification accuracy of
86.7% while CS had a mean classification accuracy of 90.3%.

D. IJkdijk Seismic Data
Given that CS compares favorably to other lossy compres-

sion algorithms in terms of compression rates, NRMSE, and
classification accuracies on one data set, how does CS perform
on a different data set? To answer this question, we ran all five
compression algorithms on a seismic data set collected from
the IJkdijk test levee in the Netherlands. Briefly, IJkdijk is a
test levee that is monitored and measured in various ways while
it is brought to failure. Geoscientists collected several days of
16-bit passive seismic data from 24 wired geophones as the
levee was brought close to failure. For our experiments, we
simulated compression on a small segment of data (about 50
minutes) from a single geophone sensor deemed interesting
by the team of geophysicists, geologists, and geotechnical
engineers (e.g., Figure 5). The data was subsampled from
4000 Hz to 250 Hz to mimic the current bandwidth limits
of our low cost wireless geophysical sensors. Results from
our compression simulations are plotted in Figure 6, which
shows the mean NRMSE with 95% confidence intervals of
the recovered data.

Though the errors in Figure 6 are larger than in Figure 3, the
relative ordering of the lossy algorithms remains approximately
the same. In this case, with 50% or less compression rates, CS
performs the best, with KRLE close behind; above 50% com-
pression rates, CS was tied with FFT as the best performing
algorithm. It is interesting to note the relatively flat perfor-
mance of WQTR (in terms of NRMSE). We hypothesize that
this is due to the simplicity of the CDF(2,2) integer wavelet
and relatively small buffer size used in WQTR compression.

We did not evaluate the IJkdijk signals in terms of machine
learning accuracy, simply because we have not yet designed a
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Fig. 5: We simulated the five lossy compression algorithms on a second real-
world seismic data set collected from the IJkdijk test levee in the Netherlands.
The top is example data plotted in the time domain and the bottom is in the
time-frequency domain.
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Fig. 6: Mean NRMSE results (with 95% confidence intervals) from five lossy
compression algorithms simulated on the real-world IJkdijk seismic data set.

pattern recognition workflow to detect stages of levee failure
(e.g., seepage, erosion, and collapse). Such a workflow would
help us evaluate the relative performance of the five compres-
sion algorithms in regards to whether the recovered signals are
really useful. We hypothesize that the recovered signal for CS
is useful, however, as the NRMSE is quite low.

Another aspect worth noting between Figures 3 and 6 is
that the mean compression rates of two adaptive compression
algorithms (KRLE and LTC) differed between signals. Note
how much the mean compression rate (x axis) decreases
between the avalanche and IJkdijk data sets; for example, the
mean compression rate of KRLE with K = 64 (fourth from the
right) decreased from 49.9% in the avalanche data set to 19.5%
in the IJkdijk data set. Additionally, the mean compression
rates for LTC decreased as well. In comparison, compression
rates for FFT and CS did not change between data sets. In other
words, once we pick M for CS and the low-pass frequency
threshold for FFT, we can calculate what the compression rates
will be. These results demonstrate how compression rates for
some adaptive compression algorithms depend ultimately on
the signals being compressed.

Herein lies an advantage for the non-adaptive algorithms
over the adaptive ones; with FFT and CS, users can specify
compression rates that will be guaranteed for the lifetime of
the wireless mote. For KRLE, the most comparable performing
lossy algorithm evaluated, users must select a value for param-
eter K and hope that compression rates will be nonnegative.
Additionally, users must guard against selecting a K value
that is “too big” for the target signal, which would lead to lost
signal information.

Of course, as with the other parameterized lossy compres-
sion algorithms evaluated, both FFT and CS suffer from the
same challenge: i.e., how to best select the ideal parameter to
provide maximal compression without subjugating recovered
signal quality. Despite the challenge of parameter selection,
we argue that the non-adaptive algorithms are preferable to the
adaptive algorithms because of the ability to precisely estimate
compression rates, radio usage, and thus, power consumption.
For the adaptive algorithms, how would users estimate the
mote’s power requirements based on selecting, for example,
K = 64 versus K = 128? With CS and FFT, users can
estimate power requirements and thus, system cost, with a
very high degree of confidence. In other words, CS and FFT
users do not have to pad power requirements to guard against
extra power consumption that occurs from possible negative
compression rates. We investigate this issue in detail in the
next section.

