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MODELING TELESEISMIC P-WAVE PROPAGATION IN THE
UPPER MANTLE USING A PARABOLIC APPROXIMATION

By M. G. Bostock, J. C. VANDECAR, AND R. K. SNIEDER

ABSTRACT

Teleseismic waves propagating in the upper mantle are subject to consider--
able distortion due to the effects of laterally heterogeneous structure. The
magnitude and scale of velocity contrasts representative of features such as
subducted slabs may be such that wave diffraction becomes an important
process. In this case forward modeling methods based on high-frequency
asymptotic approximations to the wave equation will not accurately describe
the wavefield. A method is introduced to model the propagation of teleseismic
P waves in a laterally heterogeneous upper mantle that accounts for distortion
of the initial portion of the wavefield including the effects of multipathing and
frequency-dependent diffraction. The method is based on a parabolic approxi-
mation to the wave equation that is solved in the time domain on a finite-dif-
ference grid which mimics the expected pattern of energy flow in a reference
velocity field. Numerical examples for a simple two-dimensional subducting
slab model demonstrate the application of the method and illustrate the effects
of multipathing and diffraction which dominate waveform distortion at high and
low frequencies, respectively.

INTRODUCTION

The principal objective of this study is to introduce a method for modeling
waveforms in structurally complex areas of the Earth’s upper mantle. On a
global scale we find that the most pronounced lateral contrasts in the Earth
occur in this region, and in particular at subduction zones where variations
in temperature of up to 1000 K are possible over scales of less than 100 km.
The associated contrasts in seismic velocity must occur over similar distances
and are estimated to represent a 3% to 10% deviation from radially stratified
Earth models (Silver et al., 1988; Lay, 1991). Velocity variations of this mag-
nitude may have significant effects on the propagation of seismic waves, on
travel times (e.g., VanDecar and Crosson, 1990; Spakman, 1991), amplitudes
(Thomson and Gubbins, 1982; VanDecar et al., 1990), and more generally
on the character of observed waveforms (Davies and Julian, 1972; Sleep, 1973;
Silver and Chan, 1986; Gubbins and Snieder, 1991). For teleseismic waves this
magnitude of velocity contrast and the scales over which variations can occur
imply that techniques based on asymptotic ray theory may not adequately
describe relevant aspects of the observed wave field. More specifically, frequency-
dependent effects or diffractions become important and the degree to which
any asymptotic method (e.g., Gaussian beams, Maslov theory) can account for
this class of wave interaction is not clear (see Cormier, 1989). As a conse-
quence, accurate modeling of waveforms through subduction zone environments
has been limited to a large extent to finite difference calculations for some two-
dimensional (2D) models (Vidale, 1987; Vidale and Garcia-Gonzalez, 1988).

Full waveforms have the potential to provide a wealth of information concern-
ing the structure of the subducted lithosphere in the upper mantle and should
be exploited to shed light on the dynamic processes which are operative at these
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depths. Difficulties in the analysis of full waveforms arise, however, due to the
complexity of the multipathing and diffraction processes which occur in an
environment as complex as a subduction zone. More specifically we must
contend with scattered energy that may potentially arrive from any one of a
multitude of possible directions and may have changed identity several times
along the way through the processes of mode conversion. Indeed, the problem of
full 3D modeling of elastic waveforms over reasonable propagation distances is,
at the present time, computationally intractable. It seems reasonable therefore
to set our sights on a more immediately attainable goal: an accurate description
of the first few cycles of P-wave energy. From physical considerations, we know
that the energy in this initial portion of the seismogram will, in most cases,
have traversed a reasonably well defined region between source and receiver, or
specifically a region with frequency-dependent volume but centered in some
loose sense about the geometrical ray. In addition, with the exception of
interactions in the very near vicinity of the source and the receiver, we can
avoid the analysis of scattered S-wave contributions to the P-wave field since
they will arrive considerably later in the seismogram.

In the following sections we outline a method to simulate teleseismic P waves
in the upper mantle based on a parabolic approximation to the wave equation
which allows us to model diffraction effects that are not adequately described by
ray-theoretical techniques, and which is much less computationally intensive
than a full finite-difference treatment of the elastic case. We then proceed to
apply the method in a simple 2D model of a subduction zone to demonstrate its
application and illustrate the effects of diffraction on P-waveforms at different
frequencies. The application and extension of the method to the problem of
modeling teleseismic P waves in a realistic, 3D model of a subduction zone is
the subject of a paper in preparation.

A ScarLAR WAVE EQUATION FOR THE INITIAL P WAVE ARRIVALS

We begin with the equation of elastic wave motion in generally anisotropic,
heterogeneous media in the absence of sources

2
°u;

P_‘—atz = (cijkluk,l),p (1)

where u; is the displacement, c;;,, is the elastic modulus tensor and p is
density. We will confine our attention to the study of isotropic, heterogeneous
media and so, by employing the constitutive relation

Cijpy = A8, + (8,8 + 8,,8,), (2)
we write (1) as
2u<

where A and u are the Lamé parameters. This expression can be written in a
more convenient form by adopting vector notation and exploiting various vector
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identities to yield

92 VA
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at p
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+ 2 (VX w) +2(—“—-v)u. (4)
p p

We note that in homogeneous media the last three terms vanish and we can
associate the remaining equation with the motion of P and S waves propagat-
ing independently with velocities @ and B, respectively, where

A+ 2 \?
a=( ; - (5)
and
1/2
()"

The independence of P and S waves in homogeneous media can be demon-
strated by alternately taking the divergence and curl of equation (4) (while
ignoring the last three terms) and employing the definition of the dilatation 6
and the rotation vector S where

0=V-u, (7)
S=VXu. (8)

In heterogeneous media, however, we must apply the divergence and curl to all
terms in (4) and in so doing we retrieve two equations which are coupled in 0
and S. By considering only first-order terms in the gradients of material
properties, that is ignoring second derivatives and products of first derivatives,
an approximation to this system can be conveniently written as

1 0% B\
g Vo s g) - [ eg ) Txs @
and
1 4?8
37 o =V’S —g,x(Vx8)+[(gs+8,) V]S

+ X V9. (10)

w31

Here we have adopted the notation of Landers and Claerbout (1972) (note also a
similar formulation by Ben-Menahem and Beydoun (1985)) and employed the
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following abbreviated variables:

g, = (VazQ)/ac2 (11a)
g:=(VB%)/B” (11b)
g,=Vp/p. (11c)

Let us now examine equation (9) in more detail. It represents a scalar wave
equation for the dilatation 6 but it differs from the corresponding equation for a
homogeneous medium by the presence of the last two terms. The first of these
terms involves gradients in the square of the P-wave velocity and density, and
accounts to first order for P to P scattering processes. The second term contains
the rotation vector S and describes first-order scattering contributions to the
P-wave field arising from mode conversion of S waves due to gradients in
rigidity and density. Note here that by first order we mean the effects of
first-order gradients in material properties, not the single scattering contribu-
tion from a region of heterogeneity. These equations remain valid while the
gradients in material properties are “smooth” as defined by Ben-Menahem and
Beydoun (1985). These authors employed this terminology to distinguish such
gradients from the “weak” variations in material properties which are required
in order that ray theory be valid and that P and S waves can be viewed as
propagating independently. Now consider the physical nature of the these
contributions in the time domain. We can write the first-order S-wave contribu-
tion to the P-wave field g using representation theorems (see e.g., Aki and
Richards, 1980) as

(o B
GS(X,t) = /dt /dX [m

VX 8(0,%',t)G(x,tx,t), (12)

2
] [28,(x) + g,(x)]

where G(x, t|x', t') is the Green’s function for the scalar wave equation

1 9%G(x,tix,¢t)
a(x)? at*

~ V2G(x,tI, 1) + 8(x — X )8(t — ).  (13)

In this form it is apparent that contributions to the P-wave field resulting from
scattering of the direct S wave arrive at times greater than f;(; dsp! +
/X dsa™', where X’ and x are the coordinates of the scattering region and the
observer relative to an origin x, coinciding with the earthquake source, and s is
the distance along the raypath connecting the appropriate points as shown in
Figure 1. If we ignore S-P scattering in the near source regime, [x' — x| <
x — x|, then the first cycles of P-wave energy at x are not affected by this
scattering. In a similar fashion we will choose to ignore scattering processes in
the near receiver vicinity, Ix’ — x,| > x — x'|, which would allow for S-wave
contamination to the initial energy via scattering of the direct P wave. The
dependence of the S-wave field on @ is shown explicitly in (12) to indicate the
coupling of equations (9) and (10), and that there is, of course, a continual
exchange of energy between P and S waves propagating in a generally hetero-
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X0

At =[ds B At =[ds o!

FiG. 1. With the exception of conversions originating near the source x, energy scattered into P
from the direct S wave at some point X" should arrive at considerably later times than the direct P
wave at a point of observation x.

geneous medium. This means that there are S-wave contributions to the
P-wave train in the initial energy but they are of second order and involve
conversion from P to S and back to P. Implicit in this feedback process is the
energy which is lost from P due to conversion to S. If we constrain our material
property perturbations (11) to be of order € then it is not difficult to show that
S-wave contributions arising through P to S to P conversion must be of order
€? and hence can be ignored over the first few cycles of P-wave energy. In this
sense our formulation is essentially a single scattering approximation as we are
ignoring the energy loss in the initial P wave which accrues from conversion to
S.

Thus we will restrict our attention to the first few cycles of P-wave energy
and neglect the last term in (9) which results in a simple scalar equation
describing the initial P-wave motion in media with smooth gradients in mate-
rial properties, or specifically

2

W
=)

|

5 =V + (2g, + g, Vo. (14)

1
ol

B

¢

One further point to note is the way in which scattering from smooth gradients
in material properties enters into the final term of (14). In addition to the ray
geometrical amplitude growth /decay that a waveform experiences due to veloc-
ity and density gradients in the direction of propagation, this term describes
frequency-dependent scattering phenomena which result from interactions in
directions transverse to propagation. In the event that material variations are
smooth, forward scattering or “transmission” will dominate over back scattering
or “reflection” (see e.g., Aki and Richards, 1980). This has important implica-
tions for the manner in which we choose to solve (14).