IV. HARDWARE IMPLEMENTATION

To further evaluate the five lossy compression methods,
we implemented the algorithms on a low-cost Arduino Fio
wireless mote platform (2 kB RAM, 8 MHz CPU) with a long-
range XBee Pro 802.15.4 radio module. Arduino Fio is our
mote platform of choice because we are currently building high
precision geophysical sensing “shields” that can plug and play
with these low cost and easy to use platforms. Additionally,
we used high power (1.5 km line-of-sight) radios to mimic a
real-world wireless sensor deployment on a typical avalanche
path or earth dam.

For repeatability, we tested the algorithms by compressing
36 seconds of real-world seismic data hard-coded in the mote’s
FLASH memory. For our experiments, the 36 second test
signal was synthesized from three short and low-noise slab
avalanche events from the Swiss data set (Figure 7).

Similar to our simulation experiments in Section III, our
hardware experimentation consisted of adjusting the compres-
sion algorithm parameters and evaluating the resulting com-
pression rate, signal recovery error, and power consumption.
As discussed in Section III, we implemented a two-buffer
modality for all algorithms (including CS); while one buffer
was being acquired from FLASH memory, the other buffer
was getting compressed and transmitted. To minimize radio
power consumption, we put the XBee Pro radio in a low-power
sleep state and further buffered the transmissions into 100-byte
payloads, the maximum size of the XBee Pro radio’s packet
payload. When the 100-byte payload buffer became full, we
woke up the radio, transmitted the payload, and put the XBee
Pro back to sleep.
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Fig. 7: For repeatability, we stored 36 seconds of synthesized seismic data
in FLASH memory. The 36 seconds of data contain three slab avalanches.
In the above figures of the time domain (top) and time-frequency domain
(bottom), the avalanches begin at approximately three seconds, 14 seconds,
and 26 seconds, respectively.

A. Recovered Signal Errors
We compressed the 36 second test signal stored in FLASH

using each of the five algorithms with the same parameters as
our simulations; see Section III for algorithm parameter values.
Compression rates were calculated based on the size, in bytes,
of the compressed versus original signals received. Signal
recovery was performed offline with a combination of Python,
C++, and Matlab using techniques summarized in Section
III-B. The solid shapes in Figure 8 plot the NRMSE versus
mean compression rate of the five parameterized algorithms
executed in hardware on the real-world test signal. The white-
filled shapes in Figure 8 represent the NRMSE from simulated
compression on the exact same 36 seconds of data.
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Fig. 8: The NRMSE of the recovered signal compressed on mote (solid
shapes) and in simulation (white-filled shapes) on 36 seconds of seismic data
containing three slab avalanches.

The most notable trend in Figure 8 is that, for all but FFT,
the NRMSE rates for signals recovered from our hardware
implementations (solid shapes) and simulated compression
(white-filled shapes) were identical. These results help validate
the credibility of our simulation experiments in Section III by
showing that a signal compressed in hardware is equivalent to
the same signal being compressed in simulation. Despite our

efforts to simulate the mote’s limited precision for computing
the FFT, there were small differences in the NRMSE results
for the simulated versus on-mote FFT compression. We hy-
pothesize that the simulated FFT performs better because it
was implemented in Matlab on a 64-bit computer (with 64-
bit computation); the on-mote version, on the other hand, was
implemented in assembly on an 8-bit microcontroller.

Furthermore, because we simulated compression on a siz-
able 2.75 hours of seismic data in Section III, the NRMSE
results presented in Figure 8 should be observed with caution.
In other words, it would be naive to conclude that KRLE is
the best performing lossy compression algorithm for seismic
data (in terms of NRMSE) due to the small, low variability 36-
second data set used for the simulation of Figure 8. Instead,
we refer the reader to Figures 3 and 6, which show results
from 2.75 hours and 50 minutes of seismic data, respectively;
as shown in these two figures, CS was either the best or
tied for the best performing algorithm (in terms of lowest
NRMSE). We hypothesize that KRLE performed best on the
small 36-second data set because the signal contained very
little variability and noise events. This lack of high signal
variability is unlike the large 2.75 hour data set used in
simulation, which contains background noise events caused by
helicopters, airplanes, wind, ski lifts, etc.