Despite its simplicity relative to the coupled system in (9) and (10), a full
finite-difference treatment of equation (14) in a laterally heterogeneous upper
mantle environment is not computationally attractive, nor is it necessarily
warranted as we are interested only in the first few cycles of arriving energy
and we are assuming that gradients in material properties, while important, are
smooth so that only forward scattering is significant. In the following sections
we will further simplify equation (14) by adopting a time domain parabolic
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approximation which allows us to formulate the problem in terms of a one-way
wave equation which is efficient and relatively simple to solve numerically.

PARABOLIC APPROXIMATIONS TO WAVE EQUATIONS

In deriving a parabolic approximation or “one-way” wave equation we are
forced to make some a priori assumptions regarding the nature of the wave
field we wish to model. In particular it is necessary to adopt a coordinate system
in which one of the coordinate axes roughly coincides with the dominant
direction of propagation. In this section we illustrate the essential ideas in-
volved in the derivation of a time domain parabolic approximation by examining
the behavior of solutions to the wave equation in (14) for a simple 2D Cartesian
geometry, where the wave equation becomes

1+8(x,y) 9% 9% 3% 5 v 5
—_— g =+t — + + - Vo.
a02 atZ é;x2 (9y2 ( ga gp) ( )

Here we consider a medium that is characterized by smooth perturbations
8(x, y) on a homogeneous reference model with constant slowness aofl. In
addition we consider a solution which behaves roughly as a plane wave and
propagates primarily along a single preferred direction, e.g., x. In frequency
domain derivations of parabolic approximations (e.g., Claerbout, 1970), the
solution to this equation is usually written as 6(x, y, w) = O(x, y, w)
exp(iwx/a,) where O(x, y, ) is a slowly varying, modulating function which
has been separated from a more rapidly varying phase term. This representa-
tion is useful when the medium is smooth and backscattering is negligible. In a
homogeneous medium (8 = 0), O(x, y, o) would of course remain constant in
space and time and represent simply the amplitude of an undistorted plane
wave. To derive a time domain expression for the solution we integrate over all
frequencies so that

0(x,9,8) = [ dwO(x,y, )exp[ ~iw(t = x/ap)] = O(x,y,t ~x/ag). (16)

It is obvious here that if we define the retarded temporal coordinate 7 such that
T=1{-x/a,

then 6(x, v, t) is the inverse Fourier transform of the slowly varying modulation
O(x,y, w) in 1, or O(x, y, 7). There are several reasons, however, why it is
advantageous to treat the problem directly in the time domain rather than
perform the calculation over a full frequency band followed by Fourier transfor-
mation. Most importantly, as noted by Claerbout and Johnson (1971), it may be
difficult to obtain a sufficiently accurate solution to (16) when subtle features
characterize the waveforms under consideration, even with high accuracy over a
large frequency band. Low amplitude signal may be obscured by periodicity and
parasitic interference patterns caused by higher amplitude energy at other
times. Time domain solutions also offer certain advantages from a computa-
tional point of view; for example, efficient algorithms may be devised for array
processors since there is no need to perform complex arithmetic.

We therefore proceed to solve (15) in the time domain, applying the transfor-
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mation to retarded time coordinate 7 directly. Using the chain rule this leads to
an equation for © as

9’0 2 9?0  &(x,y) 90

dx? B Zv_ oTdx sl ot?
0 0

320
&y2

/0 1 90

Hg. gﬁx(ﬂ T o
0

+
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+ (28, +8,),5 | =0 (D)

Note that to this point equation (17) remains equivalent to (15), we have simply
chosen to represent the solution in a retarded temporal reference frame which
reflects the dominant anticipated phase variation. We now perform a scale
analysis to assess the significance of the first five terms. Equation (14) was
derived under the assumption that variations in material properties are smooth
and vary on a scale length L such that L > A where A is the dominant
wavelength of the P wave. We note once more that this is consistent with the
notion that forward scattering dominates over backscattering. Under these
conditions ® is also slowly varying, and in particular, we expect that it will vary
on the same scale length L as the material properties. We observe then that

320 1 2 320 1 8(x,y) 920 1
7 X737, a ’ 7 7 X35,
dx L oy dTdx AL @ ar A
. 90 1 N 1 90 1
+ — = + —— o —.
Pt 8), 5 r PRt d gy

We derive a one way wave equation by dropping terms proportional to 1/L? so
that we have

2 9?20  §(x,y) %0 5 1 90
—_— — — + -
ay OTdx a02 ar? (2. g")xao ar
ERC) 5 0 0 18
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We are now left with only a first-order derivative in the direction of propagation
which allows us to formulate a forward-propagator, finite-difference scheme
that is easier to solve numerically than a finite-difference treatment of the full
hyperbolic wave equation in (15). We note that equation (18) may be posed in an
alternate form by integration with respect to reduced time from negative
infinity to a current 7. This removes the temporal derivative in the first term of
(18) and is more convenient from the point of view of numerical implementation
as will be discussed in a later section.

This form of parabolic equation is known as the 15° approximation (see
Claerbout, 1976, 1985) since the effective dispersion relation is a reasonable
approximation to that for the full hyperbolic equation over an angular range of
15° from the principal direction of propagation. An attractive feature of the
parabolic equation is that the physical significance of each of the remaining
terms in (18) is now readily apparent. The 320 /972 term is an advective term
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and accounts for delays or advances in the wavefront, the §0 /d7 term describes
the change in amplitude of the wave as it depends on the local material
properties, and the 9®/Jdy and 920 /dy® terms are diffraction terms which
account for healing of the wavefront.

Note that the Gaussian beam method (Cerveny and Psencik, 1983), which
relies on a similar parabolic approximation to the wave equation, is an asymp-
totic approximation in frequency and as such is local with all physical quantities
calculated along a specific ray. In contrast we will undertake to solve an
equation developed in the following sections and similar to (18), on a finite-
difference grid, at necessarily greater expense, but which permits a more global
treatment of propagation. That is, widely separated elements are allowed to
interact with each other through the implementation of the diffraction operator.
The accuracy and general performance of the parabolic approximation, in
particular the form which we have chosen to implement in this study, is
examined in a second paper where synthetic seismograms for several simple
models are compared with those computed using full finite differences and
Maslov theory.

In his “phase front” approach Haines (1983, 1984a, b) extended the plane
wave parabolic treatment to more general classes of heterogeneous media by
adopting a curvilinear coordinate system which mimics the general flow of
energy through a given medium. It is this class of approach which we will adopt
in the following analysis.

A PARABOLIC APPROXIMATION FOR P WAVES IN THE UPPER MANTLE

The upper mantle of the Earth is characterized by a variation in material
properties, and seismic velocities in particular, that is primarily a function of
depth. In order that we may implement a parabolic wave equation for P waves
propagating in the upper mantle it is necessary that we identify a coordinate
system which reflects this dominant variation. Since we are concerned with the
transmission effects on the first arrivals we will disregard the effects of velocity
discontinuities and concentrate on P-wave velocity models that incorporate the
more smoothly varying character of typical upper mantle velocity profiles. A
useful reference in this case is the Herrin model shown in Figure 2 along with
models PREM and IASPEI for the top 1000 km of the Earth. The implementa-
tion of a parabolic approximation to the wave equation in (14) is not critically
dependent upon the exact form of the coordinate system adopted as long as one
coordinate corresponds reasonably closely with the principal direction of propa-
gation of the anticipated wave field. Bearing this in mind, we note that over
most of the top 800 km or so the velocity profiles in Figure 2 can be reasonably
well represented in terms of a function that is linear in depth. This suggests
that we consider the use of a ray coordinate system for a medium with constant
gradient in velocity a; z;,(2) as a function of depth

a(z) = ay + mz. (19)

As is well known, ray paths and wave fronts for a point source in this class of
media are described by circular arcs and spherical surfaces, and hence may be
defined analytically. In addition, a ray coordinate system defined for this class
of media is regular everywhere except at the actual location of the defining
point source. Although it is not strictly necessary, let us proceed with the
development on the basis that our reference coordinate system is constructed for
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UPPER MANTLE VELOCITY MODELS
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Fic. 2. Various upper mantle P-velocity models (stippled lines) and a constant gradient P-
veloeity model (solid line) over the top 1000 km of the Earth’s crust and mantle.

a medium which exhibits a constant velocity gradient with depth as shown in
Figure 2. For brevity we shall refer to this “linear reference medium” as LRM.

The most natural choice of reference frame associated with the LRM we have
just described is one based on ray coordinates and which incorporates the
variables T, {, and ®; where T is the travel time, ¢ is the initial angle of a ray
measured relative to the z-axis, and ® is the angle made by the ray in the
horizontal plane with respect to some predesignated axis. Note that these three
variables constitute an orthogonal curvilinear coordinate system. In the follow-
ing sections and the numerical examples we will discard the ® dependence and
treat the 2D problem to illustrate implementation of the method. The general-
ization of the method to 3D is straightforward and comprehensive 3D modeling
will be the subject of future study.

Now let us consider the form taken by the wave equation in (14) when
referred to this 2D orthogonal curvilinear coordinate system. First note that the
terms involving gradient and Laplacian operators in this system are given by

. 1 90 1 90 50
= —_—+ -
My o " M, o | (20)
and
V26 1 [ 9 h§a®+a h, 00 o1
 hph,| 0T \hy 0T o\ hy ot || (21)

Here n; and n, are unit vectors pointing in the directions of increasing 7' and
{, and h; and h, are scale factors associated with the respective coordinates.
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T + dT ¢ +dG

a.

Fic. 3. Schematic diagram defining quantities employed in the derivation of scale factors (a) Ay
and (b) A, for a curvilinear ray coordinate system corresponding to a medium with constant velocity
gradient.

We can derive analytic expressions for these scale factors by considering the
nature of a differential element in (7, {) space as shown in Figure 3a. The scale
factor h,; can be determined by recognizing that, with the passage of an
incremental period of time d7', the wavefront in the LRM moves a distance dx
where

dx = a;pyy(2)dTng, (22)

and dx is in the direction of the normal to the wavefront n;. Hence the scale
factor for our curvilinear coordinate 7' is just the local reference velocity,
arrm(2) = appyu(T, ),

hp = arru(T, (). (23)

To determine the scale factor %, corresponding to our transverse coordinate {
we refer to Figure 3b and note that an incremental change in { can be related to
a corresponding change in depth dz by the relation

b -1 dz
¢ sin(£) di (24)
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Fic. 3. Continued.