B. Power Analysis
Lastly, we analyzed the power consumption of the wireless

mote as it executed the five compression algorithms and com-
pared the results to full sampling. Specifically, we measured
the voltage difference across a 10.1Ω resistor in series from
the mote to ground, then derived the current draw using Ohm’s
law. All voltages were measured at 50,000 Hz sampling rate
using a 16-bit precision National Instruments USB-6218 DAQ
and LabView SignalExpress. To reiterate, we used an Arduino
Fio wireless mote with a long-range XBee Pro 802.15.4 radio
module (1.5 km line-of-sight range). From our power analysis,
we then estimated the longevity of a reasonably sized battery
used to power an Arduino Fio wireless mote running these
algorithms. Figure 9 depicts the estimated longevity of a 6600
mAh battery in ideal conditions. The dashed line shows the
“benchmark” battery life of full sampling (i.e., the original
signal with 0% compression rate).

Since our power analysis was based on compressing and
transmitting a short, 36-second signal stored in FLASH, the
battery longevity results should also be observed with some
caution. Put another way, it would be naive to conclude that
LTC will always consume the least power because it had the
highest estimated battery longevity (i.e., 1208 hours of battery
life at 96.9% compression rate). Additional power analyses
on much larger data sets would be needed to verify such
findings. Despite the limited size and duration of our power
analysis, however, we are confident that we can draw veritable
conclusions regarding the relative power consumption of the
adaptive versus non-adaptive algorithms.

The most notable and conclusive trend in Figure 9 is
how costly negative compression can be. Adaptive algorithms
KRLE, LTC, and WQTR all had instances where negative
compression rates resulted in power consumption greater than
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Fig. 9: The estimated longevity of a 6600 mAh battery used to power a wireless
mote running each algorithm.

that of full sampling. In other words, without careful parameter
selection in relation to the target signal, KRLE, LTC, and
WQTR may drain the battery faster than full sampling. On a
different note, the non-adaptive compression algorithms (i.e.,
CS and FFT) were the only methods with battery longevities
exclusively above full sampling. Herein lies the advantage
of CS and FFT: nonnegative compression rates and resultant
power savings can be guaranteed.

Although CS and FFT both showed exclusively nonnegative
compression rates, CS improves upon FFT by performing bet-
ter in terms of avalanche event classification accuracies (Figure
4), implying that CS recovers more useful information in the
decompressed signal. Moreover, CS is advantageous because it
can be implemented without sampling the entire (full) signal
before compression; such an approach is particularly useful
when data acquisition is expensive (e.g., powered sensor or
power hungry ADC).

V. CONCLUSION

In this article we rigorously compared CS to four lossy on-
mote compression algorithms found in the literature. Through
simulation on two real-world seismic data sets, we show that
CS performs comparably to other on-mote, lossy compression
algorithms. Additionally, we evaluated our implementation
of the five lossy compression algorithms on real hardware
in terms of compression rates, recovery error, and power
consumption. Our results show that CS, a lightweight and non-
adaptive compression algorithm, performs favorably compared
to KRLE, LTC, WQTR, and FFT. Specifically, CS can guaran-
tee positive compression rates and reduced power consumption
without sacrificing signal recovery error. Such results are
promising, suggesting that CS, a non-adaptive compression
algorithm with very little compression overhead, can compete
with other, state of the art wireless sensor node compression
algorithms. Furthermore, our results suggest that CS improves
upon FFT in terms of the information recovered; although
FFT had slightly better NRMSE results when simulated on the
avalanche data, CS had less variable classification accuracies
(in general).

For future work, we plan to conduct more fine-grained
power analyses and create a detailed consumption model

for the Arduino Fio wireless mote with XBee Pro radio.
Additionally, we plan to publish all source code used in
our experiments, providing easy to use lossy compression
algorithms for the wireless sensor network community.
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