To maintain simplicity we will assume that the origin of our reference frame is
located at the origin of a Cartesian coordinate system (i.e., z = 0) in which case
we can write £, the local angle to the vertical of a ray with initial angle ¢ at
some time T, as

& = 2 atan[exp(mT )tan( {/2)]. (25)
Likewise the depth z at a given time T in this case is

OLRM (sin(f) _ 1)
sin({) )

(26)

m

With expressions for A, and A, now in hand, we may look more closely at
deriving a parabolic approximation to our original equation (14) which we can
rewrite after multiplying by hT2 as
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dX\ 00
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=[1+ 5] (27)

a2’

For simplicity of the resulting expressions we have chosen to write the velocity
a(x, z) in the actual medium in terms of a perturbation parameter 8(x, z)
where a = h,/(1 + 8)/2. In addition, we have employed the abbreviated vari-
ables

sz(zga_l—gp).nT’ (28)
f{:(2ga+gp)'n{1 (29)

hy
X(T,¢) = 3- (30)

¢

We now follow the same line of argument as that made in the previous section.
In particular we assume negligible backscattering (L > A) and adopt a re-
tarded time coordinate = ¢ — T, which allows us to monitor the slowly varying
character of our waveform ® as it propagates through a heterogeneous region.
From the chain rule our differential operators become

T->1T i i i 31
—) e - _-
’ oT 9T  or (31)
and
0 J
t—>r, — - . (32)
ot oT

Dropping the primes on the variable 7" and employing these relations, our wave
equation may be written as

320 %0 . 10X\(90 50
[ — + —_— —_ —_— —_—
oT? a7 oT ( rfr - % aT)(aT ar)
+X2a2® xlns s 60X\ 00 320 a3
e rl; o | ot | o art (33)

Henceforth we follow the same arguments employed in the previous section
with respect to scale analysis and discard factors proportional to 1/L?. This
yields the following parabolic equation

T oL ?

320 16X\ 00 320 70 EELS)
2 + ( rfr 2
174 or

T ~ Xhpfi— + 5—2} =0. (34)

Here we have also dropped a dX/d{ term which in 2D for a constant gradient
reference medium is zero.
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NUMERICAL SOLUTION

The principal motivation in adopting a parabolic approximation for P-wave
propagation is the numerical advantage held over a finite-difference solution of
the full hyperbolic wave equation. There are two main reasons for this advan-
tage. First, note that there is only a first derivative dependence in the direction
of propagation, hence the solution of equation (34) admits only forward propa-
gating waves and, consequently, we may adopt a relatively coarse grid dis-
cretization in this direction. Second, we follow the evolution of the waveform in
a reduced time frame 7, and therefore we require a temporal grid which is only
as long as the anticipated maximum delay between first- and last-arriving
signals that are of interest. Thus the duration of our temporal grid may be only
a small fraction of the total time required for the waveform to propagate
through a region of heterogeneity.

Similar advantages exist in the frequency domain and considerable effort has
been devoted to solving one-way wave equations in exploration seismology
where vast quantities of data are frequently involved (see e.g., Claerbout, 1976,
1985). As indicated in previous sections we are interested in a time domain
implementation and may choose to solve (34) in one of several ways. One
possibility is to employ an efficient and stable algorithm originally proposed by
Claerbout and Johnson (1971). In that study, the authors were concerned only
with the diffraction of a distorted plane wave propagating in a homogeneous
medium. Consequently, they did not need to incorporate terms corresponding to
our advective (8) terms in equations (18) and (34). To apply their algorithm
directly would require that we either center the second time difference (corre-
sponding to the 420 /472 term) over a grid point which differs from the center
point of the diffraction difference operator, or split the total equation into two
separate parts, a diffraction part and a “thin lens” or advective part, and solve
these in alternate steps. We have chosen a third approach where all differences
are centered over the same point and which avoids splitting. This involves
integrating (34) over reduced time 7 from negative infinity to our point of
interest 7'

T'd 2a2® ) 19X\ 90 X2(92® < J0 5a2®
+ - —Xx2— — b
/_w N\ araT orox aT) ar ar? rfe a ar?
za® 16X , 90 o
S R YRS By i
X f 2 (" dre 4 522 35
- — + 65—,
ngagf_m T ot (35)

We note that the §0/9¢ and 920 /9,2 operators commute with the (7 dr
operator and that none of the geometrical factors involving X or the mate-
rial property gradients depend on 7. Thus we have transformed (34) into a
integro-differential equation which may be solved using a combination of finite-
differencing and numerical quadrature. To do this we employ a discretized
dilatation ®, where T'=n AT, 7=jA7r, and { =k A{. Our initial condition
involves a waveform of finite duration prescribed as a function of reduced time 7
and introduced to our upper mantle model at some boundary level in our LRM
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coordinate frame, T = T,. Since we have purposely chosen our reference medium
LRM to exhibit velocities which are everywhere slightly greater than those in
the actual medium of propagation, we know that the value of ©}, on our
temporal grid will always be zero in advance of some prescribed value of 7
(j = 1 in our finite-difference scheme). This formulation allows us to derive a
stable, implicit finite-difference scheme for the unknown ®J”++11 , In terms of
known ©7;', @, ,, and O, centered over the point (n + 3, j+ 3). The
denvatlves in T and 7 at this point are differenced as

i@_ _ ®Jn++1lk ®n+1 jn+1,k - ‘]{tk (36)
aT 2AT ’
ﬂ — ®jn++11k ®]n+1,k + ®n+1 szk (37)
or 2A7 '

We can approximate the integral over reduced time to the point (n, j) using the
trapezoidal rule operator S where

J-1 er,
f dr® =~ S(0,) = Ar| ¥ @, + —Z ) (38)
i=1

We approximate O as

Oy + O+ O, + 0,
1 ,
so that the value of the integral to the point (n + §,j + 3) is approximately
(.Jn++11k) + S(®n+1) +8(07 1) +S(0},)
4
S(®n+1)+s( Ph) ®]n++11k+ 07+ 08, , + 07,

- 5 o . (40)

Finally we represent our derivative operators in the transverse direction ¢
through the finite-difference operators A, and II, where

n n
041 =20/, + 07,

0~

(39)

A4(8]) = 2Ly : (41)
+ _® -1
11,(07,) = 4 VA (42)

The complete finite-difference representation of (35) is then written as

[1 +Akn+1/2+Bkn+l/2 Cn+1/2 Dn+1/2] ],,++11k
=[—1—A n+1/2+Bn+1/2+Cn+1/2+Dn+1/2]®_n+1
+[1 A n+1/2 B n+1/2 +Cn+1/2 +D n+1/2]
+1/2 +1/2 +1/2 +1/2
+[1-ASTVE B2 4 02+ D e,

+4[C,* % + D] [S(07,) + s(erth)]. (43)

]+1k
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where we have employed the discretized quantities

AT 16X
n+1/2=___ R I 2]
A = S e g )T (49)
AT
B n+1/2 — S n+1/2 45
k 2A’T( )k » ( )
AT At
| AT A7
DTV = — (X)L (47)

The issue of boundary conditions must also be considered. We might choose
to implement some form of absorbing boundary condition (see Clayton and
Engquist, 1980) expressed in curvilinear coordinates. However it is simpler to
recognize that, in our application, artificial reflections from grid boundaries will
arrive at times which are significantly later than the portion of the seismogram
we are interested in. Hence it is most economical to employ simple two-point
Dirichlet or Neumann boundary conditions.

Thus if we consider ©, as a vector in &, then we can view equation (43) as a
matrix equation where ®j”++ﬂ ; represent our unknowns, with all remaining
quantities on the right hand side known and calculable. Further note that the
matrix system on the left hand side of (43) is tridiagonal and so we can exploit
the Crank-Nicholson scheme for its solution. The solution proceeds by solving
(43) first for all j = 0, J on our temporal grid at a given value of n, and then
repeating this process for all further values of n.

To summarize, our strategy will be to consider a given incident waveform at
some initial boundary T, on our LRM grid. We then forward propagate this
waveform using (43) to some desired level in our upper mantle model, generally
the Earth’s surface. Although our method requires that the magnitude and
wavelength of the heterogeneity is such that backward scattering is small, we
have incorporated terms which describe diffraction effects such as wavefront
healing. For this reason we expect to gain a better understanding of frequency-
dependent effects on teleseismic P waves propagating through a subduction
zone than is possible, for example, by using high-frequency asymptotic methods.
In the following section we examine the effect of a model slab on synthetic long-
and short-period P waveforms.

NUMERICAL EXAMPLES

In this section we examine P-wave propagation in an upper mantle model of a
subduction zone using the parabolic approximation developed in earlier sec-
tions. Our interest is motivated, in part, by work currently in progress to
monitor teleseismic P-wave distortion caused by the Cascadia slab as recorded
on the Washington regional seismograph network. In a companion paper we
compare observations with synthetic seismograms for models of Cascadia de-
rived from travel time inversion studies and which serve as realistic representa-
tions of the expected structure in this complicated region. For the present study,
however, our main concern will be to demonstrate the application of the method,
and identify some of the important physical interactions that take place be-
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tween the wave field and the subducted slab at high and low frequencies. To
this end, we will confine our attention to a simple 2D slab model where the
heterogeneity exists as a perturbation on a reference medium with velocity
profile which is linearly dependent on depth.

To model this situation we will consider an incoming teleseismic wave intro-
duced at some initial level in our mantle model and examine its expression at
the surface after propagation through the slab structure. The reference medium
is characterized by the velocity profile

a(x,z) = 0.00412z + 7.9 (48)

which provides a reasonable representation of an average velocity profile in
many upper mantle models (see Figure 2). Note here that units of distance and
velocity are km and km/sec, respectively. For our initial wave field we select
the ray theoretical solution for a surface point source and a medium with
velocity profile as in (48). This is readily calculated analytically by solving the
transport equation associated with the scalar wave equation in (14). The slab is
modeled as a 2D tabular body comprising a +5% Gaussian perturbation on top
of the reference medium with a width at 1/e of maximum value of 70 km and
extending to 400 km depth as shown in Figure 4. The axial plane of the slab is
oriented at a dip of 55° and intersects the surface at a distance of approximately
6400 km from the source. The finite difference grid on which we solve (34) is
defined by boundary rays in the reference medium which leave the source at
angles, £, of approximately 29.5 and 32.5° and which reach the surface at
distances between 6000 and 7000 km. A portion of the grid is shown schemati-
cally in Figure 5 and illustrates the class of wave field-slab configuration which

SYNTHETIC SLAB MODEL

£

=

=

g 7.9 10.3
A Velocity (km/s)

6000 6200 6400 6600
Distance (km)

Fi16. 4. Synthetic slab model for the numerical examples described in Sections 7 and 8. The slab is
represented by a 2D tabular body extending between 50 and 400 km depth. The velocity profile

afrossk the axial plane of the slab is a 5% Gaussian positive velocity perturbation with a half width
of 40 km.
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Fic. 5. Schematic representation of the finite-difference grid employed to solve the parabolic

equation (35) for the slab model described in Section 7. The grid is superimposed on a grayscale map
of the velocity field.

we wish to investigate. In particular, we examine the case where the wave field
propagates roughly parallel to the axial plane of the slab. For strictly 2D
geometries we expect the most severe waveform distortions to result from this
configuration.

The incident waveform employed in the next section for high-frequency study
is a simple Gaussian pulse defined by

w(t,{) = A({ exp| —12(7 — 0.625)°| (49)

where A(() is the geometric amplitude along the wavefront, v is measured in
seconds. Although not particularly realistic, Gaussian waveforms are attractive
(see Vidale, 1987; Cormier, 1989) in their simplicity and symmetry, and permit
a straightforward analysis of pulse distortion. The spectrum of the pulse in (49)
is relatively flat between 0 and 1.0 Hz and has dropped well below 20 dB after
2.0 Hz. We use a similar pulse scaled in time to describe lower frequency
propagation.

HicH FREQUENCY PROPAGATION

Figure 6 shows a series of synthetic seismograms as recorded at the surface
and plotted as functions of range and reduced time, for waves containing
significant energy out to 1.0 Hz. Note that higher frequencies here will have
propagated distances through the anomalous region to the surface in excess of
60 wavelengths. Several features are immediately apparent, in particular the
negative travel time anomaly associated with that portion of the wave field that
has propagated up the high-velocity slab. For the model parameters we have
chosen to adopt this anomaly ranges up to approximately 8 sec and is most
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SLAB SEISMOGRAMS - 1.0 Hz
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Fic. 6. Short-period synthetic seismograms recorded at the surface over the slab model (see
Figure 4). At higher frequencies multipathing of ray geometric arrivals is the principal factor
affecting waveform distortion.

pronounced at 6400 km where the axial plane of the slab intersects the surface.
The effect of the slab is also witnessed in the amplitudes of the waveforms: since
the slab represents a region of increased velocity it behaves as an anti-wave
guide (see Gubbins and Snieder, 1991) which continuously refracts energy out of
its borders. Thus there is a systematic loss of energy from that portion of the
wave field which propagates up the core of the slab as illustrated in Figure 6.
The most severely affected waves exhibit amplitudes which are approximately
one sixth those in the undistorted wave field recorded at the surface.

Perhaps the most interesting effect is observed on seismograms which record
waves that have traveled to either side of the slab axis and interacted with the
more pronounced transverse velocity gradients. In these regions we note a
complicated distortion in the waveform which results, in geometrical optics
terms, from a triplication and the consequent interference of three separate
phases. A smaller selection of traces is shown in Figure 7 to indicate more
clearly the nature of these phases. Above the slab in the range 6240 to 6310 km
and below the slab between 6471 to 6566 km we can identify the interference of
the direct wave and a second Hilbert transformed phase which has touched the
caustic surface. The expression of this interference is sensitive to position and
varies rapidly over relatively short distances. At certain positions the interfer-
ence results in amplitudes that are approximately twice those in the undis-
turbed wave field. The observation and interpretation of this phenomenon in
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SELECTED TRACES - 1.0 Hz
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FiG. 7. Selected short-period synthetics at various locations across the slab. Note the interference
between the direct arrival and the Hilbert transformed pulse which has touched the caustic surface.

actual data would require a high density of recording stations. The pattern of
waveform distortion about the axial plane of the slab is, of course, asymmetric
owing to the geometry of the problem. In particular this asymmetry can be seen
to arise from several different and competing factors: i) the velocity gradient
above the slab is greater than that below; ii) the wave field below the slab
propagates a greater distance through the anomalous region before reaching the
surface than that above; and iii) the initial conditions require that our starting
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SLAB SEISMOGRAMS - 0.1 Hz
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Fic. 8. Long-period synthetic seismograms recorded at the surface over the slab model. At lower
frequencies diffraction of the waveform becomes an important factor in determining the character of
waveform distortion.

wave field vary slightly in amplitude along the wavefront as indicated in (49).
These factors result in slightly greater peak amplitudes above the slab than
below and a difference in the moveout of the secondary phases on either side of
the slab.

Finally, we note that the lower frequencies in the waveform experience
noticeable diffraction. This is apparent in Figure 7 for seismograms at 6323,
6336, and 6403 km wherein it is apparent that a very low-amplitude, low-
frequency component of energy follows the first arrival. This results from a
“leakage” of energy into the slab from the external medium. The nature of the
distortion in the lower frequencies is examined in the following section.

Low-FREQUENCY PROPAGATION

We now investigate the effect of the same model slab on a wave field which
contains significant energy over a narrower frequency band. The shape of the
incident pulse is the same as that in the previous example, however it has been
stretched in time by a factor of 10 so that most of its energy is confined to the
band 0 to 0.1 Hz. Although the appearance of the section in Figure 6 differs
quite markedly from that in Figure 8, there are several broad similarities (note
that the time axis has changed). First, the same general negative travel time
anomaly exists over that portion of the wave field which has propagated up the
high-velocity slab. Second, the amplitudes of corresponding waveforms are
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reduced relative to those in the unaffected portion of the wave field. Here the
similarities end; the wave field at longer periods is far more severely affected by
the frequency-dependent effect of the diffraction operator in equation (34). Since
it is expressed through the second derivative transverse to the general direction
of propagation, this operator has a smearing or averaging effect and tends to
heal the sharper, more pronounced features in the wave field. Thus we find that
severe waveform distortion observed in the previous example via multipathing
is no longer present. For example the variation in amplitude is more subdued,
ranging between 75 to 110% of the value expected for the unperturbed, laterally
homogeneous reference medium. In addition, rather than observing the evolu-
tion of distinct phases, we find that the waveforms see the effect of the slab in
terms of a broadening, or an increase in low-frequency content (see Figure 9).
This is most pronounced for waveforms traveling up the axial plane of the slab
since the early component of the waveform has propagated through the high-
velocity slab material and later energy arrives via leakage of the energy into the
slab from the slower, external wave.

DiscussioN AND CONCLUSIONS

We have presented a method for computing time domain synthetic seismo-
grams for P waves propagating in a laterally heterogeneous upper mantle. The
method describes distortion over the initial few cycles of the P waveform and
requires that material contrasts be smooth on the scale of a wavelength such
that backscattered energy is negligible. In this case we can derive a parabolic
approximation to the wave equation in which the principal processes affecting
the pulse during propagation are explicitly identified. These include advection
(i.e., time delay or advance of the pulse), growth or decay of the waveform
amplitude, and diffraction which smoothes the wave field and is strongly
dependent on frequency.

In order to implement the parabolic approximation we must identify a priori
a coordinate system which mimics the general flow of energy. A reasonably
accurate representation of a reference velocity structure in the upper mantle is
afforded by a profile which is linear in depth. This motivates our solution of the
parabolic equation on a curvilinear coordinate grid where the orthogonal coordi-
nates are simply the rays and wavefronts for a point source in a reference
medium with constant velocity gradient. The result is an efficient forward
propagator scheme which involves integrating the parabolic equation using
finite differences forward in space from some initial level, through a region of
heterogeneity, to the Earth’s surface.

Application of the method to a simple 2D slab model demonstrates the
contrasting effects of the slab anomaly on high- and low-frequency waves. At
short periods we observe the effects predicted from ray theory, notably advanced
travel times and reduced amplitudes for waves traveling up the axial plane of
the slab, and the complex interference of multipathed arrivals away from the
axial plane. Long-period waves exhibit the same qualitative travel time and
amplitude characteristics; however, the character of waveform distortion differs
quite markedly. Wave diffraction plays an important role in this case and
results in a wave field which exhibits more gradual variations. In particular we
find that waveforms which have propagated through the slab anomaly are
characterized primarily by broadening, or equivalently an increase in low-
frequency content.
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SELECTED TRACES - 0.1 Hz
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FI1G. 9. Selected long-period synthetics at various locations across the model slab. Wave diffrac-
tﬁ)n causes a “leakage” of energy into the high velocity slab corridor and results in a broadening of
the waveform.
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Research is currently under way into applying the parabolic approximation in
the form derived here to more accurate realizations of P-wave propagation in a
laterally heterogeneous upper mantle. This includes the incorporation of more
realistic velocity models, notably the Cascadia slab model of VanDecar (1991)
constructed through the inversion of teleseismic travel time data. This will in
turn allow for a comparison of synthetic waveforms with actual field data. The
inclusion of velocity discontinuities is also contemplated and requires that these
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be identified explicitly in the finite difference scheme. In addition we are
investigating the extension of the method to 3D heterogeneity. The theory for
3D follows trivially from the derivation presented here for 2D situations; the
complication arises in the development of a numerical implementation which is
both accurate and computationally efficient. As in related applications
(Claerbout, 1973, 1985), it is no longer practical to difference the parabolic
equation in an implicit manner and therefore explicit treatments must be
adopted which do not suffer too severely from the effects of numerical disper-
sion.
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